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Abstract. Real-world videos often contain dynamic backgrounds and evolving
people activities, especially for those web videos generated by users in uncon-
strained scenarios. This paper proposes a new visual representation, namely scene
aligned pooling, for the task of event recognition in complex videos. Based on the
observation that a video clip is often composed with shots ofdifferent scenes, the
key idea of scene aligned pooling is to decompose any video features into con-
current scene components, and to construct classification models adaptive to dif-
ferent scenes. The experiments on two large scale real-world datasets including
the TRECVID Multimedia Event Detection 2011 and the Human Motion Recog-
nition Databases (HMDB) show that our new visual representation can consis-
tently improve various kinds of visual features such as different low-level color
and texture features, or middle-level histogram of local descriptors such as SIFT,
or space-time interest points, and high level semantic model features, by a signif-
icant margin. For example, we improve the-state-of-the-art accuracy on HMDB
dataset by 20% in terms of accuracy.

1 Introduction

The problem of video event recognition is attracting more and more attention in recent
years. This is largely due to two reasons: On one hand, the popularity of video cam-
eras makes it possible for a consumer to record or compose video clips easily. On the
other hand, the emergence of social media websites including Youtube, Facebook has
aggregated a large amount of online video corpus, which plays a major role in attracting
Web users. For example, Youtube hosts more than 100 million videos and serves 1 bil-
lion video requests per day. Such a large amount of video datahas never been available
until today. How to understand the contents of these videos has become an important
challenge for computer vision research.

The problem of video event recognition is the key to many applications, including
personalized video recommendation, social event mining, and large scale video library

⋆ Gang Hua participated in this project while working for IBM as a visiting researcher. Apostol
Natsev was with IBM Watson Research Center when most of this work was performed.
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Fig. 1. Complex videos are usually composed of different scenes. (a) Key frames in a video of
wedding ceremony (b) Key frames in a video of parkour activities.

indexing. The definition of “event” generalizes previous studies of simple human ac-
tions in a constrained environment [1] [2], or highly distinguishable professional ac-
tivities in Olympic game or TV channels [3] [4]. In this paper, an event can be either
a complicated human activity (e.g., kiss, parade, making a sandwich), or composite
multimedia semantics (e.g., birthday party, wedding ceremony). Compared with simple
human actions, the events in these complex videos are more attractive, since Web users
enjoy those videos with rich semantics but feel bored about simple ones. A real world
video often contains heterogeneous backgrounds and different viewpoints, and cap-
tures diversified contents or evolving human activities. Fig. 1 illustrates some exemplar
videos of complex event (e.g., wedding ceremony and parkour), which are obviously
more complicated than simple actions like running or walking.

To study the problem of event recognition in complex videos,we observe that a
video clip is composed with shots of different scenes. In this paper we refer “scene” to
fine-grained characteristics of video environmental semantics. Both psychological and
biological evidences [5] [6] revealed that human vision caneasily distinguish different
scenes and the results of scene recognition can further helpgeneral image understand-
ing. Motivated by these psychological theories, we believescene information is a good
cue to understand complex video events.

The key idea of our method is to use scene information to guidethe pooling op-
eration of video features. Traditional pooling is an operation of averaging the feature
vectors within a spatial neighborhood of images [7]. In thispaper, we aggregate video
features into concurrent scene components, and then develop scene-dependent mod-
ules for the classification task. Since our new model is designed to capture the visual
information in concurrent scenes, we name this new model asScene Aligned Pooling
(SAP). The advantages of our scene aligned pooling are four-folds: (1) This new visual
representation naturally captures diverse video contentsand dynamic semantics based
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on scene structure. (2) SAP can be applied to various visual features and improve their
performance. (3) SAP represents videos as feature vectors of fixed dimensions, and the
model is free from the concerns of video length or assumptions on temporal evolve-
ment. (4) We employ a soft weighting strategy named concurrent vector quantization
for pooling different scene components, which is not only robust to noise but also able
to handle the scenario with overlapped scenes.

2 Related Works

A real world video always conveys rich information, and it isa challenging task to cap-
ture such rich information for video event analysis. Existing studies [1] [2] [8] [3] con-
sider human actions in specified scenarios or well-controlled environment. However,
there have been not enough studies on recognizing unconstrained video or user generat-
ed video from online websites. Compared with traditional human action datasets, these
real world videos are more difficult to handle since they contain longer video sequences
and diversified scenes. Moreover, when those real world videos contain non-static clut-
tered background, the popularly used motion-dependent features [9] [10] will not work
well since there are a lot of false detections due to the background motion.

