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ABSTRACT
Zero-shot image segmentation refers to the task of segmenting pix-
els from specific unseen semantic class. Previous methods mainly
rely on historic segmentation tasks, such as using semantic embed-
ding or word embedding of class names to infer a new segmenta-
tion model. In this work we describe Cap2Seg, a novel solution of
zero-shot image segmentation that harnesses accompanying image
captions for intelligently inferring spatial and semantic context for
the zero-shot image segmentation task. As our main insight, image
captions often implicitly entail the occurrence of a new class in an
image and its most-confident spatial distribution. We define a con-
textual entailment question (CEQ) that tailors BERT-like text models.
In specific, the proposed networks for inferring unseen classes con-
sists of three branches (global / local / semi-global), which infer
labels of unseen class from image level, image-stripe level or pixel
level respectively. Comprehensive experiments and ablation studies
are conducted on two image benchmarks, COCO-stuff and Pascal
VOC. All clearly demonstrate the effectiveness of the proposed
Cap2Seg, including a set of hardest unseen classes (i.e., image cap-
tions do not literally contain the class names and direct matching
for inference fails).
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1 INTRODUCTION
Zero-shot image segmentation is a recently-emerging task in com-
puter vision and multimedia analysis. It aims to develop models to
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Image caption:
Two people and a dog 

are on a boat.

River is likely to 
appear at the bottom

in the image.

Known classes: 
person, dog, boat, tree, etc.

Unknown class: river

Implications

Figure 1: Illustration of the motivating fact of Cap2Seg. Our
key observation is that image captions may implicitly con-
vey the occurrence of a novel semantic class (highlighted in
red text) and spatial location (in blue text).

segment novel objects with no labeled training data. This task is
derived from zero shot learning task, yet with a special emphasis
of spatial correlation of different image pixels. Only a very limited
number of related works have been devoted to this novel task, as
can be found in [6, 21, 49]. Among them, the mainstream approach
employs similar idea in general zero-shot learning. Class names are
embedded into a common subspace according to semantic affinities,
where a novel class can be linearly represented by a few known
ones. This paves the way of transferring knowledge from known
classes to unknown class.

This work addresses zero-shot image segmentation from a rarely-
explored aspect. To combat the scarcity of pixel-level annotations,
we propose to explore the accompanying image captions for in-
ferring semantic / spatial context for unseen classes. The noisy
annotations harvested from image captions for unseen classes are
then fed into a segmentation model. In general, the salient objects in
the image may be literally mentioned in the caption. For instance, if
the caption is “a giraffe is drinking water", we can faithfully expect
a scenario with some instances of giraffes. An image caption tends
to concisely refer to only a few eye-catching objects that skeleton
the scene, leaving other interested objects undetectable via direct
word matching in captions. Nonetheless, one can intuitively infer
novel classes via semantic common sense. For example, the above-
mentioned “a giraffe is drinking water" implies high likelihood for
tree or grass, in comparison with television or desk.

Furthermore, the spatial layout of known classes in an image
also provides clues for the position of some unknown class. As seen
in Figure 1, given a number of spatially-annotated concept such as
person, dog, etc., we can infer that the instance of river is likely
to appear around the boat, or state differently in the bottom part
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of the image. This example illustrates captions and knowledge of
spatial layout of known classes can collaboratively infer whether
and where unknown classes would appear in an image.

Based on the observation described above, we propose Cap2Seg,
a novel inference engine that can harvest useful albeit noisy an-
notations for an unseen semantic class. It is implemented by a
three-branch network which reads image captions and confidence
scores of a few known classes. A global branch directly infers from
captions an image-level likelihood that current image contains the
interested unseen class. A local branch is devised to transfer the
knowledge of known classes and provide a rough estimation of
unseen class at the pixel level. A semi-global branch aims to pro-
vide spatial inference, which splits an image into even horizontal
stripes and estimate the probability of unseen class over the stripes.
After the inference is accomplished, since the inferred semantic /
spatial context are highly noisy, we develop a robust segmentation
model, which is jointly trained on all classes and utilize spatially-
weighted pair-wise ranking loss to resist annotation noise. To our
best knowledge, it is the first work that image captions are explored
in the task of zero-shot segmentation. We strongly believe that this
brings fresh air to existing semantic embedding based methods.
Our comprehensive evaluations on both COCO-stuff and PASCAL
VOC clearly re-calibrate new state-of-the-art performances for the
task of zero-shot image segmentation.

2 RELATEDWORKS
Zero shot classification and segmentation. Zero shot learning
aims to enable model to recognize objects which never appear
during training time [18, 45, 50]. The mainstream method usually
utilize predefined semantic embedding (i.e., class attributes [26] or
word embedding[20, 32]) to transfer the learned knowledge from
known classes to unknown classes. Generalized zero shot learning
has also been investigated to prevent model from forgetting the
knowledge already learner from seen classes [9, 30, 42]. Most of
the works focus on zero shot image recognition. Recently, several
works has expand zero shot learning from image classification to
segmentation [6, 49].

Weakly-supervised semantic segmentation.Modern seman-
tic segmentation framework [3, 10, 31] is built on fully convolution
neural network. However, collecting a large number of pixel-level
annotations for training semantic segmentation models is time con-
suming and laborious. In order to reduce reliance on dense annota-
tions, many works have begun to investigate models trained from
weaker supervised signals, including bounding boxs [14, 34], scrib-
bles [28, 51], points [4], etc. In addition, our work is more related
to image-level supervised methods [24, 25, 35, 38, 46, 57], where
segmentation model typically learns with object tags paired with
image. Existing approaches usually use the class activationmap [56]
to obtain the most discriminative class response as the label region,
which can be refined to make the supervision stronger [25, 46, 57].

