
IBM Research and Columbia University TRECVID-2012 Multimedia Event Detection (MED),
Multimedia Event Recounting (MER), and Semantic Indexing (SIN) Systems

Liangliang Cao†, Shih-Fu Chang∗, Noel Codella†, Courtenay Cotton∗, Dan Ellis,∗

Leiguang Gong†, Matthew Hill†, Gang Hua†, John Kender‡, Michele Merler†, Yadong Mu∗,
John R. Smith†, Felix X. Yu∗§

Abstract

For this year’s TRECVID Multimedia Event Detection task, our
team studied high-level visual and audio semantic features, mid-
level visual attributes, and sophisticated low-level features. In
addition, a range of new modeling strategies were studied, in-
cluding those that take into account temporal dynamics of event
semantics, optimize fusion of system components, provide lin-
ear approximations of non-linear kernels, and generate synthetic
data for the limited exemplar condition.

For the Pre-Specified task, we submitted 4 runs: Run 1 in-
volved the fusion of a broad array of sophisticated low-level
features. Run 2 involved the same set of low-level features to
model the events under the limited exemplar condition. Run 3
involved the fusion of all our semantic system components. Run
4 was composed of the fusion of all low-level and semantic fea-
tures used in Runs 1-3, in addition to event models built from
techniques for linear approximation of non-linear kernels. For
Ad Hoc, we submitted 2 runs: Run 5, which was the fusion of
Linear Temporal Pyramids of visual semantics, fused with event
models built directly on low-level features. Run 6 was our lim-
ited exemplar run, which used both Linear Temporal Pyramids
of visual semantics, as well as a method for generating synthetic
training data.

Our experiments suggest the following: 1) Semantic model-
ing improves the event modeling performance of the low-level
features they are based on. 2) Mid-level visual attributes con-
tribute complimentary information. 3) Event videos demonstate
temporal patterns. 4) Linear approximation methods to non-
linear kernels perform similarly to the original non-linear ker-
∗Columbia University, Dept. of Electrical Engineering
†IBM T. J. Watson Research Center
‡Columbia University, Dept. of Computer Science
§Supported by the Intelligence Advanced Research Projects Activity

(IARPA) via Department of Interior National Business Center contract num-
ber D11PC20070. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding any copyright annota-
tion thereon. Disclaimer: The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the
U.S. Government.

nels, and hold promise to improve event modeling performance
by allowing a scaling up to a broader array of models.

1 System

1.1 Overview

The overall system and process flow is illustrated in Figure 1. As
depicted, one process flow extracts and models low-level fea-
tures using various scene descriptors (visual), SIFT/GIST (lo-
cal visual features), MFCCs (audio), and STIP features (spatio-
temporal). Similarly, a high-level feature process flow extracts
and models visual and audio semantics. These provide the basis
for the information used to detect events in the video. Subse-
quent modeling from this information provides prediction of the
events. We explored various techniques for combing these pre-
dictions in late fusion to make the overall decision about event
detection.

1.2 Low-level Feature Extraction

1.2.1 Video processing

We decode the video clip, and uniformly save one frame every
two seconds. These frames are then used to extract static visual
low-level descriptors. We extract over 100 types of static image
features from each of the sampled frames. These features cap-
ture a wide range of image information including color, texture,
edge, local appearances and scene characteristics. We chose 0.5
fps as a sampling rate based on the data set size in order to yield
a number of frames that we could process in a reasonable time.

Our system uses a subset of these low-level features to deter-
mine the semantic content of video frames, from which further
event modeling is performed. Semantic content is extracted at a
slower rate of 0.25 fps due to the added complexity of evaluating
the models.



Figure 1: IBM/Columbia mutlimedia event detection system. a)
Low-level features extracted from videos. b) Each feature type
is used to build an event query model using one of several ap-
proaches. c) Score tables are combined by weighted fusion.

