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Abstract. Real-world videos often contain dynamic backgrounds amdvewg
people activities, especially for those web videos geedraty users in uncon-
strained scenarios. This paper proposes a hew visual egpiedi®n, namely scene
aligned pooling, for the task of event recognition in compligleos. Based on the
observation that a video clip is often composed with shotlifedrent scenes, the
key idea of scene aligned pooling is to decompose any vidatoifes into con-
current scene components, and to construct classificatbatels adaptive to dif-
ferent scenes. The experiments on two large scale reatiwlathsets including
the TRECVID Multimedia Event Detection 2011 and the HumartiboRecog-
nition Databases (HMDB) show that our new visual repregi@mtaan consis-
tently improve various kinds of visual features such asediiit low-level color
and texture features, or middle-level histogram of localcdigtors such as SIFT,
or space-time interest points, and high level semantic hfedares, by a signif-
icant margin. For example, we improve the-state-of-thezacuracy on HMDB
dataset by 20% in terms of accuracy.

1 Introduction

The problem of video event recognition is attracting moré arore attention in recent
years. This is largely due to two reasons: On one hand, thel@adly of video cam-
eras makes it possible for a consumer to record or compose viips easily. On the
other hand, the emergence of social media websites inguintube, Facebook has
aggregated a large amount of online video corpus, whicts@agajor role in attracting
Web users. For example, Youtube hosts more than 100 millaeog and serves 1 bil-
lion video requests per day. Such a large amount of videotdet@ever been available
until today. How to understand the contents of these videssbecome an important
challenge for computer vision research.

The problem of video event recognition is the key to many igpfibns, including
personalized video recommendation, social event minind Jarge scale video library

* Gang Hua participated in this project while working for IBM a visiting researcher. Apostol
Natsev was with IBM Watson Research Center when most of thik was performed.
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EVENT:
Wedding Ceremony

ACTION:
Parkour

Fig. 1. Complex videos are usually composed of different scengKdw frames in a video of
wedding ceremony (b) Key frames in a video of parkour actigit

indexing. The definition of “event” generalizes previousdi¢s of simple human ac-
tions in a constrained environment [1] [2], or highly digfinnishable professional ac-
tivities in Olympic game or TV channels [3] [4]. In this papan event can be either
a complicated human activity (e.g., kiss, parade, makingrawich), or composite
multimedia semantics (e.g., birthday party, wedding cengyin Compared with simple
human actions, the events in these complex videos are ntoaetate, since Web users
enjoy those videos with rich semantics but feel bored abioytls ones. A real world
video often contains heterogeneous backgrounds and etiffeiiewpoints, and cap-
tures diversified contents or evolving human activitieg. Eiillustrates some exemplar
videos of complex event (e.g., wedding ceremony and pajkadnich are obviously
more complicated than simple actions like running or wajkin

To study the problem of event recognition in complex videss,observe that a
video clip is composed with shots of different scenes. Ia gaper we refer “scene” to
fine-grained characteristics of video environmental sdioswrBoth psychological and
biological evidences [5] [6] revealed that human vision eanily distinguish different
scenes and the results of scene recognition can furthegeelkpral image understand-
ing. Motivated by these psychological theories, we belgane information is a good
cue to understand complex video events.

The key idea of our method is to use scene information to gthidepooling op-
eration of video features. Traditional pooling is an operabf averaging the feature
vectors within a spatial neighborhood of images [7]. In fhaper, we aggregate video
features into concurrent scene components, and then gesetme-dependent mod-
ules for the classification task. Since our new model is desigo capture the visual
information in concurrent scenes, we name this new mod&icase Aligned Pooling
(SAP). The advantages of our scene aligned pooling arefédds: (1) This new visual
representation naturally captures diverse video conterdsdynamic semantics based
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on scene structure. (2) SAP can be applied to various visa#lifes and improve their
performance. (3) SAP represents videos as feature vedtfixed dimensions, and the
model is free from the concerns of video length or assumpt@mmtemporal evolve-

ment. (4) We employ a soft weighting strategy named conotwector quantization

for pooling different scene components, which is not onlyust to noise but also able
to handle the scenario with overlapped scenes.