Caption-guided visual learning. There are also some works
which use auxiliary text material to augment vision learning. TAM-
NET [40] utilizes text to generate text activation maps, which can
be used for augmenting class activation map in segmentation task.
Cap2Det [52] leverages the signal that captions provide for weakly

supervised detection. However, caption-enhanced image segmenta-
tion models are still inadequately explored in the literature.

3 OUR PROPOSED MODEL
3.1 Task formulation
Following previous practice in [6, 21, 49], let us use the notations
S,U for the collections of seen / unseen class names, respectively.
S ∩ U = ∅. Let D = {(𝑥,𝑦, 𝑡)} be the set of data. For each tuple,
𝑥 indexes an image from some image corpus I. 𝑦 represents the
label mask provided in a pixel-wise manner, with only seen classes
visible during training and all annotations for S ∪U revealed on
final model evaluation. 𝑡 = 𝑐𝑎𝑝𝑡𝑖𝑜𝑛(𝑥) is a free-form textual caption
for image 𝑥 , available for both training and testing images. The
ultimate goal of zero-shot image segmentation is to learn a model
from seen classes which can generalize to pixel-level prediction on
arbitrary unseen classes. Essentially, our setting is identical to that
used in ZS3Net [6] or SPNet [49]. Training images may contain
pixels of unseen classes, keeping their annotations anonymous.
Nonetheless, self-supervisionwas furthermobilized in [6] to include
additional cues. In particular, the trained ZS3Net was used for
scanning training images, and the top p% of the most confident
among detected pixels for unseen classes provide new training
features, leading the so-called ZS5Net. For fair comparison, we
discard such post-enhancement in all experiments.

There are two popularly-adopted evaluation protocols in previ-
ous development of zero-shot image segmentation [6], primarily
differing in the label space (eitherU or S ∪U) when processing
a novel image. The latter case predicts both seen / unseen classes
and is termed as generalized zero-shot image segmentation in the
literature. In our evaluations both protocols will be considered.

3.2 Model Overview
Fig. 2 depicts the architecture of our proposed Cap2Seg model. This
unified model is comprised of two crucial components: an inference
machine that is capable of reading in an image accompanied with
textual caption and predicting image-specific visual occurrence /
spatial distribution of unseen classes, and a detector which is trained
from caption-induced weak supervision using spatially-weighed
pairwise ranking loss.

3.3 Inference From Captions
As exposed in Fig. 1, one of the keymissions in Cap2Seg is to squeeze
the likelihood of an image’s containing pixels from specific unseen
classes and the most confident image regions where these pixels
reside. The later section separately details our proposed solution
for this mission.

3.3.1 Visual Occurrence Estimation By Contextual Entailment. Let
us first briefly summarize the manipulation of image captions in
most relevant works Cap2Det [52] or TAM [40] for image segmen-
tation or detection. The input to caption processor is obtained by
encoding each word with a word2vec model and average pool-
ing over words, often intertwined with fully-connected layers for
fine-tuning. Both suffer from two key weaknesses: first, they are
intrinsically designed for a fixed-set problem. For example, the set
of all interested pseudo-labels are pre-specified before the model
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Figure 2: Architectural design of of our proposed Cap2Seg inference engine (in Sections 3.3-3.5) and follow-up image segmen-
tation model (in Section 3.6).

optimization starts. TAM [40] relies on hand-crafted compound
concepts extracted from known captions. Neither can be trivially
generalized to arbitrary unseen class. Secondly, the simple pooling
step of all word embeddings arguably discard the contextual infor-
mation, which is crucial for inferring some not explicitly mentioned
novel class.

Motivated by above observations, we opt for the pre-trained
language model, BERT [49], as the major workhorse of our caption-
inferring model. Our preference of BERT over other alternatives is
its utilization of bidirectional training of transformers, which gives
it deeper sense of language context and flow. When BERT is fed
with an image caption 𝑡 , it encodes the entire sentence into a single
feature vector, hereafter denoted by 𝜙 (𝑡). This context-preserving
property makes our model divergent from related caption-reading
methods [40, 52].

Our second technical novelty related to caption inference is con-
textual entailment, which is designed for answer such a question:
if an image caption is known to be true, is the image also highly
likely to contain some novel class? Our solution of inspired by the
Natural Language Inference (NLI) or Recognizing Textual Entail-
ment (RTE) [13] in natural language processing. It refers to the
task of classifying a pair of premise and hypothesis sentences into
three classes: contradiction, neutral, and entailment. For example,
“a soccer game with multiple males playing" entails “some men are
playing a sport", and contradicts “no men are moving in the image".

