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Abstract
The IBM Research/Columbia team investigated a novel
range of low-level and high-level features and their com-
bination for the TRECVID Multimedia Event Detection
(MED) task. We submitted four runs exploring various
methods of extraction, modeling and fusing of low-level
features and hundreds of high-level semantic concepts.
Our Run 1 developed event detection models utilizing
Support Vector Machines (SVMs) trained from a large
number of low-level features and was interesting in estab-
lishing the baseline performance for visual features from
static video frames. Run 2 trained SVMs from classifi-
cation scores generated by 780 visual, 113 action and 56
audio high-level semantic classifiers and explored various
temporal aggregation techniques. Run 2 was interesting
in assessing performance based on different kinds of high-
level semantic infomation. Run 3 fused the low- and high-
level feature information and was interesting in provid-
ing insight into the complementarity of this information
for detecting events. Run 4 fused all of these methods
and explored a novel Scene Alignment Model (SAM) al-
gorithm that utilized temporal information discretized by
scene changes in the video.

1 Introduction
The exploding volumes of image and video content is cre-
ating tremendous opportunities for exploiting this infor-
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mation for insights and information. However, the uncon-
strained nature of “video in the wild” makes it very chal-
lenging for automated computer-based analysis. Further-
more, the most interesting content in this video is often
complex in nature reflecting a diversity of human behav-
iors, scenes, activities and events. And the research com-
munity is only beginning to tackle the problem of auto-
matically recognizing, representing and searching for this
kind of event information in unconstrained video.

The TRECVID Multimedia Event Detection (MED)
task was designed to evaluate how well systems can
detect events in “video in the wild.” The IBM Re-
search/Columbia team addressed this challenge by build-
ing on what we were good at from our prior work on
video content classification and retrieval. Notable from
our previous efforts, we have built powerful capabilities
for analysis and semantic modeling of visual content as
part of the IBM Multimedia Analysis and Retrieval Sys-
tem (IMARS). We used this as a foundation in terms of
providing a starting set of visual feature descriptors and
semantic classifiers. Given the challenge of detecting
events, which are temporal and multi-modal in nature, we
further developed additional spatial-temporal feature de-
scriptors and dynamic motion-based and audio-semantic
classifiers. We also explored numerous techniques for
fusing this information over multiple scenes and segments
of video in order to accurately detect events.

Overall, we submitted four runs for the MED task
that explored the following, respectively, (1) low-level
signal features, (2) high-level semantic features, (3)
two types of fusion of low- and high-level features,
(4) alignment aligning models with scenes. We ex-
plored several techniques for normalizing and fus-



ing this information as well as incorporating tempo-
ral aspects for predicting events. We summarize the
four runs as well as their key characteristics as fol-
lows, note that all of our run names were prefixed by
IBM MED11 MED11TEST MEDFull AutoEAG :

1. Run 1: c-CU-Fusion-Regression 1
Low-level signal features:
Sparse SIFT + Dense SIFT + Color SIFT + STIP +
MFCC features
SVM with histogram intersection + Chi2 kernels
Fusion weights based on ridge regression

2. Run 2: c-Fusion-All-optimized15 1
High-level semantic features:
780 visual + 113 action + 56 audio semantic features
10 feature normalization and 2 feature aggregation
methods
SVM with RBF, Chi2, and histogram intersection
kernels
Greedy ensemble fusion with forward model selec-
tion

3. Run 3: p-Fusion-All-Baseline-AdHoc 1
Weighted Average fusion of Run 1a and Run 2
Run 1a like Run 1 but using manually-specified
weights
Weights of Run 1a and Run 2 proportional to their
training set MAP scores

4. Run 4: c-Semantic-Fusion-Baseline 1
Linear SVM-based fusion of 14 component runs
14 components runs (8 low-level features + 5 seman-
tic features + Scene Aligned Models)
Weights learned with linear SVM

Overall, run 3 was our best-performing submission, bene-
fitting from the fusion of high-level semantic features with
the lower-level signal features they were based upon in ac-
cordance with MAP scores on our training data.

2 System

2.1 Overview
As described above, our system performed extraction of
low- and high-level features and investigated multiple

Figure 1: IBM/Columbia mutlimedia event detection sys-
tem.

techniques for fusing this information to detect events.
The overall system and process flow is illsutrated in Fig-
ure 1. As depicted, one process flow extracts and mod-
els low-level features using various scene descriptors (vi-
sual), SIFT/GIST (local visual features), MFCCs (audio),
and STIP features (spatio-temporal). Similarly, a high-
level feature process flow extracts and models visual, au-
dio and action semantics. These provide the basis for the
information used to detect events in the video. Subse-
quent modeling from this information provides prediction
of the events. We explored various techniques for comb-
ing these predictions in late fusion to make the overal de-
cision about event detection.

