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Abstract

Visual relation detection (VRD) aims to describe all inter-
acting objects in an image using subject-predicate-object
triplets. Critically, valid relations combinatorially grow in
O(C?R) for C object categories and R relationships. The
frequencies of relation triplets exhibit a long-tailed distribu-
tion, which inevitably leads to bias towards popular visual
relations in the learned VRD model. To address this problem,
we propose localize-assemble-predicate network (LAP-Net),
which decomposes VRD into three sub-tasks: localizing indi-
vidual objects, assembling and predicting the subject-object
pairs. In the first stage of LAP-Net, Region Proposal Network
(RPN) is used to generate a few class-agnostic object pro-
posals. Next, these proposals are assembled to form subject-
object pairs via a second Pair Proposal Network (PPN), in
which we propose a novel contextual embedding scheme. The
inner product between embedded representations faithfully
reflects the compatibility between a pair of proposals, with-
out estimating object and subject class. Top-ranked pairs from
stage two are fed into a third sub-network, which precisely
estimates the relationship. The whole pipeline except for the
last stage is object-category-agnostic in localizing relation-
ships in an image, alleviating the bias in popular relations
induced by training data. Our LAP-Net can be trained in an
end-to-end fashion. We demonstrate that LAP-Net achieves
state-of-the-art performance on the VRD benchmark while
maintaining high speed in inference.

Introduction

To interpret an image, it is insufficient to locate and rec-
ognize objects in the scene. The interactions between ob-
jects also need to be carefully estimated. While research
on object detection is rapidly progressing, understanding vi-
sual relationships is still a hard task and the results of ex-
isting pipelines are far from being satisfactory. Visual rela-
tionships are defined as <subject-predicate-object> tuples,
where subject and object are related by the predicate. There
can be many types of predicates, for example, verb (cat-sit
on-chair), spatial (book-on-shelf), preposition (person-near-
dog), comparative (personl-taller-person2). The goal of vi-
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Figure 1: This figure shows some examples of visual rela-
tions from VRD dataset. Local information is insufficient for
accurate relation detection. For example, in the this image,
only the content in object bounding boxes is not enough to
decide the relative position between kite and person. There-
fore, we propose a novel contextual embedding to prompt
global-local information interaction for relation detection.

sual relationship detection is to both localize objects in the
image and predict the relationship between object pairs.
Comparing to object detection, visual relationship detec-
tion is difficult in that the distribution of relation triplets
is long-tailed. Given C' object classes and R relationships,
the total number of possible relationships will be O(C%R),
and learning so many relationships with limited labeling
data is a challenging task. One common solution to this
problem is to learn separate models for detecting objects
and relations, reducing the complexity of training detec-
tors to O(C' + R). In such pipelines, an input image is
first fed into an object detection module to get a set of
detected objects, then all pairs are considered as potential
<subject, object> pairs and will go through the relation de-
tection module sequentially, as proposed in (Lu et al. 2016;
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Figure 2: Network comparison between common pipelines and our work. (a) shows the architecture of most VRD pipelines, in
which an object detector first outputs objects, then relationship prediction is performed on each pair of them. These pipelines
contain much redundant computation, as most object pairs are unrelated. (b) demonstrates our three-stage LAP-Net. In the first
stage, an RPN outputs category-agnostic proposals. Stage two assembles compatible subject-object proposals by utilizing a
novel contextual embedding. Stage three takes in selected object pairs and classify objects and their relationship in two parallel
networks. Contextual embedding and relationship detection module will be illustrated in detail in Fig. 3 and 4.

Zhang et al. 2017a). Usually, the first module generates hun-
dreds of proposals, leading to tens of thousands of possible
pairs. To detect the relationship between all the pairs would
be too time-consuming and redundant, as in most images
there only exist a handful of relationships.

To this end, we introduce our localize-assemble-predicate
network (LAP-Net) to address both the problem of redun-
dant proposal pairs and that of biased relationships. After
generating object proposals, we intend to select only highly
compatible pairs, which possibly contain valid relationships,
for relationship prediction. The relation prediction module
takes in visual and spatial information of object pairs but is
agnostic to their class information, thus the relation predic-
tion is independent of object and subject category, alleviat-
ing the bias towards popular subject-predicate-object rela-
tionships induced by labeling data.