In the context of zero-shot image segmentation, above entail-
ment is defined on each individual image 𝑥 . Let 𝑐𝑎𝑝𝑡𝑖𝑜𝑛(𝑥) be the
associated caption sentence and 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑐) be the textual rep-
resentation of some class 𝑐 . We regard the caption as the premise,
and the class description as hypothesis, obtaining the following
contextual entailment question (CEQ):

CEQ(𝑥, 𝑐) : 𝑐𝑎𝑝𝑡𝑖𝑜𝑛(𝑥); [𝐸𝑂𝑆]; 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑐), (1)

where [𝐸𝑂𝑆] is a token that implies the end of a sentence. This
way, the task of estimating pixel occurrence of some novel class 𝑐
in an image is transformed to a more elegant, tractable form that

fully harnesses the contextual modeling of BERT. The goal boils
down to predicting the relation between premise and hypothesis,
either entailment or contradiction. A judgement of highly-confident
entailment implies that class 𝑐 is consistent with the image caption’s
semantics. Similar argument for a judgement of contradiction. In
particular, we relax the answer to CEQ to be softly between [0, 1],
casting it to be a confidence-modulated binary classification.

This can be empirically accomplished by appending a fully-
connected head (denoted as 𝐻𝑜 (·) on top of the backbone of BERT
model. Let 𝑠𝑥,𝑐 be the probability that some pixels of class 𝑐 appear
in image 𝑥 , which is calculated as:

𝑠𝑥,𝑐 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐻𝑜 (𝜙 (𝑐𝑎𝑝𝑡𝑖𝑜𝑛(𝑥); [𝐸𝑂𝑆]; 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑐)))) .
(2)

Critically, the optimization of head 𝐻𝑜 and fine-tuning 𝜙 are
conducted over known classes S. We adopt a loss of binary cross
entropy as below:

L𝑜 =
∑
𝑥 ∈I

∑
𝑐∈S
−[𝐼 (𝑐 ∈ 𝑦 (𝑥)))·𝑙𝑜𝑔(𝑠𝑥,𝑐 )+(1−𝐼 (𝑐 ∈ 𝑦 (𝑥)))·𝑙𝑜𝑔(1−𝑠𝑥,𝑐 )],

(3)
where 𝑦 (𝑥) is the label mask for image 𝑥 . The indicator function
𝐼 (𝑐 ∈ 𝑦 (𝑥))) returns 1 if class 𝑐 occurs in this specific image, other-
wise 0.

During deploying the learned model, we can construct a CEQ
by pairing a captioned image with some unknown class 𝑐𝑢 ∈ U,
simply by specifying the class-related 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑐𝑢 ) (e.g., class
names) in the hypothesis part. Compared with traditional method
of co-embedding visual / word vectors, our proposed CEQ fully
takes advantage of context-rich caption and has superior flexibility
in tackling novel class inquiry.

3.3.2 Spatial Distribution Estimation. The spatial arrangement of
different objects is crucial in image segmentation. There are at least
two cues that we can utilize for guessing the position of some object
in an image. The first cue is inter-object structural arrangement.
For instance, it is common to observe ‘person’ in front of ‘desk’ but
rarely see a ‘giraffe’ doing so. Secondly, some objects or concepts



tend to have concentrated spatial distribution, like that ‘sky’ is
more frequently seen on the top region of an image. In conven-
tional image segmentationmodel such as DeepLab [10], such spatial
priors can be effectively learned and enforced via techniques like
conditional random fields.

In this work we take an unexplored step of inferring image-
specific class-wise spatial distribution from image captions. The
assumption is that, complex context in the captions can roughly
tell where an object is located. Implementation of this idea is still
based on the customization of BERT model. A trivial observation is,
in most cases an image and its horizontally-mirrored version can
be described by a same caption. This is supposed to significantly
complicate the prediction of horizontal position of an object. There-
fore, our model only focuses on vertically localizing some object
in an image. In particular, all images will be split into 𝐾 horizontal
stripes of uniform length. For an image 𝑥 , let 𝑔 (𝑘)𝑥,𝑐 be the number
of image pixels in the 𝑘-th stripe that is categorized to be class 𝑐 .
This forms a distribution for class 𝑐 over all stripes, namely

𝑉𝑥,𝑐 =

{
𝑞
(𝑘)
𝑥,𝑐 | 𝑘 = 1 . . . 𝐾

}
=

{
𝑔
(𝑘)
𝑥,𝑐 /

∑
𝑘

𝑔
(𝑘)
𝑥,𝑐 | 𝑘 = 1 . . . 𝐾

}
, (4)

where 𝑞 (𝑘)𝑥,𝑐 is normalized 𝑔 (𝑘)𝑥,𝑐 .
We simply append another head 𝐻𝑠 (·) to the backbone of BERT

model, which is devised for estimating the spatial distribution of
some class 𝑐 in an image 𝑥 . The estimation can be obtained as

𝑉𝑥,𝑐 =

{
𝑞
(𝑘)
𝑥,𝑐 | 𝑘 = 1 . . . 𝐾

}
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐻𝑠 (𝜙 (𝑐𝑎𝑝𝑡𝑖𝑜𝑛(𝑥); [𝐸𝑂𝑆]; 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑐)))).

During training, 𝐻𝑠 (·) is iteratively optimized by minimizing
the distributional discrepancy between all pairs of 𝑉𝑥,𝑐 ,𝑉𝑥,𝑐 over
all seen classes in S. This is achieved via an informational entropy
objective:

L𝑠 =
∑
𝑥 ∈I

∑
𝑐∈S

∑
𝑘=1...𝐾

−𝑞 (𝑘)𝑥,𝑐 log(𝑞 (𝑘)𝑥,𝑐 ). (5)

Overall, we purse both image-specific class-wise visual occur-
rence and spatial distribution by fine-tuning the BERT model, with
a unified optimization target:

L = L𝑜 + L𝑠 , (6)

where 𝐻𝑜 , 𝐻𝑠 , controlled by L𝑜 + L𝑠 , prove empirically comple-
mentary to each other, as corroborated later in our experiments.