2.2 Low-level Feature Extraction
2.2.1 Video processing

Our system builds up semantic model vectors for videos
from frame-level features. The first step for us is to de-
code videos into frames and select those which will be
used in subsequent processes.

In the past we have experimented with using uniformly
sampled frames along with keyframes (selected based
on inter-frame color histogram differences) however this
year we used solely uniform sampling. We decode the
video clip, and uniformly save one frame every two sec-
onds. These frames are then used to extract static vi-
sual descriptors: local (SIFT), GIST, global and Semantic
Model Vectors. We chose 0.5 fps as a sampling rate based



on the data set size in order to yield a number of frames
that we could process in a reasonable time. The STIP
(Sec 2.2.6) features were extracted at the full video frame
rate, up to 30fps.

2.2.2 Static Features

We extract over 100 types of static image features from
each of the sampled frames. These features capture a
wide range of image information including color, texture,
edge, local appearances and scene characteristics. We
build upon these features to extract the Semantic Model
Vectors (Sec 2.3.2).

2.2.3 Local Descriptors

Local descriptors are extracted as SIFT [11] features
with Harris Laplace interest point detection for the sam-
pled frames. Each keypoint is described with a 128-
dimensional vector containing oriented gradients. We
obtain a “visual keyword” dictionary of size 1000 (by
running K-means clustering on a random sample of ap-
proximately 300K Interest point features, we then repre-
sent each frame with a histogram of visual words. For
keyframes we used soft assignment following Van Gemert
et al. [16] using σ = 90.
In our combination runs we also included local features
computed by Columbia University, which extracted SIFT
features from interest points detected with both DoG and
Hessian detectors at the sampled frames, employed two
500-d codebooks, and adopted spatial pyramid matching
for the full frame + 4 quadrants, obtaining a 5000-D total
feature length.

2.2.4 GIST

The GIST descriptor [13] describes the dominant spatial
structure of a scene in a low dimensional representation,
estimated using spectral and coarsely localized informa-
tion. We extract a 512 dimensional representation by
dividing the image into a 4x4 grid, we also extract his-
tograms of the outputs of steerable filter banks on 8 orien-
tations and 4 scales.

2.2.5 Global Descriptors

In addition to the SIFT bag-of-words and GIST descrip-
tors, we extracted 13 different visual descriptors at 8 gran-
ularities and spatial divisions. SVMs are trained on each
feature and subsequently linearly combined in an ensem-
ble classifier. We include a summary of the main descrip-
tors and granularities. Details on features and ensemble
classifier training can be found in our prior report [1].

• Color Histogram: global color distribution repre-
sented as a 166-dimensional histogram in HSV color
space.

• Color Correlogram: global color and structure rep-
resented as a 166-dimensional single-banded auto-
correlogram in HSV space using 8 radii depths.

• Color Moments: localized color extracted from a
5x5 grid and represented by the first 3 moments for
each grid region in Lab color space as a normalized
225-dimensional vector.

• Wavelet Texture: localized texture extracted from
a 3x3 grid and represented by the normalized 108-
dimensional vector of the normalized variances in 12
Haar wavelet sub-bands for each grid region.

• Edge Histogram: global edge histograms with 8
edge direction bins and 8 edge magnitude bins, based
on a Sobel filter (64-dimensional).

Having a large and diverse set of visual descriptors is im-
portant for capturing different semantics and dynamics in
the scene, as so far no single descriptor can dominate
across a large vocabulary of visual concepts and events,
and using a collection like this has shown robust perfor-
mance [1, 15]. The spatial granularities include global,
center, cross, grid, horizontal parts, horizontal center, ver-
tical parts and vertical center – each of which is a fixed
division of the image frame into square blocks (number-
ing from 1 up to 25), and then concatenating the descriptor
vectors from each block. Such spatial divisions has been
repeatedly shown robust performance in image/video re-
trieval benchmarks such as TRECVID [14].

2.2.6 Spatio-Temporal Features

To capture the spatiotemporal characteristics of the video
events at the feature level, we extract both histogram of



oriented gradient and histogram of flow features around
the space time interest point (STIP) [8]. The space time
interest point is an extension of the Harris interest point
detector in 2D images to the spatiotemporal 3D volume
video data. It is extracted from a set of multiple combi-
nation of spatial and temporal scales. Once an space time
interest point is detected, a 3D volume is formed around
it based on the corresponding spatial and temporal scales.
The 3D volume is partitioned into a grid of 3× 3× 2 spa-
tiotemporal blocks in x, y, and t axis, respectively. For
each block, a 4 bin histogram of gradient and a 5 bin of
histogram of flow are extracted. They are aggregated over
all blocks to form a 3 × 3 × 2 × 4 = 72 dimensional
histogram of gradient feature, and a 3 × 3 × 2 × 5 = 90
dimensional histogram of flow feature. These two feature
vectors are concatenated to form a 162 dimensional fea-
ture vector for each STIP we detected from the video to
form a bag-of-feature representation for each video clip.