To be more specific, we decompose VRD into three
simpler sub-tasks: localizing individual objects, assembling
subject-object pairs, and predicting the categories and rela-
tionship between pairs, and let each task solved by a corre-
sponding stage in our network. In the first stage, we gener-
ate class-agnostic object proposals using the Relation Pro-
posal Network (RPN) in FasterRCNN (Ren et al. 2015).
Our main contribution is in the second stage, in which we
propose a novel Pair Proposal Network (PPN) that con-
siders visual cues to assemble subject-object pairs from
previous proposals. In this module, we construct a com-
plete graph in which each object proposal represents a node
and the edge between every two nodes stands for a rela-
tion, making proposing valid relationships among objects
equal to choosing edges from the graph. A novel contex-
tual embedding is employed to formulate the global and

local information exchange between nodes, ensuring that
good subject-object pairs admit large inter-vector similarity.
Our PPN is light and fast in selecting related pairs from all
possible proposal combinations. As the first two stages of
our network are respectively class- and predicate-agnostic,
the process of relationship pair proposal can be applied to
any input image regardless of specific training data or ob-
ject classes. The selected object-subject pairs are then fed
into the third stage, in which two parallel networks classify
object proposals and their relation into correct categories
simultaneously. A three-branch stacked interacting hour-
glass network takes in the object, subject and union bound-
ing box features and precisely estimates the relationship.
While other methods (Zhang et al. 2017a; Yin et al. 2018;
Zhang et al. 2017c; Dai, Zhang, and Lin 2017) claiming
to be end-to-end trainable use pre-trained object detection
model and only train the rest of their framework, our net-
work can be trained end-to-end as a whole, including the
RPN in stage one. In contrast to many existing models that
utilize language priors, such as exploring statistical depen-
dency between labels (Dai, Zhang, and Lin 2017), mining
external linguistic knowledge (Yu et al. 2017) or construct-
ing word-embedding-related classifier (Zhuang et al. 2017),
our LAP-Net is a purely visual model, surpassing existing
visual models by a large margin on VRD (Lu et al. 2016)
dataset. In summary, our main contributions are as follows:

o We propose LAP-Net, an end-to-end trainable three-stage
visual relation detection network aiming to alleviate the
relation bias in the training data.

e We introduce a novel Pair Proposal Network (PPN),
which utilizes contextual embedding and a complete
graph model to assemble class-agnostic object pairs.



o [ AP-Net achieves state-of-the-art performance on the
VRD benchmark as a purely visual model, surpassing
most existing models by a large margin, while maintain-
ing high speed in inference.

Related Work

Object Proposals: Before deep CNNs become popular, ob-
ject proposal methods can generally be classified into two
categories: grouping proposal methods and window scor-
ing proposal methods. The first method is based on merging
super-pixels (Uijlings et al. 2013; Carreira and Sminchis-
escu 2011; Arbeldez et al. 2014), while the other is based
on scoring candidate windows and filtering out those with
low scores (Alexe, Deselaers, and Ferrari 2012; Zitnick and
Dollar 2014). Then CNN-based methods (Szegedy et al.
2014; Cai et al. 2016) gradually emerge, predicting regions
based on features extracted by deep neural networks. These
methods are adopted in object detection networks (Girshick
2015; Ren et al. 2015) to generate bounding boxes before
detectors, forming an end-to-end trainable pipeline.

Visual Relationships: Earlier works exploring visual rela-
tionships often focus on a particular type of relationship, in-
cluding positional (Choi et al. 2013; Johnson et al. 2015) or
interactive (Rohrbach et al. 2013; Gkioxari, Girshick, and
Malik 2015) relations. As these relationships are from a
given category, they are usually extracted using handcrafted
features. These relations are utilized to improve the perfor-
mance on other tasks, such as scene understanding (Kumar
and Koller 2010) or image retrieval (Gong et al. 2014).