3.4 Local Pixel Level Inference
The global contextual entailment model described above utilizes
the global semantic context of the caption annotation to infer the
occurrence probability and vertical spatial distribution of unknown
classes. In order to make full use of the pixel wise annotation of the
known classes in the image, we design a local pixel-level prediction
network, starting from a single source pixel of the known class
and predicting the class information of the target pixel. Finally,
the prediction results from all of the known classes pixel will be
integrated for the spatial distribution of unknown classes.

Given an image 𝑥 , our local pixel level inference model𝑀 sam-
ples a source pixel 𝑠 of known class where 𝑐𝑠 ∈ S from all the

labeled pixels 𝑥𝑙 , and an unlabeled target pixel 𝑡 . The probability
that 𝑐𝑡 = 𝑢 ∈ U is inferred by𝑀 as:

𝑃 (𝑐𝑡 = 𝑢 | 𝑥, 𝑐𝑠 ) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀 (𝑝𝑜𝑠 (𝑠), 𝑝𝑜𝑠 (𝑡),𝑤𝑐𝑠 ,𝑤𝑢 )), (7)

where 𝑝𝑜𝑠 (𝑝) is the 2D coordinates of pixel 𝑝 resized to [0, 1].
𝑤𝑐 ∈ R𝑑 is the word embedding related to class 𝑐 . In practice, 𝑀
is implemented as a multi-layer perceptron (MLP) network, where
we stack the locations and word embeddings as a 1D input vector.

The spatial distribution of unknown class 𝑢 can be integrated by
the prediction results from all the labeled pixel which includes a
variety of class categories and locations:

𝑃 (𝑐𝑡 = 𝑢 | 𝑥) =
∑
𝑠∈𝑋𝑙

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀 (𝑝𝑜𝑠 (𝑠), 𝑝𝑜𝑠 (𝑡),𝑤𝑐𝑠 ,𝑤𝑢 )) / |𝑋𝑙 |,

(8)
where 𝑋𝑙 denotes the set of labeled pixels from known classes and
|𝑋𝑙 | is set carnality used as a rescaling factor. By this means, the
spatial distribution of certain unknown class 𝑢 can be obtained
by the pixel-wise annotations of known classes. For reducing the
computational complexity, we also conduct sub-sampling on the
labeled pixels, where we only look into 𝑛𝑠𝑢𝑏 << |𝑋𝑙 | labeled pixels
for each image. In the experiments, we found even a small 𝑛𝑠𝑢𝑏 ,e.g.
20, can achieve a good performance.

Training 𝑀 (·) does not require any annotation of unknown
class. In each iteration, we randomly choose a known class 𝑢 ′ to
temporarily play the role of an unknown class, and predict its
distribution based on other known classes:

L𝑝 = −
∑
𝑥 ∈I

∑
𝑡 ∈𝑋𝑙

∑
𝑢′∈S

𝐼 (𝑐𝑡 = 𝑢 ′)𝑙𝑜𝑔(𝑃 (𝑐𝑡 = 𝑢 ′ | 𝑥))

+ (1 − 𝐼 (𝑐𝑡 = 𝑢 ′))𝑙𝑜𝑔(1 − 𝑃 (𝑐𝑡 = 𝑢 ′ | 𝑥)) . (9)

3.5 Semi-Global Branch with Consistency Loss
The global contextual entailment takes caption annotation as input
which contains the global semantic information, while the local
pixel-level inference model take pixel-wise annotation of known
classes as input which contains local class information. In order
to make the two kind of information in different modalities and
different scales complementary to each other, we develop a semi-
global branch with a consistency loss to fuse the inferred spatial
distribution from two branch.

The consistency loss is built on the horizontal stripes from the
contextual entailment and the pixel-wise spatial distribution pre-
dicted by pixel-level inference model 𝑀 (·). For a certain class 𝑐 ,
based on the spatial distribution given by 𝑀 (·), we average the
pixels in each horizontal strip to obtain the vertical distribution
𝑌𝑥,𝑐 :

𝑌𝑥,𝑐 =

{
𝑦
(𝑘)
𝑥,𝑐 | 𝑘 = 1 . . . 𝐾

}
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥


∑

𝑡 ∈𝑠𝑡𝑟𝑖𝑝 (𝑘)
𝑃 (𝑐𝑡 = 𝑐 | 𝑥) | 𝑘 = 1 . . . 𝐾

 .(10)
Then we take the L2 distance between these two distribution as the
objective function:

L𝑐𝑜𝑛𝑠𝑖𝑠𝑡 =
∑
𝑥 ∈I

∑
𝑐∈S
| |𝑌𝑥,𝑐 −𝑉𝑥,𝑐 | |2 . (11)



During deploying the learned model, the final predicted spatial
distribution of unknown class can be obtained by fusing these two
complementary distributions, namely 𝑉 ∗𝑥,𝑢 ← (𝑌𝑥,𝑢 +𝑉𝑥,𝑢 )/2.. The
proposed Cap2Seg inference engine is obtained by jointly optimiz-
ing all objectives from three branches in Figure 2, including the
losses in Equations (6)(9)(11).

3.6 Learning the Segmentation Model for
Unseen Classes

In this section, we describe a deep model that uses the harvested
weak supervision (𝑠𝑥,𝑐 for visual occurrence and𝑉 ∗𝑥,𝑐 for stripe-level
spatial distribution) for the generalization to unseen classes.