2.2.7 Audio Features

For audio features, we conducted preliminary experi-
ments using conventional MFCC features as well more
experimental features based on extracting transient sound
events (short duration energy concentrations) [2], and
modeling the perceptually-salient textural aspects of the
sound (based on recent work in the resynthesis of tex-
tures) [3]. These experiments, however, showed that
MFCC remained the best single feature to use, so our
current audio semantic system uses only these features.
Specifically, we calculate 20 dimensional MFCCs over
32 ms windows with 16 ms hop. We calculate deltas
and double-deltas over 10-frame windows for a 60 di-
mensional feature vector. We calculate the mean and
full 60 × 60 covariance matrix over each video to give
an 1890-dimensional representation of the video. We ex-
perimented with various subsets of these dimensions, and
found that using only the 20 direct feature means and the
210 unique values of the covariance of the direct features
performed nearly as well as larger representations, but at
much less computational cost. The semantic results below
are based on these 230-dimensional feature vectors. Each
feature dimension was normalized to have zero mean and
unit variance over the entire dataset before any further
processing; these normalization constants were recorded
and applied to the test data as well.

Figure 2: Visual taxonomy: distribution of categries and
images across top facets

2.3 Semantic Modeling
While the traditional methods of modeling video events
has been to train models directly from low level features,
we believe event detection may be made more robust, sim-
pler, and more space efficient, if the videos were described
by their content in terms of higher level semantics. The
bridge between low level features and high level events is
referred to as the “Semantic Gap”. We propose a tech-
nique that fills this gap with an additional semantic layer,
connecting low level features to video events through a
hierarchy of the visual, audio, and action semantic con-
tent of the video. The multimedia ontological modeling
system developed for MED11 event detection consist of
three taxonomies: image/video taxonomy, audio taxon-
omy and dynamic action taxonomy. Both audio and dy-
namic action taxonomies include 56 and 134 categories
respectively. Their specific applications and performance
will be discussed separately in subsequent sections, while
in this section we will focus on the discussions of visual
taxonomy.

2.3.1 Semantic Taxonomy

For the MED11 event detection task, our team utilized an
improved taxonomy of visual concepts/categories based
on the IBM Multimedia Analysis and Retrieval Sys-
tem (IMARS) taxonomy [4]. About 400 new categories
has been structured into the IMARS taxonomy including
many event related (directly or indirectly) concepts (e.g.
appliance, fishing gear, toolbox, etc.). Various number
of image/video-frame examples are associated with each



Figure 3: Semantic modeling performance: validation
scores for 780 categories

leaf node (concept) for training. The current version of
the taxonomy has total 1000 categories and 500K posi-
tive training examples. After filtering out categories with
small number of training examples, 780 categories (se-
mantic features) were used in the runs for MED11TEST
submission.

The visual taxonomy has been designed and built with
four conceptual constructs: entity (node), facet (node), is-
a (link) and facet-of (link). Adopting the facet node type
and “facet-of” link type allows greater flexibility in mod-
eling mutually non-exclusive concepts, which represent
different view perspective of a same entity (e.g. people -
number of people, age of people). More specifically, sib-
ling concepts (nodes) in the taxonomy tree that are not
mutually exclusive are denoted as facet nodes, while mu-
tually exclusive sibling concepts as entity nodes. A rela-
tionship of ”facet-of” links two facet nodes or an entity
node to a facet node, while “is-a” relationship is used to
link two entity nodes or a facet node to an entity node.
By inferencing the structure and semantic relationships,
the taxonomy system can perform efficient labeling of
training images by associating images with the each entity
node in the hierarchy, and allocates negative training ex-
amples accordingly with the recognition of exclusiveness
of entity nodes and non-exclusiveness of facet nodes.

Currently we have seven top facets (setting, domain,
object, people, activity, type, and color). Figure 3 shows
the top level composition of the visual taxonomy in terms
of top facets and the distributions of categories and image
examples among them. Various experiments were per-
formed to examine the performance characteristics of the

Figure 4: Facets performance: average precision (AP)
scores for 780 categories

visual taxonomy for concept modeling. Figure 3 plots the
three validation score distributions for the 780 categories
in the taxonomy. As it shows, over 64% of them received
0.6 or higher average precision scores, and about 75% re-
ceived 0.5 or better scores.