1.2.2 Low-Level Descriptors for Semantic Analysis

A combination of local and global descriptors are extracted for
the analysis of the visual semantic content of video frames. Fea-
tures extracted include some standard ones, such as SIFT, LBP,
GIST, Color Histogram, etc, as well as a new proprietary feature
referred to as a Fourier Polar Pyramid.

Each descriptor is evaluated at various spatial granularities
that include global, center, cross, grid, horizontal parts, horizon-
tal center, vertical parts and vertical center – each of which is a
fixed division of the image frame into square blocks (number-
ing from 1 up to 25), and then concatenating the descriptor vec-
tors from each block. Such spatial divisions has been repeatedly
shown robust performance in image/video retrieval benchmarks
such as TRECVID [12].

SIFT [8] features are extracted with Harris Laplace interest
point detection for the sampled frames. Each keypoint is
described with a 128-dimensional vector containing oriented
gradients. We obtain a “visual keyword” dictionary of size
1000 (by running K-means clustering on a random sample of
approximately 300K Interest point features, we then represent
each frame with a histogram of visual words. For keyframes
we used soft assignment following Van Gemert et al. [15] using

σ = 90.

Local Binary Patterns (LBP) [13] are extracted across two
image granularities: global, and a 5x5 grid. The LBP histogram
is extracted from the greyscale version of the image as a his-
togram of 8-bits local binary patterns, each of which is generated
by comparing the grayscale value of a pixel with those of its 8
neighbors in circular order, and setting the corresponding bit to
0 or 1 accordingly. A pattern is called uniform if it contains at
most two bitwise transitions from 0 to 1. The final histogram for
each region in our granularity contains 59 bins, 58 for uniform
patterns and 1 for all the non-uniform ones.

In addition to the SIFT bag-of-words and LBP descriptors,
we extracted 13 different visual descriptors at 8 granularities
and spatial divisions, including Color Histogram, Color Correl-
ogram, Color Moments, Wavelet Texture, Edge Histogram, and
GIST. SVMs are trained on each feature and subsequently lin-
early combined in an ensemble classifier. Details on features
and ensemble classifier training can be found in our prior re-
port [1, 2].

We have also developed a proprietary feature referred to as a
Fourier Polar Pyramid. It incorporates ideas from both spatial
pyramids and from the Curvelets feature transform. The basic
idea is to construct a spatial pyramid in Fourier space, under the
polar coordinate system, across all 3 color channels red, green,
blue, in addition to a grayscale color channel. Pyramid levels
in the radial dimension consist of 1, 2, 4, and 8 partitions. For
each of these paritions, we also construct a pyramid in the angu-
lar dimension, of partitions 1, 2, 4, 8, 16, and 32 segments (see
Figure 2). Due to the property of image symmetry in Fourier
space, only the top half of the polar Fourier circle is sampled for
the feature vector. In addition, we have added a prefiltering step
to the original image that multiplies a circular mask to improve
the rotational invariance of the discrete Fourier transform. In to-
tal, the dimensionality of our new feature vector is 3900 for the
global granularity, and 19,500 for the layout granularity. For ef-
ficiency purposes, on the MED task, we reduced the complexity
of the Fourier Polar Pyramid to radial partitions of 1, 2, 4, and
8. Angular segments were reduced to 1, 2, 4, 8, and 16. This
resulted in a feature of 868 dimensions.

1.2.3 Low-Level Descriptors for Direct Event Modeling

Local Descriptors
Bag-of-features (BoF) representation based on various local

descriptors is well-known to be especially effective for many
tasks in computer vision and multimedia. A standard recipe of
generating BoF features is 1) sample sufficient local descriptors
and cluster over them to get visual codebook with pre-defined
size, 2) quantize the local descriptors in a new image or video



Figure 2: Depiction of the overlapping polar pyramid partitions
sampled in Fourier-Mellin space (light blue boxes) used to com-
pute the Fourier Polar Pyramid.

frame. We adopt the following local descriptors due to their
notable success in other relevant tasks. Most of them are variants
of SIFT features. The major difference lies in the way to detect
interest points from images or video frames, around which local
descriptors are generated.