3.6.1 Pixel-wise Segmentation Loss on Seen Classes. The first loss
is defined on seen classes and utilizes purely visual information. A
majority of modern image segmentation methods adopt an encoder-
decoder neural architecture, which is adopted in this work. For ease
of statement, we re-interpret such architecture in a “feature extrac-
tor + linear classifier" point of view. Specifically, given an image
𝑥 ∈ X, assume the penultimate layer of a typical such network gen-
erates a feature map 𝑓 = 𝜓 (𝑥), where𝜓 (·) encapsulates all involved
neural operations. Let 𝑓 ∈ Rℎ×𝑤×𝑑 , where ℎ ×𝑤 defines the spatial
resolution and 𝑑 is the extracted feature’s length. The prediction in
the image segmentation task is performed in a pixel-wise fashion.
Following the practice in [49], we use𝑤𝑐 ∈ R𝑑 be a fixed word2vec
embedding related to class 𝑐 ∈ S∪U. For a pixel (𝑖, 𝑗) in the feature
map, we adopt a standard softmax function as below:

𝑃 (𝑦𝑖, 𝑗 = 𝑐) = exp(𝑓 𝑇𝑖,𝑗𝑤𝑐 ) /
∑
𝑐∈S

𝑒𝑥𝑝 (𝑓 𝑇𝑖,𝑗𝑤𝑐 ), (12)

where 𝑦𝑖, 𝑗 is the predicted label of pixel (𝑖, 𝑗) in image 𝑥 (whenever
causing no confusion we omit the index of 𝑥 ).

During the training time, the segmentation model is trained only
on pixels from the known class set S with cross entropy loss:

L𝑠𝑒𝑔 = −
∑
𝑥 ∈I

∑
𝑖, 𝑗

𝐼 [𝑦𝑖, 𝑗 ∈ S] · log(𝑃 (𝑦𝑖, 𝑗 = 𝑦𝑖, 𝑗 )), (13)

where the indicator function 𝐼 [𝑦𝑖, 𝑗 ∈ S] outputs 1 if the corre-
sponding pixel is annotated to some seen class.

For an unseen class 𝑐 ∈ U, the corresponding discriminating
vector 𝑤𝑐 is also pre-fixed via word2vec. We allow only 𝜓 (·) is
learnable via gradient back-propagation. In a typical setting of zero-
shot image segmentation, a pixel (𝑖, 𝑗) in a testing image during
the inference stage is calculated via:

𝑦𝑖, 𝑗 = argmax
𝑐∈U

𝑓 𝑇𝑖,𝑗𝑤𝑐 , 𝑜𝑟 𝑦𝑖, 𝑗 = argmax
𝑐∈S∪U

𝑓 𝑇𝑖,𝑗𝑤𝑐 , (14)

where the latter is for generalized zero-shot segmentation.

3.6.2 Spatially-Weighed Ranking Loss on Unseen Classes. Given
only the caption annotation 𝑡 of an image 𝑥 , we can obtain the
occurrence probability 𝑠𝑥,𝑐 that class 𝑐 would appear in image 𝑥 .
We propose a pair-wise ranking loss to utilize 𝑠𝑥,𝑐 . For a training
image 𝑥 , we have the access to the ground truth label map 𝑦 on
known classes 𝑆 . Let 𝑌 be the set of unlabeled pixel positions:

𝑌 = {(𝑖, 𝑗) | 𝑦𝑖, 𝑗 ∉ 𝑆}. (15)
Given a pair of image 𝑥1,𝑥2, the encoded feature map 𝑓1, 𝑓2 can

be obtained with the CNN model 𝜓 (·). Occurrence probabilities

of specific class 𝑠1,𝑐 , 𝑠2,𝑐 can be inferred with our inference model
using the caption annotation 𝑡1, 𝑡2. 𝑠1,𝑐𝑢 > 𝑠2,𝑐𝑢 implies that image
𝑥1 is more likely to contain class 𝑐𝑢 than image 𝑥2. Or equivalently,
the unlabeled part 𝑌1 of 𝑥1 is more likely to contain unknown class
𝑐𝑢 than the unlabeled part 𝑌2 of 𝑥2. The proposed ranking loss can
be written as:

𝐿𝑅 = −
∑
𝑐𝑢 ∈𝑈

𝐼 (𝑠1,𝑐𝑢 , 𝑠2,𝑐𝑢 ) (
1
|𝑌1 |

∑
(𝑖, 𝑗) ∈𝑌1

𝑓1 (𝑖, 𝑗)𝑇𝑊𝑢
𝑐𝑢

− 1
|𝑌2 |

∑
(𝑖, 𝑗) ∈𝑌2

𝑓2 (𝑖, 𝑗)𝑇𝑊𝑢
𝑐𝑢
),

(16)

where 𝐼 (𝑠1, 𝑠2) is the indicator function. 𝐼 (𝑠1, 𝑠2) = 1 if 𝑠1 > 𝑠2
otherwise −1.