2 Redated Works

A real world video always conveys rich information, and idishallenging task to cap-
ture such rich information for video event analysis. Exigtstudies [1] [2] [8] [3] con-
sider human actions in specified scenarios or well-comoinvironment. However,
there have been not enough studies on recognizing uncimestnsideo or user generat-
ed video from online websites. Compared with traditionahlan action datasets, these
real world videos are more difficult to handle since they aontonger video sequences
and diversified scenes. Moreover, when those real worldogidentain non-static clut-
tered background, the popularly used motion-dependeturfes[9] [10] will not work
well since there are a lot of false detections due to the backgl motion.

Since video event classification is still in its early stagés desirable to learn from
successful image classification techniques. As arguedlij) §llot of recent progresses
in image recognition can be viewed as a combination of atérg series of coding
and spatial pooling steps. Average pooling [7] tries to agerfeature vectors within a
spatial neighborhood. Bag-of-words model can be viewedspeaial case of average
pooling. Max pooling is found to be useful for sparse codiagtfires [12]. Jégoat
al.developed a new image descriptor called VLAD by pooling latsscriptors [13].
Lazebniket alproposed spatial pyramid matching (SPM) kernel [14], whieln be
viewed as a pooling method based on the spatial layout ofésakhis idea is recently
generalized in [15], which enlarges the spatial bins withtiiee space clustering. The
difference between this paper and previous image poolintpads is three-fold: (1)
[15] uses either hard VQ or sparse coding, which usuallyiregua large size of code-
book. This submission chooses only codebook size =16, tissgeights of harmonic
average. (2) [15] only pools the coding weights or quantiréites, while we pool the
feature vectors. (3) [15] uses either max pooling or avepagding, while we compute
the weighted average.

Our work is also motivated by the studies in scene recogniiammumber of studies
[16][17][14] have been carried out to classify natural sih ater studies explore vari-
ous applications of scene recognition. Russtll|[18] employed scene representation
for object retrieval. Many research studies show empirscaicess in learning image
representation within similar scenes [19] [18]. Li and Fei-[20] and later Marszalek
et al[21] combine scene classifiers to benefit the task of objexigeition or activ-
ity recognition. However, these approaches treat scerssifitxrs as an independent
component, and require a lot of scene labels to train theesclassifiers. Unlike their
method, this paper employs scenes as the pooling contekrdy use scene features
without the requirement of scene labels.
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3 Scene Aligned Pooling

3.1 Modd

A video is comprised of a sequence of frames. Following thteresive research in
image recognition, we can represent frames with variousfeaectors, including color
histogram, LBP, texture, or SIFT histogram. Consider a @ide = [z1, -, 27,
wherel < ¢t < Tz stands for the index of frames or key framggcorresponds to a
feature vector. Note that the number of frames is not carsistcross different videos.

According to the representer theorem [22], the classifiirbei represented by k-
ernel distance# (X, Y") between two videoX andY. SinceX andY may contain
different number of frames, traditional methods usuallynpate the kernel by averag-
ing the frame features

Tx
K(X,Y) = /-@(pim ;xt, Zyt 1)

Py 1=

wherex is a kernel function between two vectoss,andy; are the frame level feature
vectors,p, and p, are the normalization factors. For example, we can chpgse:

1525 el

Eq (1) is widely used with different features. In recenthay®e many systems use
bag of words model for video recognition, which fundamdtesl to average the his-
togram features across different frames. The limitatioagpfl) is that it overlooks the
diversity of video contents. The learned classification etdekats all the frames using
the same mechanism. If a video event contains non-unifobraekigrounds, averaging
the frame features will inevitably blur the discriminanaferes and hence reduce the
recognition performance.

In this paper, we consider the scenario where a video catdiscenes. Let; be
the random variable for scene type of framevherel < s; < K. Note p*(z;) =
P(s; = k|z,) satisfies the constrai}}t, p*(z;) = 1. With p*(z;) we can redefine the
kernel distance between two videos

K
KX, V) =Y & Zp (), kZp (ye)e)- (2)

k=1 pztl ytl

To make the representation clearer, we introduce a newblanemedscene com-
ponentwhich combines the outputs of all video frames by

Tx Ty
st = Zpk(xt)xta k= Zpk(yt)yt. 3)
t=1 t=1
The kernel becomes
al 1 1
_ k k
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Fig. 2. An practical viewpoint for SAP model.

This new representation aligned videos of different letytx” types of scenes, and we
call this methodscene Aligned Poolin@AP). It is easy to see that the average pooling
is a special case of SAP witR = 1. The motivation of SAP is to employ multiple
scenes to represent the diversified video contents.

