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ABSTRACT
Effectively modeling long-range spatial correlation is crucial in

context-sensitive visual computing tasks, such as human pose esti-

mation and video classification. Enlarging receptive field is popu-

larly adopted in building such non-local deep networks. However,

current solutions, including dilation convolution or self-attention

based operators, mostly suffer from either low computational ef-

ficacy or insufficient receptive field. This paper proposes spectral

residual learning (SRL), a novel network architectural design for

achieving fully global receptive field. A neural block that imple-

ments SRL has three key components: a local-to-global transform

that projects some ordinary local features into a spectral domain,

compiled operations in the spectral domain, and a global-to-local

transform that converts all data back to the original local format.

We show its equivalence to conducting residual learning in some

spectral domain and carefully re-formulate a variety of neural lay-

ers into their spectral forms, such as ReLU or convolutions. The

benefits of SRL is three-fold: first, all operations have global recep-

tive field, namely any update affects all image positions. This can

extract richer context information in various vision tasks; Secondly,

the local-to-global / global-to-local transforms in SRL are defined by

bi-linear unitary matrices, which is both computation and parame-

ter economic; Lastly, SRL is a generic formulation, here instantiated

by Fourier transform and real orthogonal matrix. We conduct com-

prehensive evaluations on two challenging tasks, including human

pose estimation from images and video classification. All experi-

ments clearly show performance improvement by large margins in

comparison with conventional non-local network designs.
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1 INTRODUCTION
The revolutionary success of deep convolutional neural networks

(CNN) starts from semantic image classification [32] and quickly

influences many other research areas, including computer vision

and multimedia analysis [5, 35, 45]. The top performances in a

variety of computer vision tasks have been re-calibrated by CNN

based deep models. Though many engineering techniques (e.g.,
ReLU, batch normalization) are recently developed, a large body

of modern architectural design of CNN models is still grounded

on the classic convolutional layer which can date back to Hubel

and Wiesel’s Nobel prize-winning research about cat’s visual cor-

tex in 1962 or earlier. Typically, a convolutional window slides

across the entire image / feature channels with some pre-specified

local receptive field. The convolutional kernels are shared by all

image positions, thus highly parameter-economic. Through gradi-

ent back-propagation, a convolutional kernel can effectively learn

different levels of discriminative visual patterns (such as low-level

edges, blobs, textures, mid-level object parts, or high-level objects),

depending on its depth in the neural networks.

Recent development has witnessed the importance of model-

ing long-range spatial or temporal dependencies in many context-

sensitive visual computing tasks [13, 33, 60, 69]. For example, a

good image segmentation model shall concurrently consider pixel-

wise confidence and mutual semantic compatibility among pixels,

as demonstrated by the empirical effectiveness of DeepLab [6]. In

video classification [42, 55, 58], spatio-temporal convolutions across

multiple consecutive frames are crucial for capturing temporal dy-

namics of semantic actions. Naturally, long-range dependencies

between distant positions can be modelled by large receptive field.

A widely-held belief by practitioners is that, a sufficiently deep net-

work does not desire to explicitly use large receptive field for convo-

lutions, since stackingmany convolutions can progressively enlarge

the spatial extent when calculating a neuron at high-level neural

layers, such as the 3 × 3-sized kernels adopted by VGG-Net [49]

and ResNet [19]. One can also use dilated [6] or deformable convo-

lutions [12], or recently-proposed sophisticated non-local kernels,

exemplified by self-attentive operator [60].

However, all aforementioned non-local convolutional schemes

suffer from low efficacy issue. For simple solutions like dilation

or deformable convolutions, they are still essentially local, indi-

rectly connecting distant positions. To convey some message to far

locations, multiple layers are desired to be stacked. This implies
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Figure 1: Computational pipeline of our proposed spectral residual learning (SRL). Note that both f and f −1 are performed in a channel-wise
manner for saving computations. X̂ is fed to Ŷ via a skip connection to ensure the residual learning. Some feature maps are pattern-filled to
emphasize that they are in the spectral domain. More details regarding the functions f , f −1, φ are explained in the main text.

that multiple-hop propagation will take place before a message

reaches its destination. Despite of fewer parameters to be learned,

such scheme is arguably less efficient. In addition, large-depth net-

works are often more difficult to be optimized, and tend to generate

more high-level neurons that are not suitable for visual localization-

oriented tasks [16]. The non-local kernels in [60] naively connects

all positions in a feature map. To determine the new value at a

position, it calculates this position’s affinity scores to all other po-

sitions and then performs a weighted average of features at all

positions. This is easily verified to require a tremendous quadratic

time complexity with respect to the count of all image positions.

The authors thus propose to sub-sample across both spatial and

temporal dimensions for reducing complexity.