The horizontal stripe-level distribution of any unknown class can
be inferred from the captions as described in Section 3.5. Intuitively,
such information can be used to re-weigh the stripe-like image
regions. 𝐿𝑅 can be further improved to a weighted version:

𝐿𝑅𝑆 = −
∑
𝑐𝑢 ∈𝑈

𝐼 (𝑠1,𝑐𝑢 , 𝑠2,𝑐𝑢 ) (
∑

𝑘∈(1,2,...,𝑁 )

𝑝1
𝑐𝑢
𝑘

|𝑌1,𝑘 |
∑

(𝑖, 𝑗) ∈𝑌1,𝑘
𝑓1 (𝑖, 𝑗)𝑇𝑊𝑢

𝑐𝑢

−
∑

𝑘∈(1,2,...,𝑁 )

𝑝2
𝑐𝑢
𝑘

|𝑌2,𝑘 |
∑

(𝑖, 𝑗) ∈𝑌2,𝑘
𝑓2 (𝑖, 𝑗)𝑇𝑊𝑢

𝑐𝑢
),

(17)
where 𝑘 ∈ (1, 2, ..., 𝐾) is the index of horizontal strips. {𝑝𝑐𝑢

𝑘
|𝑘 ∈

(1, 2, ..., 𝐾)} is the predicted spatial distribution 𝑉 ∗𝑥,𝑐𝑢 of class 𝑐𝑢 .
For simplicity of the formula, here we omit the traversal of the
paired images 𝑥1, 𝑥2.

3.6.3 Overall Loss. During the training stage, the segmentation
model is trained with loss:

𝐿 = 𝐿𝑆𝐸𝐺 + 𝜆𝐿𝑅𝑆 , (18)

where 𝜆 is the weight factor to balance the loss 𝐿𝑆𝐸𝐺 from known
class and 𝐿𝑅𝑆 from unknown class.

4 EXPERIMENTS
4.1 Dataset
We conduct our experiments on two segmentation datasets with
both captions and pixel labels: COCO-stuff [7] has 164K images
from the popular COCO dataset with pixel-wise annotations among
182 classes. It also provides 5 sentences per image. For the unknown
class split of COCO-stuff, a class split is proposed in [49] with 167
known classes and 15 unknown classes, yet most of the unknown
classes are categories often directly mentioned by captions. To
study the capability of inferring implicit semantics in image cap-
tions, we rank all classes according to the frequencies of being
directly mentioned by caption. 15 classes are chosen as unknown
classes, covering low, medium and high explicitly-mentioned cases.
The selected unknown classes and the probability of their class
name’s being directly mentioned in captions are shown in Figure 3.
Importantly, ImageNet [39] pretrained network is leveraged to ini-
tialize the segmentation model. For preventing label leaking, the
15 unknown classes have no intersection with the 1000 classes in
ImageNet. Pascal VOC [16] has 12k images with 20 object cate-
gories. There are 906 training images, which evenly distributes over
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Figure 3: On COCO-stuff, all classes are ranked according to the
probability of being directlymentioned by captions.We select three
distinct subsets at different difficulty levels as the unknown classes.

all 20 categories, are equipped with caption annotations [36]. In
practice, we first train a segmentation model on the rest of training
images on the known classes, and then fine-tuning the model on
the 906 images with occurrence probability and spatial distribution
of unknown classes estimated from our inference model.

4.2 Implementation details
We adopt widely-used BERT [47] as the backbone of the inference
model. Adam [22] solver is used, with the learning rate initialized
as 3e-5. Regarding the segmentation model, we follow the settings
in [49]. In specific, DeepLab-v2 [11] with ResNet backbone is used as
the basic model. Standard SGD (momentum: 0.9, weight decacy rate:
0.0005, and learning rate is initialized as 1.5e-4 with a poly decaying
strategy) is adopted. 𝑛𝑠𝑢𝑏 is set as 20 to make a trade off between
performance and computational complexity. We split 5K images
from training set as validation set to choose the hyperparameter 𝜆
in Equation (18). 𝜆 is empirically fixed to 0.01 in the experiment.

For occurrence probability inference, we use mean average preci-
sion (mAP) as the metric. For spatial distribution inference, we use
cosine similarity between normalized predicted distribution and
groundtruth as the metric. For the experiments on segmentation,
mean intersection over union (mIoU) among unknown classes and
our three subsets is chosen as the metrics in zero shot learning
setting (ZSL). In generalized zero shot learning setting (GZSL), as
suggested in [49], we report the mIoU on known classes, unknown
classes and the harmonic mean of them:

𝐻 =
2 ∗𝑚𝐼𝑜𝑈𝑘𝑛𝑜𝑤𝑛 ∗𝑚𝐼𝑜𝑈𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑚𝐼𝑜𝑈𝑘𝑛𝑜𝑤𝑛 +𝑚𝐼𝑜𝑈𝑢𝑛𝑘𝑛𝑜𝑤𝑛

. (19)

5 EVALUATION
5.1 Occurrence Probability Inference
For evaluating the proposed contextual entailment model, we im-
plement several alternative strategies:

Exact match: This method gives a binary occurrence result by
directly matching the class name and its variants, e.g., synonyms
and plurality, with every noun in the caption. Thus, the occurrence
probability is 1 if the match successes, otherwise 0. As discussed be-
fore, this method can only infer the classes that are easily captured
directly by caption.

Sentence pooling: This method encodes the caption into a feature
vector by pooling the word embedding of every word in the caption.
Then the occurrence probability is defined as the cosine similarity

Method Hard Medium Easy Average
Exact Match 5.4 33.5 72.8 37.2

Sentence Pooling 7.7 37.1 65.3 36.7
Traditional ZSL [37] 8.6 52.0 86.6 49.0
Context Entailment 14.2 52.3 85.6 50.7
CE with Multi-scale 15.1 52.7 85.7 51.2

CE with Multi-scale and curriculum 15.8 52.9 87.0 51.9

Table 1: Occurrence probability estimation of different inference
method in terms of mAP on COCO-stuff.