Our experiments show that the modeling performance
varies among the facets and categories, which allow us to
identify the weak spots in our taxonomy. We are currently
conducting a series of evaluation and revision to further
improve the visual taxonomy. A parallel effort is being
made to develop a semiautomatic tool to assist and reduce
the cycle in the development of the taxonomy.

2.3.2 Visual Semantic Modeling

Once features have been extracted from the taxonomy and
organized into relevant positive and negative categories
for each concept, training data is split into two partitions:
Learning and Validation. The proportions of this split are
typically 67% and 33%, respectively. Visual Semantic
Modeling then occurs in two phases, and is based on the
Robust Subspace Bagging (RB-SBag) method [17]. In
the first phase, models are trained for multiple “bags” of
data in the Learning partition. A “bag” is a sub-sampling
of features and training data for a given semantic concept
(image granularity, feature type, randomly selected subset
of positive samples, and randomly selected subset nega-
tive samples). For each bag, a single SVM model, referred
to as a “Unit Model,” is generated. In training, the best
performing SVM model parameters out of 29 for each is



selected. In summary, for each concept, 7 image granular-
ities were chosen, 18 image features were extracted, and 5
bags were sampled. The list of granularities is as follows:
global, center, cross, horizontal center, horizontal parts,
layout, and vertical center. The list of features extracted
is as follows described in Section 2.2.2.

Once all the unit models for a concept are trained,
they are combined in the second phase to form a “Fusion
Model.” When the fusion model is used to score images,
the score is determined by a weighted sum of the outputs
of all the unit models that compose the fusion model. The
weights are determined by the Average Precision (AP)
scores of each unit model evaluated against the Validation
partition of the training data.

2.3.3 Audio Semantic Modeling

We developed a set of 55 semantic audio models based on
previously-available manually labeled video. 25 classi-
fiers came from an earlier project on classifying consumer
video that involved labeling 1873 unedited consumer
videos downloaded from YouTube with 25 consumer-
relevant labels such as “Crowd”, “Animal”, “Museum”
etc. [9] 20 more classifiers came from a similar but larger
dataset of 9413 videos released last year as the Columbia
Consumer Video (CCV) dataset [5], and included some
overlap in labels with the first 25, although some concepts
were eliminated, and others were expanded (e.g., “Sports”
became “Soccer”, “Basketball”, and “Baseball”). The fi-
nal 10 concepts were based on an in-house labeling per-
formed as part of MED2010 in which 6626 10-second
segments cut from the MED2010 development data were
annotated with 10 audio-related labels including “outdoor
- rural”, “outdoor - urban”, “speech”, and “cheer”. Each
concept defined a one-versus-all Support Vector Machine
classifier based on a Gaussian kernel; the C and γ pa-
rameters were chosen by grid search over a portion of the
training data.

The within-set average precision of all classifiers was
tested for every label within that set on a 5-way split (40%
used for train, 20% for tuning, and 40% for test, with each
item appearing in the test set for two folds). The results
are shown in figure 5. Mean APs vary from 0.3 to 0.48,
although the results are hard to compare since they depend
on the difficulty of the particular labels and the priors in
the test set.

YT 1873: Average Precision (mean=0.399)
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Figure 5: Average Precision results for each of the 3 sub-
groups of semantic audio classifiers.

Each of the 55 classifiers was run on each MED2011
video soundtrack to create a 55-dimensional vector com-
posed of the distance-to-margin from each classifier.
These semantic audio feature vectors were then the ba-
sis of further classification. Figure 6 shows the Aver-
age Precision of SVM classifiers trained for each of the
15 MED2011 events. (These results are again on a five-
fold cross-validation, using only the 2062 event example
videos as “background”). The plot also compares against
similar classifiers trained directly on raw MFCC sum-
mary statistics instead of the semantic classifier vectors.
In this case, there is little or no gain obtained by intro-
ducing the semantic audio classifier layer. Notice, how-
ever, that for some events such as E004 Wedding Cere-
mony, E006 Birthday Party, and E012 Parade, the clas-
sifiers based on semantic features perform substantially
better than their raw MFCC counterparts. These partic-
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Figure 6: Average Precision results for classifiers trained
and tested the MED2011 event examples, comparing clas-
sifiers based on the 55 semantic audio classifier outputs
and those based directly on the raw MFCC summary
statistics.

ular categories are aligned closely with labels present in
the underlying classifier set. One conclusion is that, given
a larger and more comprehensive set of semantic audio
classifiers, such gains could be obtained for a wider range
of events.

2.3.4 Dynamic Action Modeling

The video events we investigate are generally composed
of a combination of people and objects interacting in a
scene through actions. In this sense, the dynamic infor-
mation is as important as the audio and static visual one,
and in certain cases represents the major cue to distin-
guish among events. For example the events Parade and
Flash mob gathering present quite similar visual appear-
ance (people on a street), but the movements of the group
of people is what allows to distinguish between the two.