The problem of detecting generic visual relation is first
proposed in (Sadeghi and Farhadi 2011), in which rela-
tions are formulated as visual phrases (e.g., “A person rid-
ing a horse.”). Following the definition in natural language
processing (Zhou et al. 2007), (Lu et al. 2016) introduced
the task of visual relation detection as both predicting the
<subject, predicate, object> triplet and localizing object
and subject. The VRD dataset is also proposed in (Lu et al.
2016), which is one of the most common benchmarks on this
task. Most recent methods on visual relation detection can be
divided into two categories: (i) train one classifier to output
the <subject, predicate, object> tuple; (Sadeghi and Farhadi
2011; Divvala, Farhadi, and Guestrin 2014) (ii) predict sub-
ject, object and relationship from separate classifiers (Lu
et al. 2016; Dai, Zhang, and Lin 2017; Yin et al. 2018;
Yu et al. 2017). As the number of relation tuples can be ex-
tremely large and the labeled data is long-tailed, training a
classifier to handle all possible tuples can not generate sat-
isfying results. Therefore, more methods are now focused
on predicting objects and relationships with separately and
trying to form information exchange between different clas-
sifiers. Almost all these methods first perform object detec-
tion and then predict relationships for each pair of detected
objects. This is inefficient in that the number of pairs is
quadratic to that of proposals, but usually, only a handful
of relationships exist in an image, so sending most of the
pairs into the relation classifier is wasteful.

Down this line, our network aims to filter out unrelated
object pairs before passing them into the relationship de-
tection module to improve efficiency. To alleviate the bias

induced by the long-tailed distribution of <subject, predi-
cate, object> triplets in the dataset, we generate category-
agnostic proposals for selection. The method in Relation-
ship Proposal Network (Zhang et al. 2017c¢) is the most re-
lated to ours, in which proposal pairs are also selected before
relationship prediction. Our pipeline differs in two aspects:
(1) We utilize only one object proposal module to generate
potential pairs, while Relationship Proposal Network uses
three modules to predict subject, object, union box respec-
tively; (ii) We propose a novel contextual embedding to ef-
fectively formulate the compatibility between object propos-
als. Experiments demonstrate that our framework surpasses
Relationship Proposal Network by a considerable margin
when evaluating both proposal selection and final relation-
ship detection results on the VRD benchmark.

Localize-Assemble-Predicate Network

LAP-Net is an end-to-end trainable network with three
stages. Category-agnostic object proposals are generated in
stage one. Stage two assembles compatible subject-object
pairs and feeds them into stage three to predict the category
of object, subject, and relation in parallel. Our framework is
highly efficient in that stage two accurately selects related
object proposal pairs from all possible combinations, reduc-
ing the computational waste of sending irrelevant pairs into
stage three. Relationship prediction in stage three is object-
class-agnostic to alleviate the bias in popular relations and
is still able to achieve state-of-the-art performance in rela-
tion detection without category information. Each stage is
explained in detail in a subsection below. Fig. 2 illustrates
the overview of our pipeline.

Stage One: Object Localization

In stage one, we use the Region Proposal Network (RPN)
in FasterRCNN (Ren et al. 2015) to generate object pro-
posals. Each proposal is represented as a bounding box in
the image, from which visual and spatial features but cat-
egory information is extracted. We choose ResNet-50 (He
et al. 2016) network as our backbone architecture. Gener-
ally, RPN outputs thousands of proposals. Non-maximum-
suppression (NMS) with IoU > 0.7 is performed on the re-
sults of RPN and prunes them to no more than 512 object
proposals before feeding them into the next stage.

Stage Two: Assembling Object Proposals

Stage two aims at filtering out incompatible proposal pairs
and feeding remaining pairs into the next stage for relation-
ship prediction. We construct a complete graph with object
proposals as its nodes and relationships as edges between
every two nodes. A novel contextual embedding is proposed
to select edges from the graph model, which is equal to
assembling relationships from all possible proposal pairs.
To select edges that represent valid relationships, our con-
textual embedding utilizes the Conditional Random Field
(CRF) model (Lafferty, Mccallum, and Pereira 2001) to for-
mulate global and local information exchange. In our con-
textual embedding, we design our message passing proce-
dure in CRE, then fully integrate CRF modeling with CNNgs,
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Figure 3: (a) [llustration of message passing in contextual embedding. Here shows the feature interaction procedure for the ¢th
proposal’s embedding Q;. Q); receives information from all other (;(j # 4), and the information intensity is determined by the
cosine similarity between (; and ();. Message passing can be done for all ();s in parallel. (b) A simplified demonstration on
the distribution of proposal features in each iteration. After the information exchange is calculated in message passing, embed-
dings originally having cosine similarity> 0 will get closer, while those with similarity< 0 will become further. Embeddings
admitting larger cosine similarity will contribute more to the feature interaction between each other, thus making close features
closer. The feature distribution scale is aligned back to standard in the following normalization step. These steps will help to
form clearer boundaries between clusters of embeddings. In this case, the boundary is between {Q1, @2} and {Q3}.