Method Hard Meidum Easy Average
SPNet[49] 20.69 60.09 26.81 35.86
Exact Match 21.56 61.10 27.76 36.80

Traditional ZSL[37] 21.57 61.70 28.18 37.14
Context Entailment 22.96 62.43 28.35 37.91

Table 2: Zero-shot image segmentation results obtained from the
occurrence probability by different inference methods in terms of
mAPonCOCO-stuff.Note that here image segmentationmodels are
trained without stripe-level estimation, namely 𝐿𝑅 loss is used.

between encoded feature and the word embedding of certain class.
This method can capture the semantic information of caption in a
coarse-grained manner.

Traditional ZSL: Since the problem we are facing is essentially a
zero shot learning problem, where the samples of unknown classes
is absent during training, we also adopt the traditional ZSL method
as one of our baselines. This method firstly uses language model
(such as BERT) to encode caption into a vector, and treats the
cosine similarity between this vector and the word embedding
of interested class as the probability of occurrence. The model to
encode the caption is trained over known classes S and performs
prediction on unknown classesU.

The occurrence probability inference result is shown in Table 1.
The directly-mentioned percentage has a great impact on the per-
formances. As clearly seen, mAP scores on the easy set is far higher
than the hard set. Even the naive method Exact Match can achieve
striking results on the easy set (72.8%). For Exact Match and Sen-
tence Pooling that require no training, inference performances on
the hard set are notably inferior (5.4% and 7.7%, respectively), indi-
cating their limitation in tackling classes not mentioned in image
captions. The Traditional ZSL method has a slightly stronger in-
ference performance on the hard set than the first two methods
(8.6%). In contrast, with the contextual entailment (denoted as CE
in Table 1) technique, our proposed model’s inference ability on
the hard set has been significantly improved in comparison with
all baselines (14.2%). We attribute the success to better integration
of the caption-induced global semantic information and the word
embedding representation of the classes.

Inspired by [29], we find that the fusion of multi-scale features of
the BERT-based language model can make further improvement to
the inference performance. BERT is known to be a multi-layer trans-
former. To get a more powerful feature from BERT, we average the
low-level features, which is sensitive to the contained text words,
with high-level features, which is sensitive to the whole seman-
tic context. Experiments in 1 show the clear accuracy promotion
brought by multi-scale feature.

Another source of improvement stems from curriculum learn-
ing [5]. Curriculum learning refers to a training policy that starts
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Figure 4: Visualization of inference results of the semi-global
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Figure 5: Visualization of stripe-level spatial distribution estima-
tion. For two images from the same class frisbee, the semi-global
inference branch will return distinct estimations according to dif-
ferent captions.

with simple samples and then gradually increases the sample diffi-
culty. This kind of training policy has demonstrated to be beneficial
when the learning difficult of different samples varies a lot, which
fits our case. During training, we first limit the active samples to be
from easy classes, then gradually add samples from medium and
hard classes into the training set. Experiments in 1 also show the
improvement brought by this training policy.

The impact of different inferencemethods on the zero-shot image
segmentation is shown in Table 2. As observed, the final segmen-
tation performance highly hinges on the quality of inferred oc-
currence probability. Our proposed contextual entailment method
significantly surpasses all the baselines.

5.2 Spatial Distribution Inference
Withe the semi-global branch, the Cap2Seg inference engine can
predict the spatial distribution on horizontal stripes for an unknown
class, mainly using the high-level semantic information in caption
and word embedding of the class name. Visualization of such es-
timation on unknown classes are shown in Figure 4, where the
class-wise heat-map is aggregated over all images from this class.

Global Local Semi-Global Local (AP)
w/o consistency loss 0.525 0.486 0.534 14.0
w/ consistency loss 0.538 0.498 0.543 16.0

Table 3: Comparisons of different training objectives and the re-
sults of fusing two branches on the spatial distribution prediction
onCOCO-stuff. Inmost cases the reported scores are Cosine similar-
ity between estimated and ground-truth stripe-level distributional
vectors. Higher scores are favored. However, note that the results
of the local branch is pixel-wise, thus average precision (AP) serves
the metric.

As seen, the distributions of many classes are consistent to human
cognition. For instance, banner and tree are likely to occur on the
top of the image. road and grass tend to appear on the bottom of
the image. Although only trained among known classes, our pro-
posed semi-global branch proves to effectively capture the spatial
distribution of different unknown classes. In addition, we would
also emphasize that the spatial estimatin is image-adaptive. Even
for images from the same class, the estimations returned by the
semi-global branchmay differ significantly under different semantic
context. Some concrete examples are presented in Figure 5.

We also discuss the selection on region number 𝐾 . In order to
align the results of different region numbers, we use the improve-
ment of mean cosine similarity of the predicted result relative to
the random result as the metrics. The improvement results are 0.13,
0.15, 0.19, 0.17, when the region number is 3, 4, 5, 6, respectively.
The improvement is relatively small with a small region number, i.e.,
0.13 for 3, because of the coarse-grained division. The improvement
will also decreases when the region number is too large, due to
the superposition of prediction noise. Thus, we use 5 as the region
number in all of the following experiments.