Naturally low-level motion descriptors can encompass
such information to a certain degree, however also in the
dynamic domain there is a need to fill the semantic gap.
To this end we adopt the Dynamic Action Model Vector,
an intermediate semantic representation which is similar
is spirit to the Visual Semantic Modeling, but explores the
complementary context of action semantics.

The generation process for the Dynamic Action Model

Vector is illustrated in Figure 7. Starting from a video clip,
we extract histogram of gradient (HOG) and histogram of
flow (HOF) features around the STIP [8] spatio-temporal
interest points, and concatenate them into a single 162
dimensional representation (72-d HOG plus 90-d HOG).
Following the popular bag of words framework, we ex-
tract a histogram of codewords occurrences for each video
clip, using a 5000-words codebook obtained through K-
means clustering from the MED11 development videos.
In order to build such histograms, we adopt the popular
and effective soft assignment strategy proposed by Jiang
et al. [6]. We build action models by training one versus
all classifiers for the action categories found in three state
of the art datasets:

• UCF501: an extension of the UCF Youtube [10]
dataset, consisting of 6,681 videos obtained from
Youtube and personal videos, representing 50 ac-
tions mainly related to sports

• HMDB2 [7]: a collection of 6,766 videos from vari-
ous internet sources, with 51 actions mostly focusing
on human movements (i.e. kiss, hug, situp, drink)

• Hollywood23 [12]: 12 actions from 1,707 videos
clips taken from movies

Action Models are trained for each dataset separately,
and each model is an ensemble SVM with RBF kernel.
The learning procedure follows that of the Visual Seman-
tic Models (bagging, parameter selection through cross-
validation, forward model selection on a held-out set),
with the objective of maximizing performance in terms
of Average Precision. In Table 1 are reported the train-
ing Mean Average Precision rates across the action cate-
gories on the three sets. Consistently with the results of
the literature, the models trained on the HMDB dataset
are significantly less accurate then the ones representing
the UCF50 classes.

Finally, we train Event classifiers for the MED11 cat-
egories by learning an SVM with RBF kernel on top of
the Dynamic Action Model Vectors(DAMV), which re-
sult from the concatenation of the action models classi-
fiers responses to the MED11 video clips.

1http://server.cs.ucf.edu/∼vision/data.html
2http://serre-lab.clps.brown.edu/resources/HMDB/index.htm
3http://www.irisa.fr/vista/actions/hollywood2



Figure 7: Dynamic Action Model Vector generation
pipeline.

Dataset #Actions #Vids. Secs. MAP
UCF50 50 133 7.44 0.651
HMDB 51 133 2.60 0.311
Hollywood2 12 156 14.8 0.389

Table 1: Statistics of the three action datasets used to train
the Dynamic Action Models: number of action classes,
average number of clips per class, average clip duration
(in seconds) and model training Mean Average Precision.

In order to estimate the impact of the number of ac-
tion classes applied to the Event detection domain, we
tested the contribution of different sets of action models
in the following framework. Performance was evaluated
in terms of Mean Average Precision (MAP) on the 15
events of the MED11 data, on a training/test split from
the Event Kit and DEV-T sets with 7K videos used for
training and 5K videos for testing. We registered a signif-
icant improvement from using only the 50 Models coming
from the UCF50 dataset (MAP = 0.074) to employing the
full set of 113 models (MAP = 0.108), which is the con-
figuration adopted in the official submitted runs. Details
of the comparison for each Event category are reported in
Figure 8. Event modeling clearly favors a larger number
of actions in the model vector, therefore suggesting to in-
crease the number of action classes to model. Which or
how many still remains an open question that we intend
to investigate in the next iterations of the program.

Figure 8: MED11 Event modeling on a train/test split
on 12K video clips from the Event Kit and DEV-T sets.
Comparison between Dynamic Action Model Vectors us-
ing 50 or 113 action models.
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Figure 9: Multimodal models via early fusion (AdaBoost) and
late fusion (Sparse optimization).

2.4 Event Modeling

2.4.1 Multi-modal Models

Detecting complex multimedia events is typically beyond
the discrimination ability of single modality (e.g., visual,
audio, or spatial-temporal feature). Therefore, it moti-
vates the research on multi-modality fusion. Generally,
fusion methods can be categorized according to the stage
that it takes place in the event detection pipeline, includ-
ing both early fusion and late fusion. The input of late
fusion is the decision scores of each pre-trained compo-
nents.