making the whole network end-to-end trainable while main-
taining the desirable interpretability of CRF. The optimiza-
tion target of our contextual embedding is to ensure good
subject-object pairs admit large inter-vector similarity, and
we prove that our self-designed message passing procedure
in CREF is following this objective.

Contextual Embedding with Conditional Random Field
Following (Krihenbiihl and Koltun 2011), we first provide
a brief overview of CRF modeling for assembling object-
subject pairs from all proposals. A CRF in this context mod-
els features of each proposal as random variables that form
a Markov Random Field (MRF) conditioning on a global
observation. Here, the global observation is the input im-
age and all object proposals. We let the random variable
related to the ith proposal be denoted by X;, and the total
number of proposals be N. We construct a complete undi-
rected graph G = (V, E), in which V = {X3,..., Xx} and
E = {e;j|]1 < i < j < N}. Consider one random field X
defined over { X1, ..., Xn} and another random field I de-
fined over the whole image as the global observation, a fully
connected pairwise conditional random field (I, X) is char-
acterized by a Gibbs distribution:

exp(— Z@(XAI)) (1)

1
P(X|I)= 70
We denote >, ; vy @i(wi|]) as E(x), the energy of con-

figuration x. Z(I) is the partition function (Lafferty, Mccal-
lum, and Pereira 2001). For convenience, we drop the con-
ditioning on I in the rest. The energy function of x is:

BE(z) =Y tu(z:) + Y vpl@i,z)), ©)

i i<j
where i and j range from 1 to V. The unary potential ), (;)
is computed independently for each proposal, representing

the original object feature without information exchange.
In our implementation, the unary potential considers visual
cues to generate initial features that fully represents each re-
gion’s context. The pairwise potential is formulated as:
K
Up(@iyxy) = plasy) Y W MEM(fi ) G)
m=1

Here, p is the category compatibility function, capturing
the compatibility of labels between overlapping or nearby
proposals. For example, the categories of two near propos-
als being “floor” and “desk” should be penalized lesser than
“sky” and “desk”. k"™ (f;, f;) represents the information
exchange between the ith and jth proposal. Different m
stands for different ways of feature interaction, and w are
learnable weights for them.

Inspired by the highly efficient mean-field approximation
to the CRF distribution in (Krdhenbiihl and Koltun 2011),
we imitate them to generate an approximation for inference
in our fully connected CRF model. The whole inference al-
gorithm is summarized in Algorithm 1 and will be explained
in detail in the following paragraph. We follow (Zheng et
al. 2015) to formulate our mean-field iteration algorithm as
a Recurrent Neural Network (RNN) to enable the end-to-
end trainable property of the whole pipeline. After obtain-
ing contextual embeddings for proposals as output of the
algorithm, we calculate cosine similarity between the em-
beddings and select those with high similarity to be subject-
object pairs. A pair-assembling loss is imposed on the output
pairs of stage two. It is defined as:
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Algorithm 1 Mean field approximation in fully connected
CREFs for pair proposal selection
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end while
Sim(f;, f;) = m is the cosine similarity. This pair-
i J

assembling loss enforces pairs labeled as related in ground
truth to have top ranked feature similarity, making it the op-
timization goal of the CRF model.