It is interesting to compare our formulation with Lazebetkal's Spatial Pyramid
Matching (SPM) [14]. In summary, SAP composes kernels dveedbmain of semantic
scenes, while Lazebnik's SPM builds kernels over spatimlsgHowever, there are
significant differences between SPM and SAP. SAP works inteaséic scene domain
with no clear boundaries. SPM works in spatial domain wheeecan use grids to
explicitly separate one image into several parts. As a tead do not explore the
pyramid structures in SAP due to the ambiguous boundarieisieo domain. Instead,
we choose concurrent vectorization to perform soft weidlatsignment, while SPM is
based on hard assignments. Table 1 summarizes the difeerbrtiveen SAP and SPM.

Table 1. Comparing SAP with Spatial Pyramid Matching.

Subject Domain Grid Assignment
SAP |video scene x soft
SPM[14] image spatial v hard

To provide more insights for the SAP model, we consider thedr classifier cor-
responding to (4). The linear classifier can be represersted a

Tx K K
H(X) =Y pra)wiz = wis (5)
t=1 k=1 k=1

It is easy to see that SAP leads to different models for diffescene components and
combine the estimations from multiple scenes into the firadeh Fig. 2 illustrates the
idea for SAP classifier.
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The biggest advantage of scene component representatiat ismakes the train-
ing easier. We can first concatenate all fiescene components as a long vector,

S = [81,82,--- ,sK]

and learn a linear functiof (S) = w”'S + b. In practice we enforcnormalization
before training byS = [WSI’ ﬁ 82, ,ﬁ K], In this way, we obtain the
long linear coefficients as a whole. Due to the recent adaincénear model training
[23], it has become pretty efficient to learn linear SVMs frbigh dimensional large

scale data, so that training using scene component will @difficult.

3.2 Implementation

To implement the computation of scene componént Zthl pF(xs)xy, in fact what
we need to do is to map each frame featyrénto different scenes

Ty — [p%xtvp?xtv s 7p{(17t]7 (6)

with the constrain", pf = 1. From egs (3) and (6) we can easily see that our new
model is a pooling method. The unique characteristic of oethimd is that our pooling
weightsp® are based on scene semantics. That is why we call our metbedésligned
pooling”. We will explain how to computg) in the following.

Our method of modeling? is very easy to implement. Following the previous stud-
ies [16][18] [24], we use GIST features to represent thesc8ome may argue that we
might use the same feature as frame feature vectorcompute the scene, however, as
we shown later, the pooling weights are computed based olidEan distance, which
is not reliable for sparse histogram features like SIFT. Asszene modeling feature,
GIST is easy to compute and especially good at describingescil 6]. Given all the
training data, we compute the GIST features and cluster themi centers using un-
supervised K-means. Th§ center is represented a$, g2, - - - , gX. To compute the
pooling weightp®(z;), we extract the GIST feature vectgy for every framet. The
pooling weight is based on the comparisor{gf} andg;.

The naive way to compute the pooling weight is by vector gaation (VQ), which
forces all but one* () to be zero. However, VQ is well-known to be sensitive to
noises. Moreover, the hard assignment of VQ cannot caphe®verlapping nature
of evolving video scenes and hence works poorly. VQ is desigio minimize the
guantization error. Supposgis the set of GIST features, this paper considers a different
criteria by

-1
1 E 1
C = HA = — -
gGZG (9) %(Kﬁng—gm) !

where H A denotes the harmonic average proposed by Zkedrah[25]. To study the
minimization condition, we |e%k02 = 0, which leads to

1
= Z w’;g, w.t. wk

3°
P Tg— oF]
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Fig. 3. Differences between concurrent VQ and VQ. Left: an exengdldf, -, dX (K = 6in this
toy example). Right: the weights from vector quantizatiod aoncurrent vector quantization.

To be consistent to the contribution @ffor harmonic average, we choose our pooling
weights as

dj, = [|g: — g2 ||
NV
TS ) )

It is not difficult to see that our pooling weights satisfy tbenstraint", pi = 1.
Also our pooling weights relies on only GIST feature, withnetations with the event
label y. This means we will use the same pooling strategy indepengiém events.
We call the method in eq. (7) as concurrent VQ. Compared watitional VQ, our
new pooling method penalizes the impact of large outliend, @ssigns more weights
to the center with small distance. Fig. 3 employs a toy exartgkhow the difference
between eq. (7) and traditional VQ. In this toy example, tamgle is close to three
centers £ = 2,5, 6), which can be viewed as a picture with three overlappingase
Vector quantization will only pick ug = 5, while forcing all the weights to the other
centers as zero. In contrast, our new method selects ak tinveee centers with big
weights, and hence can handle the scenario of overlappamgseasily. Moreover, the
computation of eq (7) shows that the pooling weights in outhwe are based on the
Euclidian distancel’. For a lot of sparse histogram feature (such as SIFT histogra
their Euclidean distance is not reliable so that they aras@ood choices as GIST.