As shown in Figure 9, we attack the fusion problem by



Fusion Runs Components Performance Sparsity
AdaBoost 6 .3850 / .2781 0.0%
Uniform 6 .3743 / .2676 0.0%
Ad Hoc 6 .3847 / .2719 0.0%
Ridge Reg. 9 .4032 / .2786 0.0%
Ridge Reg. 15 .4112 / .2838 0.0%
Ridge Reg. 24 .4159 / .2799 0.0%
Lasso 9 .4025 / .2789 43.7%
Lasso 15 .4132 / .2833 48.4%
Lasso 24 .4113 / .2792 55.8%
Tree Lasso 24 .4038 / .2781 62.5%

Table 2: Late fusion performances on the IBM internal test set
and the final evaluation set (column three). The performances
are reported in terms of mean-average-precision (MAP). In the
fourth column, “Sparsity” denotes the percentage of zero coeffi-
cients. See text for detailed explanation.

1) compact early-stage feature fusion via AdaBoost, and
2) late-stage multi-modal fusion via sparse models.

Most of traditional early fusion methods suffer from the
explosion of feature dimension when concatenating het-
erogeneous sources. A significant level of redundancy can
be discovered and removed by exploiting machine learn-
ing techniques. We perform such a study via AdaBoost. It
was used to sequentially choose a subset of most discrim-
inative feature dimensions from the concatenated feature
pool. Our preliminary study using the internal evalua-
tion confirms the promise of such early fusion approach
- a compact fused feature (1500 dimensions) still outper-
forms the original concatenated feature of a much higher
dimension (14,000 D).

We also systematically investigate different strategies
of late fusion. Table 2 presents the comparison between
six strategies, where “AdaBoost” and “Uniform” denote
using fusion weights learnt during the AdaBoost pro-
cedure and uniform weights across components respec-
tively. Our evaluation over the NIST evaluation data set
resulted in the following observations: 1) more features
cannot guarantee better performance due to the risk of
over-fitting. An example is that ridge regression with
15 components outruns that with 24 components in the
evaluation set. It is found that less-reliable components
(those using LBP, P-HOG and GIST features) possibly
hurt the accuracy after fusion, and 2) we incorporate

Concept Mean AP for E001-E015
Parade 0.0419
Protest 0.0406

Team Photo 0.0404
Big Group 0.0403
Bicycling 0.0375

Crowd 0.0373

Table 3: Top 6 relevant static visual semantics models to
the 15 MED’11 events.

sparse models that encourages a large proportion of com-
ponents to have zero coefficients. Our empirical study
confirmed both the robustness and compactness of the
sparse method. Note the ridge regression method with
15 components is the fusion method used in our official
submission Run 1.

2.4.2 Semantic Feature Selection

Our semantic model features are extracted from 780 static
visual semantic models, such as parade, protest, team
photo, big group (8 or more), bicycling, and performance,
etc.; 113 dynamic action semantic models such as basket-
ball, benchpress, fencing, golfswing, etc.; and 56 audio
semantic models such as rural, urban, noisy, speech, mu-
sic, etc.. A natural question to ask is how many semantic
models we will need to effectively model the events?

Our observation is that the different semantic models
are not equally relevant to the visual events of interest. Ta-
ble 3 shows some of the top relevant static visual seman-
tics in descendant order with respect to the the 15 target
events in MED’11. In answering this question, we com-
bined the top k, e.g., k = 5, 10, 15, 20, . . . , 780, static vi-
sual semantics model vectors with all dynamic action and
audio semantic, and we conducted event modeling with
all the different combined sets. The evaluation results on
our internal IBM Test datasets are shown in Figure 10.
As we can clearly observe, the event recognition accuracy
saturates at around top 200 static visual semantic mod-
els. This implies a big potential efficiency improvement
in testing time as we do not actually need to run the other
580 static visual semantic models.



Figure 10: Average precision for event recognition with
different number of static visual semantic model vectors.

2.4.3 Event Models

When used for event modeling, different features, either
low level features such SIFT, STIP, or MFCC, or mid-
level features such as those semantic model vector fea-
tures, may need to use different modeling techniques. In
our experiments, we have examined different techniques
for event modeling. In particular, we tested linear regres-
sion and support vector machines with different kernel
functions for event modeling. The reason we tested linear
regression for event modeling is to understand how much
gain we can obtain through non-linear modeling such as
kernel SVMs. The specific kernel functions we examined
include RBF kernel, Chi-square kernel, and histogram in-
tersection kernel. As a reference, linear SVM is also stud-
ied. Figure 11 presented the mean average precision of
event modeling with different features (as well as the fu-
sion results) on the internal IBM test data set. Our exper-
iments reveal that most of the features work the best with
Chi-square kernels in the end for event modeling.