Here, @); is the contextual embedding for proposal 7 that
is gradually updated in the algorithm. [ stands for each di-
mension in the contextual embedding vector. To improve ef-
ficiency, we propose only one simple but effective way of
feature interaction in the message passing step (k = 1). Our
E(fi, f;) is formulated as the cosine similarity between con-
textual embeddings of object proposal ¢ and j. If the feature
of proposal j is the closest to that of proposal ¢ among all
proposals, feature 7 will contribute most in affecting feature
1 towards changing in its direction. « here is a hyperparam-
eter adjusting the extent to which other features affects fea-
ture 7. The message passing step is efficient in that feature
calculation for each proposal can be executed in parallel. So
the time spent in this step is equal to that of feature calcula-
tion on one proposal, which is O(N) instead of O(N?). In
compatibility transform, information is exchanged between
different dimensions in each contextual embedding vector,
while p contains learnable parameters trained by the pair-
assembling loss mentioned above. We believe the learnable
interaction inside feature vectors can prompt contextual em-
bedding to adjust itself towards better representation and
more effective relationship detection. In the next step, up-
dated features are added to the unary potential to generate
new proposal embeddings. U; is the unary potential for pro-
posal ¢, and we assign its value to be that of (); after the ini-
tialization step in the algorithm. The information from other
features gathered in message passing step is now transmitted
to feature 7. According to the claim above, embeddings that
are originally close to each other would contribute more than
further embeddings to one another’s feature and thus be-
come relatively closer after each iteration. See Fig. 3 for an
illustration of the whole feature interacting process. Though
the scale of distance distribution between all proposal fea-
tures might fluctuate after updating, a normalization step
followed immediately to stabilize the scale, thus enabling
proposal features to form more obvious clusters without al-
tering the scope of feature distribution. This normalization
also enables contextual embedding to align in the afterward
cosine similarity calculation procedure.

After several iterations, the CRF model outputs the up-
dated features for all proposals, each of them is an effective

contextual embedding containing the interactive information
with other boxes. One advantage of our contextual embed-
ding is that the global knowledge each proposal receives
is not the same, general information, but the knowledge is
proposal-specific, in that every object sees the whole image
by gathering information from interacting with other propos-
als. These interactions include information from the object
itself, implementing object-specific knowledge into global
information, making the contextual embedding unique for
the object and effective for relationship proposal.

The optimization goal of the CRF model is to generate
contextual embeddings that ensure good subject-object pairs
admit large inter-vector similarity. As message passing in
CREF intuitively enables similar proposal features to congre-
gate, boundaries will naturally form between groups of re-
lated proposals in the embedding space. This together with
the pairwise objective function makes the training of our
pair proposal network highly efficient and effective. Thus,
the optimization procedure in CRF follows its goal.

Stage Three: Relationship Prediction

In stage three, two parallel modules, object classification
module and relation detection module, classify object pro-
posals and relations simultaneously, and their outputs are as-
sembled to generate final results of visual relation detection.

Object Classification Module The object classification
module takes in all proposals from RPN and generates two
branches of outputs: the object categories and the precise
positions of their bounding boxes. Following the multi-task
loss in Fast RCNN (Girshick 2015), the objective function
we minimize at training is a combination of classification
loss and bounding box regression loss, which is defined as:

({pz} {t } N ZLcls pzapz
sz reg(tir 7)),
=1

&)

reg ;

where ¢ is the index of a proposal. p; is the predicted proba-
bility of object ¢ belonging to each category, and ¢; is a vec-
tor representing the four coordinates of the bounding box. p;
and ¢ are the corresponding ground-truth label and box of
the proposal. p; L., ensures regression loss calculate only
on the right label. Details can be referred to (Girshick 2015).

Relationship Detection Module Pairs of related object
proposals are assembled from stage two. For each pair of
proposals, we define the predicate bounding box as the union
box of object and subject bounding boxes. The relationship
detection module is a three-branch stacked interacting hour-
glass network, as shown in Fig. 4, taking the visual features
of the object, subject, and predicate bounding box as in-
put. LAP-Net is efficient as it only requires each image to
pass through the feature extractor once. Here, the predicate
bounding box feature can be quickly inferred from the image
feature map, instead of being calculated from scratch.
Object, subject, predicate features first all go through an
ROI Align layer (He et al. 2017), then three features are con-
catenated and passed into a fully-connected (FC) layer with
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Figure 4: The relationship detection module is a three-branch stacked interacting hourglass network. It takes in features from
subject, object, and union bounding boxes and first performs ROI Align on these features. Predicate features are updated
by concatenating object and subject features continuously, and the update can be performed for several iterations to prompt
interaction between global and local information. Then three features are congregated to predict the confidence in each kind of

relationship between subject and object boxes.