Since video event classification is still in its early stage,it is desirable to learn from
successful image classification techniques. As argued in [11], a lot of recent progresses
in image recognition can be viewed as a combination of alternating series of coding
and spatial pooling steps. Average pooling [7] tries to average feature vectors within a
spatial neighborhood. Bag-of-words model can be viewed as aspecial case of average
pooling. Max pooling is found to be useful for sparse coding features [12]. Jégouet
al.developed a new image descriptor called VLAD by pooling local descriptors [13].
Lazebniket al.proposed spatial pyramid matching (SPM) kernel [14], whichcan be
viewed as a pooling method based on the spatial layout of images. This idea is recently
generalized in [15], which enlarges the spatial bins with feature space clustering. The
difference between this paper and previous image pooling methods is three-fold: (1)
[15] uses either hard VQ or sparse coding, which usually requires a large size of code-
book. This submission chooses only codebook size =16, usingthe weights of harmonic
average. (2) [15] only pools the coding weights or quantizedindices, while we pool the
feature vectors. (3) [15] uses either max pooling or averagepooling, while we compute
the weighted average.

Our work is also motivated by the studies in scene recognition. A number of studies
[16] [17] [14] have been carried out to classify natural scenes. Later studies explore vari-
ous applications of scene recognition. Russellet al.[18] employed scene representation
for object retrieval. Many research studies show empiricalsuccess in learning image
representation within similar scenes [19] [18]. Li and Fei-Fei [20] and later Marszalek
et al.[21] combine scene classifiers to benefit the task of object recognition or activ-
ity recognition. However, these approaches treat scene classifiers as an independent
component, and require a lot of scene labels to train the scene classifiers. Unlike their
method, this paper employs scenes as the pooling context, and only use scene features
without the requirement of scene labels.
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3 Scene Aligned Pooling

3.1 Model

A video is comprised of a sequence of frames. Following the extensive research in
image recognition, we can represent frames with various feature vectors, including color
histogram, LBP, texture, or SIFT histogram. Consider a video X = [x1, · · · , xTx],
where1 ≤ t ≤ Tx stands for the index of frames or key frames,xt corresponds to a
feature vector. Note that the number of frames is not consistent across different videos.

According to the representer theorem [22], the classifier will be represented by k-
ernel distancesK(X,Y ) between two videosX andY . SinceX andY may contain
different number of frames, traditional methods usually compute the kernel by averag-
ing the frame features

K(X,Y ) = κ(
1

ρx

Tx
∑

t=1

xt,
1

ρy

Ty
∑

t=1

yt), (1)

whereκ is a kernel function between two vectors,xt andyt are the frame level feature
vectors,ρx andρy are the normalization factors. For example, we can chooseρx =

||
∑Tx

t=1
xt||.

Eq (1) is widely used with different features. In recently years, many systems use
bag of words model for video recognition, which fundamentally is to average the his-
togram features across different frames. The limitation ofeq (1) is that it overlooks the
diversity of video contents. The learned classification model treats all the frames using
the same mechanism. If a video event contains non-uniformedbackgrounds, averaging
the frame features will inevitably blur the discriminant features and hence reduce the
recognition performance.

In this paper, we consider the scenario where a video containsK scenes. Letst be
the random variable for scene type of framet, where1 ≤ st ≤ K. Note pk(xt) =
P (st = k|xt) satisfies the constraint

∑

k p
k(xt) = 1. With pk(xt) we can redefine the

kernel distance between two videos

K(X,Y ) =

K
∑

k=1

κ(
1

ρkx

Tx
∑

t=1

pk(xt)xt,
1

ρky

Ty
∑

t=1

pk(yt)yt). (2)

To make the representation clearer, we introduce a new variable namedscene com-
ponentwhich combines the outputs of all video frames by

sk =
Tx
∑

t=1

pk(xt)xt, rk =

Ty
∑

t=1

pk(yt)yt. (3)

The kernel becomes

K(X,Y ) =
K
∑

k=1

κ(
1

||sk||
sk,

1

||rk||
rk). (4)
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Fig. 2. An practical viewpoint for SAP model.