This work addresses the issue of large receptive field from a

rarely-explored aspect. Our proposed network architectural design,

which we call spectral residual learning (SRL), accomplishes a fully

global receptive field for visual context modeling with high effi-

cacy. A conceptual diagram is illustrated in Figure 1. As seen, the

proposed SRL is comprised of three critical components: a local-

to-global transform that projects an input feature map into some

spectral domain, a compilation of neural layers (i.e., the function
denoted by φ in Figure 1) that operate in the spectral domain, and

a global-to-local transform that de-correlates all data back into the

original local format. Importantly, updating an element in the spec-

tral domain globally affects all others. State differently, all operators

in the spectral domain enforce a full-image receptive field. In this

work, a number of spectral operators are carefully defined, includ-

ing spectral ReLU for frequency-sensitive filtering and spectral 1×1

convolutions.

Main contributions of this work are briefly summarized as below:

1. The proposed SRL models long-range dependencies in a more

effective way than previous methods, through spectrally computing

interactions between any two positions, regardless of their posi-

tional distance. To our best knowledge, SRL is the first work of its

kind that explores the theory of spectral transform for obtaining

full-image receptive field.

2. SRL enjoys several technical advantages: First, it is a generic

framework, instantiated by various local-to-global / global-to-local

transforms and spectral operators. A neural block that implements

SRL can be inserted into many ordinary deep network’s pipeline

(e.g., VGG-16 [49], DenseNet [20] or ResNet [19]). One can design

an SRL instance in a task-specific fashion; Secondly, SRL requires

significantly lower complexity and fewer parameters than compet-

ing methods, to achieve a similar level of performance. In particular,

both cross-domain transforms can be defined and efficiently im-

plemented by some bi-linear unitary transforms, either fixed or

learnable by gradient back-propagation.

3. In experiments, we instantiate f in SRL with Fourier transform
and real orthogonal transform respectively, φ with spectral ReLU

etc., and demonstrate its effectiveness on two challenging tasks: hu-

man pose estimation and semantic video classification. Both tasks

are supposedly improved by contextual information. Comprehen-

sive quantitative evaluations show that SRL consistently improves

base models by significant margins. Further ablation studies in-

vestigate the effect of several key factors in using an SRL block,

including the location to insert SRL blocks in a base network and

the count of SRL blocks.

2 RELATEDWORK
We summarize research works that are relevant to either non-local

networks or two demonstrative visual computing tasks.

Non-Local Neural Blocks:Wang et al. [60] devised non-local

blocks to capture long-range dependencies, inspired by the self-

attentive mechanism [56]. The proposed non-local operation is

shown to be strongly beneficial in video classification [60], seman-

tic image segmentation [15, 21], generative adversarial networks

(GAN) [68], and recognizing fine-grained objects and actions [67].

Non-local blocks capture the global information by linking two

arbitrary positions. For videos, the links will span at both spatial

and temporal dimensions. Such dense links imply tremendous com-

putational cost, which incurs a series of follow-up research. For

example, the work in [9] manipulates the order of matrix multipli-

cation, improving the efficacy under many special scenarios. Huang

et al. [21] propose to stack two criss-cross attention modules, in

order to condense the contextual information of surrounding pixels

on the criss-cross path.

Non-local blocks and all of above variants are formulated on the

Q-K-V attentionmechanism [56], which typically admits a quadratic

time complexity with respect to the position number. In contrast,

the proposed SRL is formulated more efficiently in some unitary

transform induced spectral domain.

Human keypoint detection: or known as human pose estima-

tion. Traditional solutions combine local observations from body



parts and spatial dependencies between them. Most of these meth-

ods use either tree-structured graphical models [3, 4, 13, 43] or

non-tree models [26, 33, 47, 61].

Recent years have observed an explosive emergence of deep

network based methods in this task [37, 39, 62, 65]. Among them,

DeepPose [52] is the first to utilize CNN to tackle pose estimation,

which devised a cascaded CNN specially for the single person case.

Recent solutions to multi-person pose estimation can be roughly

casted into two categories: bottom-up [22, 24, 40] or top-down

approach [17, 24, 41, 51]. The former detects individual body joints

and then groups them into persons. The latter approach relies on a

good human detector for localizing all persons in the image, and

multiple routines for single-person pose estimation are called to

tackle each detected person.

Video classification: newly-constructedmassive video datasets,

such as [1, 18, 29], have greatly spurred the research of video clas-

sification. Karpathy et al. [27] introduced a first 3D convolutional

neural networks for this task that far exceeded traditional meth-

ods [38, 57]. To find better initialization for the 3D convolutional

kernels, a number of research works [25, 53, 54] inflate 2D convo-

lution into 3D convolution, directly borrowing parameters from

pretrained models on ImageNet [46]. This strategy proves to lead to

faster convergence in most cases. Another line of research aims to

prune the huge parameters in 3D CNNs, such that they can strike a

compromise in accuracy and efficacy. Examples include factorizing

3D convolutional filters into separate spatial / temporal compo-

nents [42, 54, 66], or mixing 3D convolution with 2D convolution

in a same neural network [58, 66, 70].