a ReLU layer to generate an updated predicate feature. The
motivation to update the predicate feature is that, though the
union bounding box itself contains global information that
would complement for the local information in object and
subject features, this global feature only sees the whole re-
gion without knowing the exact position of subject and ob-
ject in the area. Therefore, to extract more effective global
features for relation detection, we seek to incorporate ob-
ject and subject information into the union box feature. This
global-local interaction to improve predicate feature can be
performed multiple times. After obtaining effective predi-
cate feature, object, subject, predicate features are concate-
nated and sent into two FC layers, then passed into a softmax
layer to predict the confidence for each type of relationship
between object and subject. After getting the probability dis-
tribution for all relationships in all pairs, we select those re-
lationships with the highest confidence, pairing them with
object and subject categories obtained from the object de-
tection module as the final output of our LAP-Net.

Experiments

We evaluate LAP-Net on two kinds of outputs: (i)<subject,
predicate, object> triplets, which is the final output of our
framework and the most commonly evaluated target in vi-
sual relationship detection; (2)relationship proposals, the
output of our pair proposal network (PPN), following the
setup in (Zhang et al. 2017c¢), as it shares similarity with
our work in pair proposal selection. We demonstrate the ef-
fectiveness of our pipeline by surpassing all existing visual
models and most of the language-based models.

Evaluation on Visual Relationship Detection

Dataset and Metrics We conduct experiments on VRD
dataset (Lu et al. 2016). This dataset contains 5,000 images
and 37,993 visual relations with 6,672 relation types. There
are 100 object categories and 70 predicates. We follow the
splitting of train/test set in (Lu et al. 2016), using 4000 im-
ages in training and test on the remaining 1000 images.

Here, visual relation detection is evaluated under two
measurements: relationship detection and phrase detec-
tion. In relationship detection, the framework is considered
to generate a correct relationship if <subject, predicate,
object> triplets are categorized correctly, and the subject
and object bounding boxes must each have at least 0.5 over-
lap with their ground truth boxes. Phrase detection is simi-
lar to relationship detection, but different in that it requires
the union bounding box’s overlap to be at least 0.5. The
evaluation metrics are recall@50 and recall@100. Recall@x
stands for the portion of ground truth relationship predicted
in the top x confident relationship predictions. Unlike object
detection, the annotation of relationship may be incomplete
due to its diversity and ambiguity. Thus, precision is not the
proper metric because predicted relationships might be cor-
rect but not labeled in the image, while recall is effective in
that it only evaluates on labeled ground truth. As multiple
predicates might exist to describe the relationship between
two objects, we use k to represent the maximum number of
relationships chosen per object pair. We evaluate on & = 1
and 70. For k = 1, only one relationship can be predicted for
each pair. For £ = 70, as the total number of predicates is
70, this is equivalent to evaluating all possible relationships.

Comparative Results The comparison between our pro-
posed LAP-Net and several existing methods on the VRD
dataset is listed in Table 1. The results show that our
framework achieves state-of-the-art on most of the evalu-
ation metrics. LAP-Net improves greatly when k=1, sur-
passing previous state-of-the-art methods by 2.30% Re-
call@50 and 2.90% Recall@100 in relation detection. In
k=70, our pipeline only demonstrates comparable perfor-
mance with some prior arts. Our Recall@50 results in re-
lation and phrase prediction outperform previous methods
by 1.32% and 0.26% respectively, while the performance
on Recall@100 is slightly lower than state-of-the-art. Still,
LAP-Net is superior in that it only utilizes visual informa-
tion for visual relation prediction, while other methods like
CAI (Zhuang et al. 2017) and LK (Liang, Lee, and Xing
2017) adopt internal and external language knowledge to



Table 1: Comparison with existing visual relationship detection methods on VRD dataset. Best performances are shown in bold.