In this paper, we choose an unsupervised way to model scEhegeasons why
unsupervised learning is preferred are as follows: Firssupervised learning can save
the extra labeling efforts. In our model, the goal is not toognize the exact scene
category but to do pooling according to scene context, sersiged learning is not
necessary. Moreover, we will explain later that some vidames are associated with
overlapping scenes.

In this paper, we use two kinds efas kernel function: linear kernel and intersection
kernel. When we use linear kernel, we employ liblinear [28hiits default parameter.
When we use intersection kernel, we use nonlinear SVM becthere is no extra
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parameter to compute intersection kernel, and the inteéosekernel can be computed
very efficiently.

One advantage of our scene aligned pooling method is thatnitbe combined
with various features. For example, many low level featin@ee been designed in the
image recoghnition research to represent a single imageombine these features with
scene aligned pooling, we can first identify the scene fon &é@mne, and then aggregate
the frame-level representations according to these scEoespace-time interest point
features [10], we can still use scene aligned pooling by eggging the histogram for
short term clips. We can also generalize this approach téi-maldal features, if both
visual and audio features are synchronized.

Next we briefly discuss how to selekt, the number of scenes. There is no general
agreement on how many scenes exist, considering the arbpand great complexity
contained in real world. Fei-Fei and Perona [17] employeddéhes in their exper-
iment, which is later enlarged to 15 scenes by Lazeleni&l[14]. The largest scene
collection is recently contributed by Xiaat al[24], which reported a recognition aver-
age precision of 34.5% for total 397 scene categories. [[Bd]@nducts an interesting
user study, by inviting 7 participants to write down all se@ategories they experienced
in more than two hundred hours. In this experiments, thegiaaints report 52 different
scene categories. In our experiments, we test the perfamsanith different. Fig. 4
compares results of pooling color histogram features onGRP 2011 dataset. We
will explain the dataset later in the experiment section.céfe see that the performance
is similar with K’ = 16, 64, 128. In following section, we will usek = 16 for all the
experiments, for efficiency.

0.25

0.2 O 128 scenes
64 scenes
O 16 scenes

board trick feed animal land fish wedding ceremony  woodworking

T
]

Average precision
o

o
o
(]

Fig. 4. Comparing the effects of different scene numbers on TRECADL Dryrun dataset.

Algorithm 1 summarizes the workflow of our SAP algorithm.

4 Experiments

In recent years, there has been a proliferation of Web-dhaideos, with approxi-
mately 48 hours of video uploaded on Youtube every minuté, arer 700 billion
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Algorithm 1 Scene Aligned Pooling Algorithm.

Input: : A video with the set of frame feature vectofs:}, 1 < ¢ < T'. A codebook withK
centers of GIST featurg®, 1 < k < K.
Extract GIST descriptog: for every frame.
Compute the pooling weight* () using eq. (7).
Compute scene componetit using eq. (3).
Normalizes* and concatenate them into a long vecfor
Train linear SVM or intersection-kernel SVM usitjy

videos watched in 2010. In our experiments, we select datasest similar to re-
al world online videos: TRECVID Multimedia Event Detecti¢MED) 2011 corpus
(http://www.nist.gov/itl/iad/mig/med11.cfm) and the®vn Human Motion Recogni-
tion Database(http://serre-lab.clps.brown.edu/reszsiHMDB/) (HMDB).