We also witness recent research enthusiasm in globally model-

ing spatio-temporal dependency in videos. Regarding the temporal

dimension in videos, one can find methods that utilize LSTM [63],

global memory [64] or simply average pooling [59]. The work

in [36] adopts an attentive mechanism along the temporal dimen-

sion, aggregating local features to generate a powerful global rep-

resentation for video classification. For the spatial dimension in

videos, Xie et al. [66] place a feature gating module after specific

convolutional layers to weigh the global features in each channel

in an adaptive, data-dependent way. All these methods reach the

consensus that spatio-temporal context is of crucial importance for

effectively classifying videos.

3 SPECTRAL RESIDUAL LEARNING
3.1 Formulation
Figure 1 illustrates the computational pipeline of SRL. Let X ∈
RH×W ×C be the input tensor to an SRL block, and Y ∈ RH×W ×C

be the output tensor. The mechanism of SRL can be compactly

described as:

Y = f −1 (φ(f (X)) + f (X)) = f −1 (φ(f (X))) + X, (1)

where f and f −1 denote the local-to-global transform / global-

to-local transform in Figure 1, respectively. φ : RH×W ×C 7→

RH×W ×C represents a user-defined sub-network that operates on

the globalized tensor f (X).
The computation of an SRL block starts from feeding X into

the local-to-global transform function f . To parameterize f , we

introduce two unitary matrices
1 P ∈ CH×H and Q ∈ CW ×W . Let

concat() be an operator that concatenates a number of arrays along

specific dimension, andXc ∈ R
H×W

be some single feature channel

of X with index c . The global-to-local / local-to-global transforms

are computed in a channel-wise fashion as below for efficacy con-

sideration:

f (X) = concat (PX1Q, . . . , PXCQ) , (2)

f −1(Ŷ) = concat
(
P∗Ŷ1Q∗, . . . , P∗ŶCQ∗

)
, (3)

where
∗
denotes a conjugatematrix. The global-to-local is parameter-

economic since all feature channels share the same parameters P
and Q. The entries in f (X) is now semi-global since P,Q collabora-

tively perform information fusion in the entire H ×W -sized spatial

space. State differently, each entry in f (X) becomes correlated with

all other entries in the same feature channel of X.
Importantly, a simple derivation of Eqn. (1) shows φ(f (X)) =

f (Y − X). It implies that φ is actually designed to approximate the

residual Y − X in some global domain induced by f . In practice, φ
is often task-dependent. It encodes our key expectation about the

way that information globally exchanges across the input tensor X.

3.2 Instantiations of f
Here we describe two concrete examples of f , with the parameters

of the first one fixed and the second learnable via gradient back-

propagation.

Fast Fourier Transform Matrix (FFT): Fourier transform is a

widely-adopted tool in the domains of signal processing, image

analysis etc. It converts a function of signals into the frequencies

that make it up, in a reversible way. In fact, discrete Fourier trans-

form (DFT) can be accomplished as a complex matrix multiplica-

tion. For example, the one-dimensional DFT transforms an array

of complex numbers x = {x0,x1, . . . ,xN−1} to another sequence

z = {z0, z1, . . . , zN−1}, according to

zk =
N−1∑
n=0

xn · e
−j 2πkN n ,k = 0, 1 . . .N − 1. (4)

This can be re-formulated into a matrix form z = Fx with

F =



1 1 1 1 · · · 1

1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)


/N ,

where ω = e−2π j/N and F proves to be a unitary matrix.

Let F
2d (·) be the function of 2-D FFT and F −1

2d be the inverse.

Given a 2-D array Xc ∈ R
H×W

, F
2d (·) can be implemented by

transforming all the rows of Xc and then transforming all the

columns of the resulting matrix [44], namely:

F
2d (Xc ) = FH × Xc × FW , F −1

2d (Ŷc ) = F∗H × Ŷc × F
∗
W , (5)

where FH ∈ C
H×H

, FW ∈ CW ×W are properly-sized Fourier matri-

ces. F
2d (Xc ),F

−1
2d can be accelerated via fast routines such as the

1
A complex square matrix U is unitary if its conjugate transpose U∗ is also its inverse,

namely U∗U = UU∗ = I, where I is the identity matrix.



Cooley-Tukey algorithm [11]. Clearly, this perfectly fits our SRL

formulation in Equations (2) and (3).

Remark: FFT operates on complex numbers. To ensure compati-

bility with other neural layers, we simply abondon the imaginary

part of Y after the global-to-local transform. In addition, we would

also emphasize that FFT is not the only instance of its type. Many or-

thogonal transforms, including discrete cosine transform (DCT) [2],

Walsh-Hadamard transform (WHT) [14], Haar transform, and Slant

transform (ST), can be also used to instantiate f . This work focuses
on Fourier transform for demonstration.

Fully Learnable Orthogonal Matrix (LO): A key difference be-

tween FFT-oriented instantiation with others is the non-learnable

property of FH , FW in Eqn. (5), which are thus not involved in the

gradient back-propagation of deep networks where they embed. It

is a favorable property when a low-parameter model is required.