Relationshi Phrase
k Methods Recall @50 ReczI:ll@lOO Recall@50 Recall@100
LP (Lu et al. 2016) 13.86 1470 16.17 17.03
VTransE (Zhang et al. 2017a) 14.07 15.02 19.42 22.42
PPR-FCN (Zhang et al. 2017b) 14.41 15.72 19.62 23.15
TFR (Jaec Hwang et al. 2018) 15.20 16.80 17.40 19.10
CAI (Zhuang et al. 2017) 15.63 17.39 17.60 19.24
Weak-Su (Peyre et al. 2017) 15.80 17.10 17.90 19.50
k=1 Deep-Str (Zhu and Jiang 2018) 17.27 18.26 22.61 23.92
Vip-cnn (Li et al. 2017) 17.32 20.01 2278 2791
VRL (Liang, Lee, and Xing 2017) 18.19 20.79 21.37 22.60
LK (Yu et al. 2017) 19.17 21.34 23.14 24.03
Zoom-Net (Yin et al. 2018) 18.92 21.41 24.82 28.09
CAI + SCA-M (Zhuang et al. 2017) 19.54 22.39 25.21 28.89
LAP-Net 21.84 25.29 28.07 33.05
DR-Net (Dai, Zhang, and Lin 2017) 17.73 20.88 19.93 23.45
LK (Yu et al. 2017) 22.68 31.89 26.32 29.43
k=70 Zoom-Net (Yin et al. 2018) 21.37 27.30 29.05 37.34
CAI + SCA-M (Zhuang et al. 2017) 22.34 28.52 29.64 38.39
LAP-Net 24.00 20.67 29.90 3723

Table 2: Relationship proposal recall rates on VRD dataset
with IoU> 0.5 and different proposal numbers.

IoU> 0.5 2000 | 5000 | 8000 | 10000
SS, pairwise 22.1 | 28.0 | 314 33.0
EB, pairwise 15.1 | 20.6 | 242 25.2

RPN, pairwise | 28.9 | 36.2 | 41.0 43.0
Rel-PN 383 | 443 | 464 47.3
LAP-Net 579 | 66.6 | 71.0 72.6

achieve similar or slightly higher performance.

Methods in Table 1 mostly rely on pre-trained object de-
tectors to generate proposals with class information. We ob-
serve that object detectors sometimes fail to detect all ob-
jects in an image. Though those lost objects can be localized
in RPN, they are not assigned with high confidence scores
in the detection stage and thus are filtered out. These objects
might be involved in some relationships, which will also go
lost in this case. Our pipeline prevents this from happening,
for we directly take the output of RPN to find related pairs.
Our contextual embedding enables the network to precisely
assemble compatible proposal pairs, forcing the following
object classification module to identify the proposal’s cate-
gory. Such relationships can thus be accurately detected.

Evaluation on Relationship Proposals

Evaluation Settings We follow Relationship Proposal
Network (Rel-PN) (Zhang et al. 2017c) to evaluate our
model by localizing relationships in images, aiming to
demonstrate the effectiveness of our second stage in assem-
bling subject-object relationships. Recall rate is calculated
on varying numbers of relationship proposals (2000, 5000,
8000, 10000) with IoU> 0.5. Here, “loU> 0.5” suggests

subject and object proposals overlap with their ground truth
bounding boxes by at least 0.5 respectively. (Zhang et al.
2017c) also proposes three baselines to compare recall rate
with, each of them containing a different object detection
module and outputs relationship proposals as combinations
between every two detected objects. These three detection
methods are: Selective Search (Uijlings et al. 2013), Edge-
Boxes (Zitnick and Dollar 2014), and Region Proposal Net-
work (Ren et al. 2015). We compare with Relationship Pro-
posal Network and other baselines using the output from
stage two. Experiments are also conducted on VRD dataset.

Comparative Results The results are reported in Table 2.
The recall rate of stage two in LAP-Net is extremely high,
almost reaching a 50% increase over Relationship Proposal
Network in all settings. This experiment demonstrated the
efficiency of our Pair Proposal Network (PPN), proving that
the proposed contextual embedding is effective in modeling
the compatibility between object proposals.

Concluding Remarks

We proposed a three-stage end-to-end trainable framework
LAP-Net for visual relation detection. The core is a novel
Pair Proposal Network (PPN) that employs Conditional
Random Field (CRF) for message passing on a complete
graph to select class-agnostic object proposal pairs. By as-
sembling compatible object pairs from all proposal combi-
nations, our method greatly reduces computational cost. Ex-
periments demonstrated the superior accuracy and efficiency
of our model in learning complex relationships.
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