41 TRECVID MED Datasets

Trecvid MED 2011 is the largest fully annotated datasetisipatly designed to model
complex video events. There are about 370 hours of clipsarEtrent-Kit and Trans-
parent Development (DEV-T) collections, and another 1}28@rs of video clips in the
Opaque Development (DEV-O) collection. All these videasfaee of editing, accom-
panied with non-professional recording and variety ofillnation, camera motion, and
cluttered background. The video duration is similar to th&l IYoutube video, and the
average duration is about 2 to 3 minutes. The evaluation oDNMEseparated in two
test sets: the mid size dryrun evaluation and the large firsdliation set. In the dryrun
evaluation, 5 events are considerattempting a board trickfeeding an animaland-
ing a fish wedding ceremonyvorking on a woodworking projector which labels are
provided for both the training and testing sets. The finalwation stage, on the oth-
er hand, considers 10 new everttthday party changing a vehicle tireflash mob
gathering getting a vehicle unstucgrooming an animalmaking a sandwictparade
parkour, repairing an applianceandworking on a sewing projecEach eventis a com-
bination of one or multiple people, scenes and actions.dridliowing we will discuss
the performance of SAP for various features in both dryruhfaral evaluation stage.

In this paper, we employ average precision (AP) measure atuate the perfor-
mance on MED datasets. The reason why we choose averagsigmeis because
it is a popular measure in computer vision field and more ingmly it is easier to
compare the performance of video retrieval using averageigion. Suppose the s-
cores are ranked in descending order, the AP of the rankeid ismputed byAP =
o p(i)Ar(i),, wherep(i) is the precision ai-th position in the ranked list, and)
is the recall at-th position.Ar(¢) is the change in recall from itein— 1 ands.

Since the dryrun evaluation is of a relatively small scalewill try the effectiveness
of SAP for different features. We tried the following feagar edge histogram (edge-
hist), color histogram (colorhist), SIFT histogram (SIFThe details of implementing
these features are described in [27]. We compare threengpoiethods: max pooling,
average pooling, and our SAP. From Table 2 we can see that awixg works poor-
ly in video recognition. The average pooling works muchdretthan max pooling for



10 Scene Aligned Pooling for Complex Video Recognition

video recognition. In the following, we will use average fing as the default baseline,
since it is the standard technique in the field. In our expenits, SAP works consis-
tently best among all the pooling methods for all the feagufidne improvement over
mean AP can be as significantly @592 — 0.39)/0.39 = 135% for edge histogram,
131% for color histogram, 10% for local binary pattern (LBP§% for SIFT features.

Table 2. Comparison of different pooling methods on MED dryrun

Feature Pooling Average Precision
El E2 E3 E4 E5 Med
edgehist Max [.027 .024 .051 .024 .016 .02
Ave |.045 .015 .079 .020 .036 .03
SAP |.195 .028 .136 .057 .048 .04
colorhist Max |.023 .024 .036 .078 .028 .03
Ave |.105 .027 .062 .039 .024 .05
SAP |.259 .030 .129 .128 .042 .11
LBP  Max [.022 .018 .038 .021 .020 .02
Ave |.057 .030 .045 .033 .019 .04
SAP |.067 .028 .046 .041 .020 .04
SIFT  Max |.042 .013 .191 .013 .019 .04
Ave |.155.039 .261 .311 .152 .19
SAP |.166 .044 .252 .432 .190 .21

NROPRPNPDMORLOONO-OS3

We also did a few comparison with other pooling techniqueseffects of our con-
current vector quantization and its degenerated case goarge assignment). As shown
in Table 3, our soft scene assignment strategy is much libtiarthe hard assignment.
The only exception is in event 2 (feed an animal), for whicthe VQ nor our method
does a good job due to the high irregularity and diversity nimeal appearance and
feeding activities. We also try to use SIFT histogram to catep”(x;), however, the
pooling results are very poor since the Euclidian distaricgparse histogram features
are not reliable. Another experiment we consider is whetlireictly combining scene
feature and SIFT can improve the result. We extract both GIST SIFT features for
each video frame, and use average pooling to train the fi&asgis shown in Table 4,
GIST feature is not a good representation for event recimgmio that it bears very low
recognition performance. Since GIST feature performs muaise than SIFT, it makes
the naive fusion result worse than that of using SIFT onlyweieer, our SAP does not
fuse the two features directly but to use scene informat®a aontext to guide the
pooling process. As a result, SAP is a much better choicetti@naive fusion strategy.

After we finish the dryrun evaluation, we also apply the prsgmbmethod on the
final evaluation dataset. Since TRECVID has not publicleaskd the labels for the
DEV-O set, we use an internal test set split. The internaldessists of 40 positive
video clips per event (400 videos in total) and 5,231 negatideos. The remaining
7,252 videos are used for training. From the dryrun datasdtvow that SIFT outper-
forms many other low-level features so we are especialbra@sted in the performance
of average pooling and scene aligned pooling using SIFTufeafAs shown in Fig. 5,
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Table 3. Comparing average precision of concurrent vector quatitizavith vector quantization
(soft vs. hard scene assignment) using SIFT feature.