Nonetheless, we have also explored other choice of f . One of them
is to initialize P,Q in Eqn. (2) to be real orthogonal matrix, namely

PPT = PT P = IH×H and QQT = QTQ = IW ×W , where I denotes
the identity matrix. Take P for instance, since it appears at both f
and f −1 as parameters, the gradient of P can be described as:

∂L

∂P
=
∂L

∂ f

∂ f

∂P
+
∂L

∂ f −1
∂ f −1

∂P

=
∑
c

∂L

∂X̂c
QTXTc +

∑
c

∂L

∂Yc
QŶTc ,

where L denotes the objective. Unfortunately this inevitably leads

to a non-symmetric P. To ensure an orthogonal matrix, we conduct

a post-processing after SGD. QR decomposition is applied to both

of updated P,Q. For example, P = P̃R, where P̃ is an orthogonal

matrix and R is an upper triangular matrix. We simply let P← P̃.
LikewiseQ is also re-orthogonalized. In practice, P,Q are initialized

by drawing from a normal distribution.

3.3 Instantiations of φ
Recall thatφ is conducted on globalized X̂. In this section, whenever
needed we use the prefix spectral to emphasize that all operations

are conducted in a spectral domain. The specification of φ is often

task-dependent. In practice, we use an SRL block to wrap specific

instantiation and insert it into existing neural networks.

Figure 2 shows a typical instance inspired by the bottle-neck

block in ResNet [19]. It is comprised of the following spectral layers:

Spectral Convolution: according to the convolution theorem [28],

for Fourier-related transforms, convolution in one domain equals

point-wise multiplication in the other domain. This implies that

any convolution in φ incurs a global update. For the SRL block

in Figure 2, a pair of 1 × 1 convolutions are adopted for channel

reduction and promotion respectively. We have experimented with

spectral convolution with larger kernels than 1×1 that corresponds

to more complex point-wise update in X, yet do not observe any

non-trivial performance improvement. When the channel number

is large, standard group convolution [50] is utilized for expediting

the computation. We empirically set the group number to 2 when

f is LO and 8 for the FFT instance.

For video data, the intermediate feature map is 4-D tensor of size

H ×W ×C ×T (where C,T are counts of channels / stacked video

frames respectively), rather than H ×W ×C in images. In this case,

FFT / LO

X H×W×C

Conv2D 1×1

Spectral BN

Inverse FFT / LO

×

+

Input W B
H×W×K

H×W

Output

× α

+

Y H×W×C

Spectral ReLU

ReLU

Spectral ReLU

Conv2D 1×1

H×W

H×W×C

H×W×K

H×W×K

H×W×K

H×W×C

H×W×C

Figure 2: An instance of φ adopted in human pose estimation.

inspired by P3D [42], we approximate complex spatio-temporal con-

volutions in videos into a 1 × 1 convolution along feature channels

(denoted as convc ), followed by another 1 × 1 convolution along

the temporal dimension (denoted as convt ). The design is shown

in Figure 3. The transition between two heterogeneous 1 × 1 con-

volutions are efficiently implemented by tensor transpose. When

applying the SRL block in Figure 2 into video data, one only needs

to replace these two spatial 1 × 1 convolutions by the sequential

operations of convc + convt .
Spectral BatchNormalization (BN): The computations of spec-

tral BN is identical to the ordinary version, yet operating on spectral

frequencies and with each update affect all image positions.

Spectral ReLU: For a globalized tensor Z ∈ RH×W ×K , spectral
ReLU is controlled by learnable parametersW,B ∈ RH×W :

Zi, j,k ← max

(
Wi, j · Zi, j,k + Bi, j , 0

)
, (6)

where (i, j,k) ∈ [1 . . .H ] × [1 . . .W ] × [1 . . .K]. It essentially does

the job of frequency-sensitive filtering.

Parameter α in Figure 2 is introduced to balance the residual

block and original X as defined in Eqn. (1). α = 0 initializes an

identity mapping.

3.4 Complexity analysis
Table 1 compares the computational complexities of different meth-

ods that implement non-local receptive fields. Our two represen-

tative variants with f being FFT or real orthogonal matrices are

denoted by SRL-FFT, SRL-LO respectively. All estimations here take

H ×W ×C-sized tensor as the input. The complexity analysis of

video data is omitted due to the space limit.

As seen in Table 1, the influential work in [60] is highly sensi-

tive to feature map resolution. A2
-Net [9] proposes a sophisticated

technique for accelerating matrix multiplication, which reduces the

dependence on the spatial resolution. CGNL [67] and CCNet [21]



● ● ●
● ● ● ● ● ●

● ● ●

C’ C’

H
WW

H H
W

H

T T’
Transpose Transpose

1x1x1 
Convt

T T’C’ C’

W

● ● ●

C

W
H

T

1x1x1 
Convc

Figure 3: Extending image oriented 1 × 1 spectral convolution to the video data. H ×W , C, T denote the resolution of feature maps, feature
channel number and stacked video frames. convc , convt operate on the channels / temporal dimension, respectively.

re
s 2

SR
L 

Bl
oc

k

D
e-

Co
nv

SR
L 

Bl
oc

k

D
e-

Co
nv

D
e-

Co
nv

SR
L 

Bl
oc

k

re
s 5

re
s 4

re
s 3

Co
nv

1

Co
nv

Po
ol

Figure 4: Network architecture adopted in human keypoint detection. This illustration inserts three SRL blocks, separately after each of the
de-convolutional layers.