This new representation aligned videos of different lengthbyK types of scenes, and we
call this methodScene Aligned Pooling(SAP). It is easy to see that the average pooling
is a special case of SAP withK = 1. The motivation of SAP is to employ multiple
scenes to represent the diversified video contents.

It is interesting to compare our formulation with Lazebniket al.’s Spatial Pyramid
Matching (SPM) [14]. In summary, SAP composes kernels over the domain of semantic
scenes, while Lazebnik’s SPM builds kernels over spatial grids. However, there are
significant differences between SPM and SAP. SAP works in a semantic scene domain
with no clear boundaries. SPM works in spatial domain where we can use grids to
explicitly separate one image into several parts. As a result, we do not explore the
pyramid structures in SAP due to the ambiguous boundaries invideo domain. Instead,
we choose concurrent vectorization to perform soft weighted assignment, while SPM is
based on hard assignments. Table 1 summarizes the differences between SAP and SPM.

Table 1. Comparing SAP with Spatial Pyramid Matching.

Subject Domain Grid Assignment
SAP video scene × soft

SPM[14] image spatial X hard

To provide more insights for the SAP model, we consider the linear classifier cor-
responding to (4). The linear classifier can be represented as

H(X) =

Tx
∑

t=1

K
∑

k=1

pk(xt)w
T
k xt =

K
∑

k=1

wT
k s

k (5)

It is easy to see that SAP leads to different models for different scene components and
combine the estimations from multiple scenes into the final model. Fig. 2 illustrates the
idea for SAP classifier.
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The biggest advantage of scene component representation isthat it makes the train-
ing easier. We can first concatenate all theK scene components as a long vector,

S = [s1, s2, · · · , sK ]

and learn a linear functionH(S) = wTS + b. In practice, we enforcel2normalization
before training byS = [ 1

||s1||2
s1, 1

||s2||2
s2, · · · , 1

||sK ||2
sK ]. In this way, we obtain the

long linear coefficients as a whole. Due to the recent advances in linear model training
[23], it has become pretty efficient to learn linear SVMs fromhigh dimensional large
scale data, so that training using scene component will not be difficult.

3.2 Implementation

To implement the computation of scene componentsk =
∑T

t=1
pk(xt)xt, in fact what

we need to do is to map each frame featurext into different scenes

xt → [p1txt, p
2

txt, · · · , p
K
t xt], (6)

with the constraint
∑

k p
k
t = 1. From eqs (3) and (6) we can easily see that our new

model is a pooling method. The unique characteristic of our method is that our pooling
weightspkt are based on scene semantics. That is why we call our method “scene aligned
pooling”. We will explain how to computepkt in the following.

Our method of modelingpkt is very easy to implement. Following the previous stud-
ies [16] [18] [24], we use GIST features to represent the scene. Some may argue that we
might use the same feature as frame feature vectorx to compute the scene, however, as
we shown later, the pooling weights are computed based on Euclidean distance, which
is not reliable for sparse histogram features like SIFT. As our scene modeling feature,
GIST is easy to compute and especially good at describing scenes [16]. Given all the
training data, we compute the GIST features and cluster theminto K centers using un-
supervised K-means. TheK center is represented asg1c , g

2

c , · · · , g
K
c . To compute the

pooling weightpk(xt), we extract the GIST feature vectorgt for every framet. The
pooling weight is based on the comparison of{gkc } andgt.

The naive way to compute the pooling weight is by vector quantization (VQ), which
forces all but onepk(xt) to be zero. However, VQ is well-known to be sensitive to
noises. Moreover, the hard assignment of VQ cannot capture the overlapping nature
of evolving video scenes and hence works poorly. VQ is designed to minimize the
quantization error. SupposeG is the set of GIST features, this paper considers a different
criteria by

C =
∑

g∈G

HA(g) =
∑

g∈G

(

1

K

K
∑

k=1

1

||g − gkc ||

)−1

,

whereHA denotes the harmonic average proposed by Zhanget al.[25]. To study the
minimization condition, we let ∂

∂mk

C2 = 0, which leads to

gkc =
∑

g∈G

wk
gg, w.t. wk

g ∝
1

||g − gkc ||
3
.
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Fig. 3. Differences between concurrent VQ and VQ. Left: an exemplarof d1t , ·, d
K
t (K = 6 in this

toy example). Right: the weights from vector quantization and concurrent vector quantization.