2.4.4 Feature Aggregation

A video always conveys rich information including both
temporal and spatial features. How to capture such rich
information is a challenging task. A computationally effi-
cient approach is to employ “bag-of-words” model, which

Figure 11: Mean average precision of event modeling
with different features with different kernel SVMs

quantizes local patches into histogram indices, and con-
catenate all the indices into a histogram representation.
The limitation of bag-of-words model is two-fold: First,
a lot of information is lost during the quantization pro-
cess. Second, both the spatial and temporal information
are neglected in the histogram representation. Another
approach is to extract features for each frame, and then
compute the average or maximum vector of these frame-
level features. The mean or maximum vector, however,
may not work well when there is large diversity in the
video contents.

Our work is partially motivated by the recent process in
image classification field. Lazebnik et al. developed spa-
tial pyramid matching model to capture the spatial layout
of image features. It is attempting to generalize the pyra-
mid matching idea to the temporal domain. However, af-
ter a close examination of video features, we can easily
see the flaw of temporal matching. The objects in image
often appear in organized locations, e.g., subjects of inter-
ests are usually in the middle of a photograph, faces are
usually up-right, heaven and cloud are usually in the up-
per position, and so on. On the contrary, there is no such
regularity in temporal domain. A video event can either
happen at the beginning part of the video or the second
half of the video, or it can last throughout the whole se-
quence. A video can be of different length and connecting
multiple sub-events. A temporal pyramid does not work



for video classification task.
Our idea is also motivated by the simple observation

that a video clip is composed with shots of different
scenes. Here a “scene” means the environmental descrip-
tion of video frames, including not only the simplest in-
door and outdoor categories, but also characteristic envi-
ronments which differ significantly with each other. Psy-
chology studies show that human vision can easily distin-
guish different scenes and the results of scene recognition
can be helpful for image understanding. We will discuss
how to generalize these psychological theories to practical
computer vision algorithms.

Our new model aims to aggregate frame-level repre-
sentation into video-level representation according to dif-
ferent scenes. Intuitively, scene aligned model includes
two key components: First, a complex video clip could
be partitioned into simpler groups, and each group shares
homogeneous scene appearances. Second, the task of
video classification is carried out subject to the aligned
scenes. The fundamental assumption is to reduce diver-
sity of environments by aligning video frames with dif-
ferent scenes, so that we name this new model as Scene
Aligned Model (SAM).

2.4.5 Fusion Modeling

Since different event models are modeling the events from
different perspective. Therefore, fusing the different event
models together would usually boost the recognition ac-
curacy (i.e., late fusion). In our system, we have examined
different options for fusing the different event models. We
discuss each of them below:

1. Weighted Average: We combine the predication
scores from different event models by weighted av-
erage. The weights could be uniform, manually
tweaked, or proportional to their individual predic-
tion average precision on the target events.

2. Greedy Ensemble Fusion: We greedily obtain the
best k fusing component (fused with average) by ex-
amine the best event model to be added to the best
k − 1 fusing models obtained before. Obviously, we
will start with the best performed event model at the
beginning.

3. AdaBoost: We run AdaBoost to additively select the
fusing event models and to simultaneously learn the
weights of each fusing component.

4. Linear regression: We use linear regression to learn
the weights of the different fusing event models.
Additional regularization terms such as L2 penalty
(ridge regression) and L1 penalty (Lasso regression.

5. Linear SVM: We simply learn a linear SVM to ob-
tain the weights for each fusing event model for pre-
dicting the target event.

We choose the fusion method based on the experimental
results in our internal IBM Test set, which can be regarded
as the validation dataset for the DEV-O set of the MED’11
task. The last two bar chart in Figure 11 presented some
of the fusion results on the internal IBM Test set.

2.5 Score Calibration
To facilitate the selection of the optimal threshold for
event recognition, the prediction scores from the event
models need to be normalized. In our experiments, we
normalize the prediction scores from the event models us-
ing a Sigmoid function, i.e.,

p(s) =
1

1 + e−as
(1)

where s is score from the event model, p(s) is the normal-
ized score between 0 and 1, a is a scaling factor learned
from the collection statistics on the internal IBM Test
dataset. To pick up the optimal threshold for event pre-
diction, we first obtain the ROC curve of the event recog-
nition results on the internal IBM test dataset. Then we
pick up the threshold corresponding to the operating point
with the minimum NDC score on the ROC curve. The fi-
nal results we obtained from NIST on the DEV-O dataset
indicated that our threshold generalize well on the DEV-O
dataset.

2.6 Scaling
We used computing clusters for two aspects of our sys-
tem: learning semantic model classifiers from a training
set and applying those models to evaluation sets to pro-
duce semantic model vectors. We also call this process of



applying the models “scoring”. We made use of two plat-
forms: Apache Hadoop, and IBM InfoSphere Streams,
which are both part of IBM BigInsights4.