Method Time Complexity

Non-Local (NL) [60] O(CH 2W 2)

A2
[9] O(C2HW )

CGNL [67] O(CHW (P + 1))
RCCA [21] O(CHW (H +W ))

SRL-LO O(CHW (H +W ))
SRL-FFT O(CHW log(HW ))

Table 1:Computational complexities of different global operations,
where C , H ,W represent the counts of feature channel, height and
width respectively. P is the order of Taylor series [67].

further reduce the quadratic complexity with respect to C into

linear. Our proposed SRL-LO is as light-weight as previous state-of-

the-art, and our parameter-free (for f , f −1) variant SRL-FFT strikes

the best time complexity among all methods in current literature.

4 EXPERIMENTS
To demonstrate the usefulness of SRL blocks, we apply the idea to

solve two visual tasks: human keypoint detection and video classi-

fication. The evaluations involve two instances of f , f −1: SRL-LO
and SRL-FFT respectively. The major goal is to contrast various

proposals for non-local deep networks, including our proposed SRL

and those methods mentioned in Table 1. We adopt the original

implementations by authors (if publicly available) or re-implement

these models in PyTorch. Extensive ablative studies are also con-

ducted to investigate key factors in the proposed method.

For fairly comparing complexity among different models, we

adopt both GFLOPs and parameter number as the key metrics. Fol-

lowing the practice in [30], conventionalmodels with local receptive

field only consider standard types of neural layers, including convo-

lution / linear / batch normalization etc. Additional computations

in non-local methods (such as tremendous matrix multiplication

introduced in non-local networks (NL) [60]) are taken into account

when calculating GFLOPs.

4.1 COCO Keypoint Detection
The COCO dataset [34] contains about 250K person instances from

200K images. Each person is labeled with 17 keypoints, each of

which defines a joint of human body. All models are trained on the

train2017 set of 57K images, and evaluated on the val2017 set of

about 5K images.

Network: We adopt the design of SimpleBaseline [65] to con-

struct the base model where SRL bottleneck blocks in Figure 2

(with K = C/4) are inserted. The network structure is shown in Fig-

ure 4. It adopts pre-trained ResNet [19] on ImageNet [46] as image

encoder. The original decoder consists of three de-convolutional

layers (stride: 1/2, kernel size: 4 × 4 and filters: 256). Each is accom-

panied with batch normalization [23] and ReLU activation [32]. A

1 × 1 convolutional layer is appended to the topmost to predict 17

heatmaps, each of which corresponds to a unique key point. Our

proposed SRL blocks are inserted rightly after each deconvolutional

layer for contextual modeling.

Model Optimization and Evaluation: We follow typical top-

down keypoint detection paradigm and use the same person de-

tector to [65] (AP score on COCO val2017 dataset is 56.4). During

the training phase, following [10, 65], we expand the ground-truth

human box to a fixed aspect ratio (e.g., height : width = 4 : 3), crop

the image region and resize it into some fixed resolution (we use

256 × 192, 384 × 288 and 512 × 384). Standard data augmentations

including random rotation ([−40◦, 40◦]), random scale (±30%) and

flipping etc. are adopted. Models are trained by Adam optimizer [31]

on an 8-GPUmachine. The mini-batch on each GPU is set to 32, and

maximum epoch is 210. When evaluating the model on a testing

image, we calculate and average heatmaps for both the original

and flipped images. In addition, directly treating local optimum as

human keypoints often brings imprecise localization. We adjust

keypoint’ location by applying a quarter offset in the direction from

the highest response to the second highest.



Method Backbone Input Size GFLOPs # Params(M) AP AP
50

AP
75

AP
M

AP
L

AR

8-stage Hourglass [37] 8-stage Hourglass 256 × 192 14.3 25.1 66.9 - - - - -

CPN [10] ResNet-50 256 × 192 6.2 27.0 68.6 - - - - -

CPN + OHKM [10] ResNet-50 256 × 192 6.2 27.0 69.4 - - - - -

CPN + OHKM [10] ResNet-50 384 × 288 - - 71.6 - - - - -

SimpleBaseline [65]