To be consistent to the contribution ofgt for harmonic average, we choose our pooling
weights as

dtk = ||gt − gkc ||

pkt =
1/(dkt )

3

∑K
l=1

1/(dlt)
3
, (7)

It is not difficult to see that our pooling weights satisfy theconstraint
∑

k p
k
t = 1.

Also our pooling weights relies on only GIST feature, with norelations with the event
label y. This means we will use the same pooling strategy independent with events.
We call the method in eq. (7) as concurrent VQ. Compared with traditional VQ, our
new pooling method penalizes the impact of large outliers, and assigns more weights
to the center with small distance. Fig. 3 employs a toy example to show the difference
between eq. (7) and traditional VQ. In this toy example, the sample is close to three
centers (k = 2, 5, 6), which can be viewed as a picture with three overlapping scenes.
Vector quantization will only pick upk = 5, while forcing all the weights to the other
centers as zero. In contrast, our new method selects all these three centers with big
weights, and hence can handle the scenario of overlapping scenes easily. Moreover, the
computation of eq (7) shows that the pooling weights in our method are based on the
Euclidian distancedkt . For a lot of sparse histogram feature (such as SIFT histogram),
their Euclidean distance is not reliable so that they are notas good choices as GIST.

In this paper, we choose an unsupervised way to model scenes.The reasons why
unsupervised learning is preferred are as follows: First, unsupervised learning can save
the extra labeling efforts. In our model, the goal is not to recognize the exact scene
category but to do pooling according to scene context, so supervised learning is not
necessary. Moreover, we will explain later that some video frames are associated with
overlapping scenes.

In this paper, we use two kinds ofκ as kernel function: linear kernel and intersection
kernel. When we use linear kernel, we employ liblinear [26] with its default parameter.
When we use intersection kernel, we use nonlinear SVM because there is no extra
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parameter to compute intersection kernel, and the intersection kernel can be computed
very efficiently.

One advantage of our scene aligned pooling method is that it can be combined
with various features. For example, many low level featureshave been designed in the
image recognition research to represent a single image. To combine these features with
scene aligned pooling, we can first identify the scene for each frame, and then aggregate
the frame-level representations according to these scenes. For space-time interest point
features [10], we can still use scene aligned pooling by aggregating the histogram for
short term clips. We can also generalize this approach to multi-modal features, if both
visual and audio features are synchronized.

Next we briefly discuss how to selectK, the number of scenes. There is no general
agreement on how many scenes exist, considering the ambiguity and great complexity
contained in real world. Fei-Fei and Perona [17] employed 13scenes in their exper-
iment, which is later enlarged to 15 scenes by Lazebniket al.[14]. The largest scene
collection is recently contributed by Xiaoet al.[24], which reported a recognition aver-
age precision of 34.5% for total 397 scene categories. [24] also conducts an interesting
user study, by inviting 7 participants to write down all scene categories they experienced
in more than two hundred hours. In this experiments, the participants report 52 different
scene categories. In our experiments, we test the performances with differentK. Fig. 4
compares results of pooling color histogram features on TRECVID 2011 dataset. We
will explain the dataset later in the experiment section. Wecan see that the performance
is similar withK = 16, 64, 128. In following section, we will useK = 16 for all the
experiments, for efficiency.

Fig. 4. Comparing the effects of different scene numbers on TRECVID2011 Dryrun dataset.

Algorithm 1 summarizes the workflow of our SAP algorithm.

4 Experiments

In recent years, there has been a proliferation of Web-shared videos, with approxi-
mately 48 hours of video uploaded on Youtube every minute, and over 700 billion
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Algorithm 1 Scene Aligned Pooling Algorithm.
Input: : A video with the set of frame feature vectors{xt}, 1 ≤ t ≤ T . A codebook withK

centers of GIST featuregkc , 1 ≤ k ≤ K.
Extract GIST descriptorgt for every framet.
Compute the pooling weightpk(xt) using eq. (7).
Compute scene componentsk using eq. (3).
Normalizesk and concatenate them into a long vectorS.
Train linear SVM or intersection-kernel SVM usingS.

videos watched in 2010. In our experiments, we select datasets most similar to re-
al world online videos: TRECVID Multimedia Event Detection(MED) 2011 corpus
(http://www.nist.gov/itl/iad/mig/med11.cfm) and the Brown Human Motion Recogni-
tion Database(http://serre-lab.clps.brown.edu/resources/HMDB/) (HMDB).