El E2 E3 E4 E5 Mes

Our Scene aligned pooling
Pooling using VQ on GIST

.166 .044 .252 .432 .190 .21
.159 .055 .221, .263 .071 .1%

Pooling using VQ on SIFT histogram89 .033 0.091 .084 .051 .07

=

(7

Table 4. Comparison with naive fusion of scene feature with SIFT.

Feature Average Precision
El1 E2 E3 E4 E5
GIST |.074 .017 .030 .033.018
SIFT .155 .039 .261 .311 .152
GIST + SIFT[.150 .040 .211 .256 .143
SAP + SIFT|.166 .044 .252 .432 .190

SAP can significantly improve the average precision in &ltén events. By using SAP,
the mean of ap scores can be improved from 0.183to 0.212.

Average Precision

0.7

06
0.5 B SIFT feature
04 B SAP via SIFT
03—
0.2
0+
. > L O O ) @ R LR @ K &
ST S RN & & &S
& GRS @ ° & & & & G £ N LR S
SARS 3 < SR RN O S R S
R & < & & o & &
& A & PO

Fig. 5. Results of nonlinear SVM using SAP.

Finally, we consider a special feature called semantic finegletors. Our seman-

tic model vector is an intermediate level semantic repradiem, by evaluating 780
concept classifiers for each frames. The 780 classifierg@ret separately using t-
housands of labeled web photos. The semantic model veatonigplementary to low
level features and can be useful in many retrieval and atioottasks [28] [29]. Our
SAP can also significantly improve the semantic model veg®shown in Fig. 6, SAP
improves the performance in 9 of 10 events.

After obtaining the results using different features, we da a late fusion to get

the final classification model. This paper does not focus siofutechniques but our
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Fig. 6. Results of using SAP for semantic features

simple fusion model can arrive at 0.50 average precisiohérndryrun evaluation and
0.45 in the final evaluation (internal test data split).

4.2 HMDB dataset

Very recently, Kuehnet al[30] describe an effort of designing a large video database
containing 51 distinct action categories, named the Humatidyl DataBase (HMDB),
which tries to better capture the richness and complexibpofian actions. They argued
that the UCF Sports dataset [3] is designed for specificstitie YouTube, in which
the actions are usually unambiguous and highly distinglikhfrom shape cues alone
(e.g., the raw positions of the joints or the silhouette ated from single frames).
They collected a new motion dataset, which contains 51ndiséiction categories, with
at least 101 clips for each category. The final dataset iledudtotal of 6,766 video
clips extracted from a wide range of sources. Each clip wéidatad by at least two
human observers to ensure consistency. Kuetirad[30] also studied the biological
motion perception and recognition technique [31] based@rtew dataset.

The HMDB dataset is very challenging. From the reports irf,[8e the state-of-
the-art’s performance is about 23%. It is very interestggply our SAP model to this
challenging dataset. We use STIP features [10] providdutiniataset webpage, and ex-
tract scene features for video frames at every 0.5 secoitte e STIP features are
only sparsely distributed among video frames, to improvégpsance we condense the
STIP features from nearby half-second video frames wherpating on specific target
keyframe. The STIP histogram are aggregated together &y &/5-second clips, and
then pooled using SAP model. We compare the performance Bfidth those of STIP
histogram, and Kuehne'’s biological motion system C2. Tabtempares the recogni-
tion accuracy of our SAP with STIP histogram and C2 models.i@adel significantly
improve the best performance from 23.18% to 27.84%, as &vel20% increase of
accuracy.
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Table 5. Comparison with the results on HMDB

Model Accuracy
STIP histogram 21.96%
Cc2 23.18%
SAP + STIP | 27.84%

5 Conclusion and Future Work

In this paper, we have discussed a new pooling method naneee@ stigned pooling
(SAP). We show that SAP can consistently improve differeatdires (color histogram,
SIFT, semantic model vectors) for complex video classificatSAP also significantly
improves the state-of-the-art performance on HMDB dasaset

Our future work will focus on generalizing the classificatimodel to more video
recognition and annotation tasks. More results will belalée onht t p: / / r esear cher.
i bm com person/us-1iangliang. cao.
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