ResNet-50

256 × 192 8.99

34.00

70.4 88.6 78.3 67.1 77.2 76.3

384 × 288 20.23 72.2 89.3 78.9 68.1 79.7 77.6

512 × 384 35.97 71.7 88.8 77.7 67.2 79.7 77.1

ResNet-101

256 × 192 12.38

52.99

71.4 89.3 79.3 68.1 78.1 77.1

384 × 288 27.85 73.6 89.6 80.3 69.9 81.1 79.1

512 × 384 49.52 74.2 89.7 80.7 70.2 81.8 79.5

ResNet-152

256 × 192 15.76

68.64

72.0 89.3 79.8 68.7 78.9 77.8

384 × 288 35.47 74.3 89.6 81.1 70.5 81.6 79.7

512 × 384 63.06 74.9 89.8 81.3 70.8 82.5 80.0

SRL-FFT

ResNet-50

256 × 192 9.08

34.10

70.9 89.1 78.5 67.4 77.9 76.8

384 × 288 20.43 73.3 89.5 80.0 69.4 80.6 78.6

512 × 384 36.32 73.8 89.7 80.3 69.6 81.5 79.0

ResNet-101

256 × 192 12.46

53.09

71.8 89.3 79.6 68.4 78.7 77.6

384 × 288 28.05 74.3 90.1 81.3 70.5 81.5 79.7

512 × 384 49.86 74.9 89.9 81.6 71.1 82.3 80.1

ResNet-152

256 × 192 15.85

68.74

72.1 89.5 79.7 68.8 79.1 78.0

384 × 288 35.67 74.6 89.7 81.7 70.8 81.9 80.1

512 × 384 63.41 75.3 90.2 81.7 71.5 82.6 80.4

Table 2: Comparisons on the COCO validation set for human keypoint detection. See the main text for more detailed descriptions.

Evaluation metric: All models are evaluated based on object
keypoint similarity (OKS) (see http://cocodataset.org/#keypoints-

eval). Several metrics are reported, including AP
50

(AP at OKS =

0.50), AP75 (OKS = 0.75), AP (the mean of AP scores at OKS =

0.50, 0.55, . . . , 0.90, 0.95; APM for medium objects, AP
L
for large

objects, and AR at OKS = 0.50, 0.55, . . . , 0.90, 0.95.

Performance Analysis:We comprehensively investigate key-

point detection performance by varying network backbones or

input image’s spatial resolutions. Table 2 presents the experimen-

tal results of SRL-FFT, and Table 3 summarizes the information of

several competing methods. From these tables, two observations

can be drawn:

1). SRL is particularly effective for shallow backbone and large
resolution: After inserting three SRL blocks, the improvement using

ResNet-50 is the most significant among all three backbones, and

SRL provides least help to ResNet-152. This is consistent to our in-

tuition: deeper networks implicitly enlarge their receptive fields by

stacking more convolutional layers, which makes the contribution

of non-local blocks increasingly marginal.

Large spatial resolution for input images can notably elevate the

performance in most of these experiments. Interestingly, the gains

of SRL blocks are also most salient under large resolutions. For

example, using ResNet-50, SRL brings an absolute improvement of

0.5% (for input size 256 × 192), 1.1% (for input size 384 × 288), and

2.1% (for input size 512 × 384) respectively. This is indeed consis-

tent with prior observation about backbone’s depth. Either making

the network shallower or increasing input’s spatial resolution can

relatively reduce the receptive field of convolutional layers, leaving

room for non-local blocks.

input size Non-Local Block GFLOPs(∆) # Params((M∆)) AP

256 × 192

- 0 0 70.4

NL [60] 2.90 0.39 70.6

A2
[9] 0.28 0.20 70.5

CGNL [67] 0.39 0.31 70.6

RCCA [21] 1.20 0.92 70.6

SRL-FFT 0.09 0.10 70.9

384 × 288

- 0 0 72.2

NL [60] 13.26 0.39 72.8

A2
[9] 0.62 0.20 72.8

CGNL [67] 0.88 0.31 72.4

RCCA [21] 2.76 0.92 72.8

SRL-FFT 0.20 0.10 73.3

Table 3: Comparisons with other non-local blocks on COCO hu-
man keypoint detection. The backbone of all methods is ResNet-50.

2). SRL blocks strikes a better balance between accuracy and ef-
ficacy: Deeper backbone is more powerful in extracting discrim-

inative features and thus favored in practice. From Table 2, SRL

blocks + shallower backbone proves to achieve comparable per-

formance with deeper models. For example, under an input size

of 384 × 288, ResNet-101 + SRL-FFT can perform as excellent as

ResNet-152 using only 80% FLOPs and 77% parameters of the latter.

It also can perform better than the same backbone with larger input

size 512 × 384, saving about 43% FLOPs of the latter.

We also re-produce a variety of competing non-local blocks

and evaluate them on COCO’s validation set. The quantities are

found in Table 3. For fair comparison, none of aforementioned

http://cocodataset.org/#keypoints-eval
http://cocodataset.org/#keypoints-eval


Method AP AP
50

AP
75

AP
M

AP
L

AR

baseline 72.2 89.3 78.9 68.1 79.7 77.6

baseline* 66.3 87.1 71.4 61.3 74.6 72.0

dilated conv 72.3 89.4 79.1 68.1 80.1 77.6

+3 NL [60] 72.7 88.9 79.1 68.9 79.9 77.9

+3 SRL-FFT 73.4 89.3 79.8 69.5 80.7 78.8

+4 SRL-FFT 73.7 89.4 80.3 69.7 81.2 78.9

Table 4: On COCO keypoint dataset, additional investigation on
receptive field by creating new baseline with fewer downsampling
operations (and thus smaller receptive field). The backbone of all
methods is ResNet-50 and the input size is 384 × 288.