4.1 TRECVID MED Datasets

Trecvid MED 2011 is the largest fully annotated dataset specifically designed to model
complex video events. There are about 370 hours of clips in the Event-Kit and Trans-
parent Development (DEV-T) collections, and another 1,200hours of video clips in the
Opaque Development (DEV-O) collection. All these videos are free of editing, accom-
panied with non-professional recording and variety of illumination, camera motion, and
cluttered background. The video duration is similar to the real Youtube video, and the
average duration is about 2 to 3 minutes. The evaluation of MED is separated in two
test sets: the mid size dryrun evaluation and the large final evaluation set. In the dryrun
evaluation, 5 events are considered:attempting a board trick, feeding an animal, land-
ing a fish, wedding ceremony, working on a woodworking project, for which labels are
provided for both the training and testing sets. The final evaluation stage, on the oth-
er hand, considers 10 new events:birthday party, changing a vehicle tire, flash mob
gathering, getting a vehicle unstuck, grooming an animal, making a sandwich, parade,
parkour, repairing an appliance, andworking on a sewing project. Each event is a com-
bination of one or multiple people, scenes and actions. In the following we will discuss
the performance of SAP for various features in both dryrun and final evaluation stage.

In this paper, we employ average precision (AP) measure to evaluate the perfor-
mance on MED datasets. The reason why we choose average precision is because
it is a popular measure in computer vision field and more importantly it is easier to
compare the performance of video retrieval using average precision. Suppose the s-
cores are ranked in descending order, the AP of the ranked list is computed byAP =
∑n

i=1
p(i)△r(i),, wherep(i) is the precision ati-th position in the ranked list, andr(i)

is the recall ati-th position.△r(i) is the change in recall from itemi− 1 andi.
Since the dryrun evaluation is of a relatively small scale, we will try the effectiveness

of SAP for different features. We tried the following features: edge histogram (edge-
hist), color histogram (colorhist), SIFT histogram (SIFT). The details of implementing
these features are described in [27]. We compare three pooling methods: max pooling,
average pooling, and our SAP. From Table 2 we can see that max pooling works poor-
ly in video recognition. The average pooling works much better than max pooling for
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video recognition. In the following, we will use average pooling as the default baseline,
since it is the standard technique in the field. In our experiments, SAP works consis-
tently best among all the pooling methods for all the features. The improvement over
mean AP can be as significantly as(0.92 − 0.39)/0.39 = 135% for edge histogram,
131% for color histogram, 10% for local binary pattern (LBP), 18% for SIFT features.

Table 2. Comparison of different pooling methods on MED dryrun

Feature Pooling Average Precision
E1 E2 E3 E4 E5 Mean

edgehist Max .027 .024 .051 .024 .016 .029
Ave .045 .015 .079 .020 .036 .039
SAP .195 .028 .136 .057 .048 .092

colorhist Max .023 .024 .036 .078 .028 .038
Ave .105 .027 .062 .039 .024 .051
SAP .259 .030 .129 .128 .042 .118

LBP Max .022 .018 .038 .021 .020 .024
Ave .057 .030 .045 .033 .019 .037
SAP .067 .028 .046 .041 .020 .041

SIFT Max .042 .013 .191 .013 .019 .056
Ave .155 .039 .261 .311 .152 .184
SAP .166 .044 .252 .432 .190 .217

We also did a few comparison with other pooling techniques. the effects of our con-
current vector quantization and its degenerated case (hardscene assignment). As shown
in Table 3, our soft scene assignment strategy is much betterthan the hard assignment.
The only exception is in event 2 (feed an animal), for which neither VQ nor our method
does a good job due to the high irregularity and diversity in animal appearance and
feeding activities. We also try to use SIFT histogram to computepk(xt), however, the
pooling results are very poor since the Euclidian distance of sparse histogram features
are not reliable. Another experiment we consider is whetherdirectly combining scene
feature and SIFT can improve the result. We extract both GISTand SIFT features for
each video frame, and use average pooling to train the classifier. As shown in Table 4,
GIST feature is not a good representation for event recognition, so that it bears very low
recognition performance. Since GIST feature performs muchworse than SIFT, it makes
the naive fusion result worse than that of using SIFT only. However, our SAP does not
fuse the two features directly but to use scene information as a context to guide the
pooling process. As a result, SAP is a much better choice thanthe naive fusion strategy.