2.6.1 Learning Visual Semantic Models (Noel)

The IBM Multimedia Analysis and Retrieval System
(IMARS) was used for semantic model training and clas-
sification of satellite images. IMARS is configured on a
dual-rack Apache Hadoop 0.20.2 system, with 224 CPU
cores, 448 GB of total RAM, and 14 TB of HDFS storage.
The Hadoop job structure is organized into two phases:
a Map step, and a Reduce step. Parallelization occurs
across Unit Models: each Unit Model is assigned to one
Map task. Once all the Mappers have finished training
Unit Models from the Learning data partition and scor-
ing them against the Validation data partition, the models
are passed to Reducers in the second stage, keyed by their
corresponding semantic. Late-fusion occurs at this step,
weighted by the unit model’s individual validation scores,
to generate Fusion Models. This architecture allows arbi-
trary scalability in training both semantic classifiers and
event models: no algorithmic changes are necessary to
scale.

2.6.2 Scoring Visual Semantic Models (Matt)

The process of applying the previously learned models
to a test set of frames is computationally intensive. The
memory requirements are not exceptionally large, but
with 780 semantic models, scoring takes approximately
100 times longer than feature extraction. Furthermore,
some of the 780 models had many more support vectors
in total than others, which was reflected linearly in the rel-
ative amount of time required to evaluate them, as noted
in Yan et al.[17]

InfoSphere Streams is a scalable IBM software plat-
form which fits video processing tasks well. It is designed
for data in motion, such as frame by frame processing,
and defines primitive stream operators for common uses
that make it easy to filter and process streaming data in a
cluster. We had temporary access to a cluster of 50 nodes
containing a total of 800 virtual CPU cores. The nodes
each had 8 physical cores, employing hyper-threading to

4http://www.ibm.com/software/data/infosphere/biginsights

emulate 16 cores. Each node had 16 GB of RAM and ac-
cess to shared disk storage where the learned models were
stored, which were about 80GB on disk.

In order to balance the processing time, we used a bin-
packing algorithm to allocate groups of the 780 models
into groups that required about 750 MB of RAM each.
This resulted in 99 model groups, which contained from 3
to about 100 models each. Then we assigned 16 groups to
each node, 1 per virtual core, taking 12 GB of that nodes’
RAM when loaded. This meant that we could load all
780 models onto 99 cores. With 800 cores, we replicated
this 8 times. Then we split the input image frames into
8 distinct sets and ran everything in parallel, scoring 1.8
million frames in about 42 hours. This amounts to scor-
ing 780 complex semantic models at nearly 12 frames per
second. We found that the Streams platform added mini-
mal overhead to the processing.

3 Experimental Results
In our official MED’11 run submissions, all our four runs
indeed are the fusion results a subset of event models we
explored, we list some detailed information of each of
these four runs, along with the fusion methods we adopted
for each run:
Run 1: Low-level signal features: In this run, we di-
rectly model the events from low level signal features such
as sparse SIFT, dense SIFT, color SIFT, STIP, and MFCC.
For event modeling we utilized SVM with histogram in-
tersection kernel and Chi-square Kernel. The fusion is
performed by linear ridge regression.
Run 2: High-level semantic features: In this run, we
model the events from low from the semantic model vec-
tors, including the 780 static visual semantics, the 113
dynamic action semantics, and the 56 audio semantic fea-
tures. We used 10 different normalization and 2 different
feature aggregation methods. We learn SVMs with differ-
ent kernels including RBF, Chi-square, and histogram in-
tersection, from each different normalized and aggregated
semantic features. All these models are fused together by
greedy ensemble fusion with forward model selection.
Run 3: Weighted Average Fusion of Run 1a and Run 2:
our Run 1a is similar to Run 1 but with manually tweaked
weights for each of the fusion models. We fuse Run 1a
and Run 2 by weighted average where the weights are



Figure 12: The results of Run 1.

Figure 13: The results of Run 2.

proportional to their predication Average Precision scores
on our IBM internal test dataset.

Run 4: Linear SVM-based fusion of 14 component
runs: We fuse 14 component runs, including 8 low-level
feature runs, 5 semantic feature runs, and the scene align-
ment model run using linear SVM.

The results of the four runs on the DEV-O dataset are
shown in Figure

Figure 14: The results of Run 3.

Figure 15: The results of Run 4.

4 Conclusion
We investigated novel techniques for multimedia event
detection that utilize low- and high-level information.
Overall, we obtained good results on the TRECVID MED
task. We observed that low-level visual feature informa-
tion on its own provides a good baseline for predicting the
events in the evaluation. However, we also observe that
high-level semantic information and the ability to detect
semantic concepts provides complementary information
that further improves performance. We expect as we con-
tinue to investigate multimedia event detection that further



development of the semantic classification capability is a
key direction for improving performance.
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