Method AP AP
50

AP
75

AP
M

AP
L

AR

- 72.2 89.3 78.9 68.1 79.7 77.6

+1 @ d1 72.7 89.2 79.7 68.7 80.0 78.1

+1 @ d2 72.6 89.3 79.5 68.7 79.8 78.0

+1 @ d3 72.6 89.6 79.4 68.6 80.1 78.0

+2 @ d1 / d2 72.9 89.2 79.9 69.5 79.9 78.6
+3 @ d1 / d2 / d3 73.3 89.5 80.0 69.4 80.6 78.6

Table 5: Performance of human keypoint detection by varying the
inserting positions and counts of SRL blocks. “d” represents decon-
volutional layers.

Backbone input size baseline SRL-LO SRL-FFT

ResNet-50

256 × 192 70.4 71.0 70.9

384 × 288 72.2 72.8 73.3
ResNet-101 256 × 192 71.4 71.7 71.8
ResNet-152 256 × 192 72.0 72.3 72.1

Table 6: Comparisons between two instantiations of f .

methods applies sub-sampling trick for acceleration, and all insert

three blocks at the same positions as SRL does. Compared with

those state-of-the-art competitors, our proposed SRL blocks is more

light-weighted, using fewer parameters and FLOPs to achieve top

performances.

Effect of Receptive Field:Additional experiments are designed

for further investigating receptive field. In specific, for the network

depicted in Figure 4, we set the stride of down-sampling layer to 1

in res4 and res5 and only preserve one deconvolutional layer in the

decoder. This increases spatial resolution of intermediate feature

maps and manually creates a backbone (denoted as baseline
∗
) with

shorter receptive field for comparative study. The experimental

results reported in Table 4 show a significant performance drop of

baseline
∗
, caused by the reduction of receptive field.

To reveal the critical role of receptive field in human pose esti-

mation, Table 4 includes the average precision of adding three SRL

blocks into encoder (right after the last block of res3, res4 and res5)

of baseline
∗
, or adding a fourth SRL block to the decoder, which

are denoted by “+3 SRL-FFT”, “+4 SRL-FFT” respectively.

To make a comprehensive study, we also add dilated convolu-

tion [7, 8, 21] in res4 and res5, same to the treatment in [7], and

add three non-local blocks [60] to baseline
∗
. A close look of Table 4

clearly proves better effectiveness of SRL blocks, in comparison

with all above-mentioned baselines.

stage ResNet-18 output size

conv1 1×7×7, 64, stride (1,2,2) 8 × 112 × 112

pool1 1×3×3 max, stride (1,2,2) 8 × 56 × 56

res2

[
1×3×3, 64

1×3×3, 64

]
× 2 8 × 56 × 56

pool2 2×1×1 max, stride (2,1,1) 4 × 56 × 56

res3

[
1×3×3, 128

1×3×3, 128

]
× 2 4 × 28 × 28

res4

[
1×3×3, 256

1×3×3, 256

]
× 2 4 × 14 × 14

res5

[
1×3×3, 512

1×3×3, 512

]
× 2 4 × 7 × 7

global average pool, fc 1 × 1 × 1

Table 7: ResNet-18 C2D model for video classification. The kernel
size and output maps are represented in the format of T × H ×W ,
typically with the number of channels following. The input size is
8 × 224 × 224 with 8 stacked frames.

Ablation Study: For ResNet-50 with input size 384×288, Table 5
shows that even adding a single SRL block can bring a noticeable im-

provement over the baseline. More SRL blocks continue to improve

in a consistent manner, but the gain of adding new blocks quickly

diminishes. Moreover, inserting an SRL block at shallower layer

of the backbone is relatively more effective (+1 @ d1 > +1 @ d2 >

+1 @ d3), in terms of the strict criterion AP
75
. Tables 6 compares

different instantiations of f , yet shows no obvious winner between
LO or FFT based transform. Considering the additional parameters

of LO, FFT is thus more favored in practice.

4.2 Video Classification
Kinetics [29] is a large-scale trimmed video dataset which contains

more than 300-K video clips in total. Each clip has a duration of

around 10 seconds. The dataset covers 400 human-centric classes

and each has at least 400 video clips. We crawl and trim videos

using officially-provided urls, obtaining 232,679 video for training

and 19,169 for validation. The original test set is omitted due to the

lack of ground-truth labels.