After we finish the dryrun evaluation, we also apply the proposed method on the
final evaluation dataset. Since TRECVID has not publicly released the labels for the
DEV-O set, we use an internal test set split. The internal test consists of 40 positive
video clips per event (400 videos in total) and 5,231 negative videos. The remaining
7,252 videos are used for training. From the dryrun dataset we know that SIFT outper-
forms many other low-level features so we are especially interested in the performance
of average pooling and scene aligned pooling using SIFT feature. As shown in Fig. 5,
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Table 3. Comparing average precision of concurrent vector quantization with vector quantization
(soft vs. hard scene assignment) using SIFT feature.

E1 E2 E3 E4 E5 Mean
Our Scene aligned pooling .166 .044 .252 .432 .190 .217
Pooling using VQ on GIST .159 .055 .221, .263 .071 .154

Pooling using VQ on SIFT histogram.089 .033 0.091 .084 .051 .077

Table 4. Comparison with naive fusion of scene feature with SIFT.

Feature Average Precision
E1 E2 E3 E4 E5

GIST .074 .017 .030 .033 .018
SIFT .155 .039 .261 .311 .152

GIST + SIFT.150 .040 .211 .256 .143
SAP + SIFT .166 .044 .252 .432 .190

SAP can significantly improve the average precision in all the ten events. By using SAP,
the mean of ap scores can be improved from 0.183 to 0.212.

Fig. 5. Results of nonlinear SVM using SAP.

Finally, we consider a special feature called semantic model vectors. Our seman-
tic model vector is an intermediate level semantic representation, by evaluating 780
concept classifiers for each frames. The 780 classifiers are trained separately using t-
housands of labeled web photos. The semantic model vector iscomplementary to low
level features and can be useful in many retrieval and annotation tasks [28] [29]. Our
SAP can also significantly improve the semantic model vector. As shown in Fig. 6, SAP
improves the performance in 9 of 10 events.

After obtaining the results using different features, we can do a late fusion to get
the final classification model. This paper does not focus on fusion techniques but our
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Fig. 6. Results of using SAP for semantic features

simple fusion model can arrive at 0.50 average precision in the dryrun evaluation and
0.45 in the final evaluation (internal test data split).

4.2 HMDB dataset

Very recently, Kuehneet al.[30] describe an effort of designing a large video database
containing 51 distinct action categories, named the Human Motion DataBase (HMDB),
which tries to better capture the richness and complexity ofhuman actions. They argued
that the UCF Sports dataset [3] is designed for specific titles on YouTube, in which
the actions are usually unambiguous and highly distinguishable from shape cues alone
(e.g., the raw positions of the joints or the silhouette extracted from single frames).
They collected a new motion dataset, which contains 51 distinct action categories, with
at least 101 clips for each category. The final dataset includes a total of 6,766 video
clips extracted from a wide range of sources. Each clip was validated by at least two
human observers to ensure consistency. Kuehneet al.[30] also studied the biological
motion perception and recognition technique [31] based on this new dataset.

The HMDB dataset is very challenging. From the reports in [30], the the state-of-
the-art’s performance is about 23%. It is very interesting to apply our SAP model to this
challenging dataset. We use STIP features [10] provided in the dataset webpage, and ex-
tract scene features for video frames at every 0.5 seconds. Since the STIP features are
only sparsely distributed among video frames, to improve performance we condense the
STIP features from nearby half-second video frames when computing on specific target
keyframe. The STIP histogram are aggregated together for every 0.5-second clips, and
then pooled using SAP model. We compare the performance of SAP with those of STIP
histogram, and Kuehne’s biological motion system C2. Table5 compares the recogni-
tion accuracy of our SAP with STIP histogram and C2 models. Our model significantly
improve the best performance from 23.18% to 27.84%, as a relative 20% increase of
accuracy.



Scene Aligned Pooling for Complex Video Recognition 13

Table 5. Comparison with the results on HMDB

Model Accuracy
STIP histogram21.96%

C2 23.18%
SAP + STIP 27.84%

5 Conclusion and Future Work

In this paper, we have discussed a new pooling method named scene aligned pooling
(SAP). We show that SAP can consistently improve different features (color histogram,
SIFT, semantic model vectors) for complex video classification. SAP also significantly
improves the state-of-the-art performance on HMDB datasets.

Our future work will focus on generalizing the classification model to more video
recognition and annotation tasks. More results will be available onhttp://researcher.
ibm.com/person/us-liangliang.cao.
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