Our local branch, a pixel-level inference model, takes the pixel-
wise annotation of known class as input, and predicts the occur-
rence probability of unknown class on each background pixel. The
pixel-level occurrence probability of certain unknown class can
be assembled into the same format as the vertical distribution pre-
dicted by global inference model. During the training stage, we add
a consistency loss between these two distributions to encourage a
consistent result. Since these two kind of spatial distribution are in-
ferred from the information of different modalities, our semi-global
branch fuses these two kind of spatial distributions to obtain the
final supervision signal for the segmentation model. Experiments
are conducted to evaluate the performance of spatial distribution
inference of our model and the effect of proposed consistency loss.
Cosine similarity is adopted between predicted vertical distribution
and the ground truth as the metric to evaluate the performance of
vertical distribution prediction. For the local pixel-level inference
model, we first use traditional AP (average precision) to evaluate the
performance, and for a more intuitive understanding of the relation-
ship with the global inference model, we also use cosine similarity
to evaluate it by assembling it into the vertical distribution.

Experiment results on the spatial distribution inference are shown
in Table 3. Equipped with consistency loss, both local and global
branches get better performance. Besides, fusing two distributions
can get better performance than a single distribution (Fusion >
Global,Local). Performance of global inference model is slightly bet-
ter that local one, implying higher noise level of the local inference.
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Figure 6: Qualitative results of baseline SPNet and our method on
COCO-stuff.

Method ZSL GZSL
S U H

SPNet[49] 35.9 30.4 5.2 8.8
Context Entailment 37.9 30.8 5.7 9.6

CE with Spatial Information 38.7 30.9 6.3 10.5
CE with fused Spatial Information 39.1 31.5 6.6 10.9

Table 4: Segmentation results with estimated spatial distribution
on zero shot learning (ZSL) and generalized zero shot learning
(GZSL) setting. For GZSL, we report themIoU on seen classes (S) and
unseen classes (U) and the harmonic mean (H) of them.

We also evaluate the impact of spatial information on the perfor-
mance of segmentationmodel in both zero shot and generalized zero
shot setting. The experimental results on COCO-stuff are shown in
Table 4. With the spatial distribution information, the performance
of segmentation model in both ZSL and GZSL can be improved.
And the fused spatial distribution information can get even higher
performance. Some qualitative results are presented in Figure 6.
Trained from the annotation provided by our Cap2Seg inference
engine, the segmentation model can give a better performance on
objects and stuff classes, such as cow, road, grass etc. Besides, it can
also segment some hard cases on which the baseline model fails
to recognize the target object as shown in the rightmost column
about the napkin class.

5.3 Evaluations for Different Splits
For fairness, we also evaluate the proposed method on the class
split proposed in [49]. The experimental results are found in Table 5.
As stated in priro sections, the unknown classes of the class split
of [49] contains some classes frequently explicitly mentioned by
the image captions. This arguably explains the slight performance
improvement compared with the results obtained with the split we
constructed.

Method ZSL GZSL
S U H

SPNet[49] 35.2 27.0 9.0 13.5
Our Method 41.5 27.1 11.3 16.0

Table 5: Comparison of image segmentation performances on the
class split proposed by SPNet [49] in terms of mIoU on COCO-stuff.
Both settings of ZSL and general ZSL are studied.

ZSL pl
an
t

sh
ee
p

so
fa

tra
in

tv U S H
ZSVM[21] 35.6 - - - - - - - -
SPNet[49] 49.6 3.2 20.9 12.4 38.3 1.7 15.3 76.4 25.5
Our Method 51.4 7.4 30.3 15.2 51.8 2.2 21.3 76.5 33.3

Table 6: Experimental results on the Pascal VOC (mIoU).

Method S U H
SPNet[49] 50.0 18.6 27.1
ZS3[6] 47.3 24.2 32.0

Our Method 50.4 25.6 34.0
Table 7: On PASCAL VOC, comparisons on the class split where
unknown classes are: cow, motorbike, airplane, sofa, cat, tv.(mIoU).

5.4 Experimental Results On Pascal VOC
We also conduct experiments on PASCAL VOC 12. Since only 906
training images are equipped with caption annotations, we firstly
train the segmentation model in the rest of training images with
only the known class annotations. Then we fine-tune the segmenta-
tion model on the small part of images with unknown class informa-
tion inferred by our inference engine. Provided the limited number
of captions, we adopot the inference engine pre-trained on COCO
dataset to infer on PASCAL. It is notable that our inference engine
does not require any pre-defined class. One can construct a new
CEQ with the textual representation of any new unknown class.
Thus, it can be trivially transferred between different datasets.

Table 6 shows the results on the class split proposed by [49]
and [21]. Our method surpass other baselines in both ZSL and
GZSL. We also conduct experiments on the class split proposed
by [6], shown in Table 7. Our model also surpass other methods.
The experiment results show the effectiveness of our proposed
Cap2Seg even with only a small number of caption annotation.

6 CONCLUSIONS
We propose a novel three branch inference model which makes full
use of provided annotations, including image captions and known
class annotations, to infer the occurrence probability and spatial
distribution of unknown classes. These information is further ag-
gregated with a spatial-weighted pair-wise ranking loss to give
supervision on the segmentation task. In the future, we will further
verify the benefit of our proposed method on different tasks, like
object detection. We will also integrate the proposed inference and
downstream models into a more efficient end-to-end framework.
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