Base Network:We use C2D [60] network as the backbone for

all experiments, whose architecture (with ResNet-18) is shown in

Table 7. In C2D, all convolution operations are 2D (i.e., the kernel
size at the temporal dimension is always 1). Temporal information

exchanging is accomplished via temporal pooling. As a result, the

model can be initialized from pre-trained parameters on ImageNet.

Standard cross-entropy loss is used to guide video classification.

Model Optimization and Evaluation: All models are trained

via SGD with a mini-batch of 128 video snippets. To resist over-

fitting, we adopt several standard engineering tricks, including data

augmentation (random horizontal flipping, random cropping and

scale jittering [59] etc.), weight decaying with a rate of 5
−4

and

a dropout ratio of 0.5. On a private GPU cluster with 8 NVIDIA

1080TI, training such a model often requires about 2 days before

full convergence.

The performance metric is standard multi-class classification

accuracy. Following common practice, both top-1 and top-5 accu-

racies are reported for comparison. When evaluating a model on
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Figure 5: Illustration of how SRL benefits video classification. Ground-truth labels are displayed in green. Top-5 best guesses by SRL and C2D
base model are shown. We depict three major cases that require large spatio-temporal receptive field. Left column: rapid object motions; Mid
column: closeness to the camera; Right column: crowd motions.

Method Top-1 Acc. Top-5 Acc. # Params(K∆) GFLOPs(∆)

C2D base 62.75 83.82 0 0

NL [60] 64.48 85.48 321.50 1.23

SRL-LO 65.02 85.60 86.89 0.21

SRL-FFT 64.65 85.52 86.06 0.08

Table 8: Investigation of different instantiations of SRL blocks us-
ing C2D base network for the video classification task.

+N Blocks Top-1 Top-5

C2D base 62.75 83.82

+1 block 64.23 85.16

+2 blocks 64.79 85.71
+4 blocks 64.65 85.52

φ operation Top-1 Top-5

C2D base 62.75 83.82

channel-only 64.13 85.18
time-only 63.80 85.08

channel+time 64.23 85.16

Table 9: Effect of key factors in SRL. Left: Different number of SRL
blocks are added. Right: Different φ in SRL blocks.

some testing videos, we randomly sample 25 clips and average their

classification scores, same to the setting in [48, 59].

Instantiations: Table 8 compares different types of SRL blocks

added to the C2D baseline. For all models, an individual non-local

block is inserted after each residual block of res3 and res4, totaling

4 blocks. On the one hand, the proposed SRL blocks achieve supe-

rior classification accuracies in comparison with state-of-the-art

non-local video classification model [60], using significantly fewer

network parameters and FLOPs. In particular, SRL-FFT has only

0.08 extra GFLOPs (6.5% of NL) and 86.06K parameters (26.8% of

NL). On the other hand, SRL-LO is slightly better yet much slower.

We constrain all the rest experiments with SRL-FFT considering

limited GPU resources.

Ablation Study: The left panel in Table 9 shows the effect of

different number of SRL blocks. We contrast the insertion of 1 block

(after res4), 2 blocks (after res3 and res4) and 4 blocks (after every

residual block in res3 and res4). As seen, a single non-local block

can bring a significant improvement over the baseline. More blocks

improve with marginal benefit.

Method #Frames Top-1 Accuracy Top-5 Accuracy

I3D [5] 64 71.1 89.3

ARTNet [58] 16 70.7 89.3

S3D [66] 64 72.2 90.6

R(2+1)D [54] - 72.0 90.0

C2D base 8 70.5 89.4

C2D base + SRL-FFT 8 71.9 90.3

C2D base + SRL-FFT
∗

8 72.7 90.9

Table 10: Comparisons with state-of-the-art methods on the Ki-
netics video benchmark. This study adopts C2D-ResNet50 as base
model. SRL-FFT∗ represents a variant without using group convolu-
tion (thus there are more parameters in φ ).

Figure 3 elaborates on separable spatio-temporal operation of

SRL block for video data. Table 9 shows the results of applying fea-

ture channel-only (i.e., convc ) or time-only operation (i.e., convt ).
It indicates that either of these two kinds of operations can bring a

significant improvement since both have grasped global informa-

tion from feature maps. They are also complementary to each other

since concurrent use proves slight performance gain.

Comparisons with State-of-the-art Methods: Table 10 sum-

marizes results of some state-of-the-art methods. Our budgeted

GPU resources only allow a mini-batch of 8 clips per GPU, totaling

64 clips on an 8-GPU machine. Nevertheless, our method surpasses

many state-of-the-art methods which have more stacked video

frames. Choosing φ with more parameters (such as SRL-FFT
∗
in Ta-

ble 10) can bring further improvement. Figure 5 provides concrete

examples for visually understanding SRL blocks.

5 CONCLUSION
This work proposes SRL, a novel non-local method for learning

under global receptive field. The key idea is to convert data into

some spectral domain via efficient bilinear unitary transforms. We

carefully design several spectral operators and empirically validate

SRL on human pose estimation and video classification. Strong

evidence is observed to demonstrate its effectiveness.
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