• Sparse-SIFT: It generates “sparse” local interest points
by filtering candidates according to specific criteria. We
use two variants: one is based on Difference-of-Gaussian
(DoG) detector, and the other is using Harris-affine and
Hessian-affine interest point detector1. Visual codebooks
of size 1,000 are built from K-means clustering. Moreover,
the spatial distribution of interest points is known to be use-
ful cue for various tasks. Therefore, we build a two-layer
spatial pyramid. The first layer corresponds to the origi-
nal image, and the second layer splits the image into 2× 2
grids. From each grid, all local descriptors drawn from it
are aggregated to form a BoW feature vector. It is easily
verified that the final dimension of the SIFT BoW feature
is 5,000.

• Dense-SIFT: Sparse-SIFT is most effective for images
with strong scene structure (e.g., urban, indoor etc.). To
complement Sparse-SIFT, we also extract a “dense” vari-
ant. Each frame is resized to be 240 × 320 pixels. To
capture multi-scale information, a three-layer image pyra-
mid is built, with a scaling factor of 0.5 between adjacent
layers. On each layer, 128-d local descriptors are extracted
at each location with a stride of 8 pixels.

• Color-SIFT: Both of aforementioned SIFT variants are
based on greyscale information. However, the color in-
formation is supposed to be also useful. We adopt a

1http://www.robots.ox.ac.uk/∼vgg/research/affine/detectors.html

Video

Frame #1 Frame #K……

Frame-level 
BoW feature

Spatial Phrase Temporal Phrase

Figure 3: Intuitive understanding of our idea of matrix-based video
pooling or high-order feature. Left and right sub-figures correspond to
spatial visual phrase and our proposed temporal phrase.

publicly-available software package2 to calculate Color-
SIFT. The original video frame is transformed into specific
color space with three channels. For each channel, we build
a 500-word visual codebook. By applying the trick of spa-
tial pyramid, from each channel, a 2,500-d BoW feature is
obtained. By concatenating the features extracted from all
channels, finally we get a 7,500-d feature for each video
frame.

We also extract Classemes feature [14] from each frame. It
adopts a multi-kernel method to construct a classifier for each
per-defined visual category (the total number of categories is
more than 2,600). The major component among the multiple
kernels is that built from a 5,000 SIFT BoF feature.

High-Order Feature and Its Compact Representation
We propose a matrix-based approach for the aggregation of

frame-level features. For most of the visual appearance oriented
features (e.g., SIFT or GIST), a standard processing pipeline is
comprised of two steps: feature extraction on frames sampled
from the video at specific rate (e.g., 2 frames per second) or
content-aware key frames from video shots, and the aggregation
operation which summarizes the information from each frame
into a single feature vector. The second step, known as video
pooling in the computer vision literature, proves to be important
for the final performance of multimedia event detection.

Our work is motivated by recent research endeavor on spatial
visual phrase. In the problem of image matching, the local fea-
tures of the query image are matched to those of the images in
the database. Due to the adverse effect of varying illumination,

2http://staff.science.uva.nl/∼mark/



mutual occlusion between objects, view point variance, or dif-
ferent camera parameter settings, matching between single local
features is found to be sensitive and prone to error. Therefore,
spatial visual phrase, which refers to a bundle of two (or more)
spatially proximal local features, is introduced to improve the
matching robustness. Figure 3 shows an example of spatial vi-
sual phrase construction.

Similar idea of spatial phrase can be adopted to help build
more discriminative video features. Conventionally, each video
is represented by a single feature vector, which is computed from
many frame-level feature using pooling methods (e.g., average
pooling or max pooling). The major down side of those pooling
methods is the ignorance of high-order occurrence information
among different visual code word; therefore they fail to capture
any kind of temporal dynamics of the video.

For the computation of video features, we utilize a matrix data
structure to capture the temporal co-occurrence information. A
pair of code words corresponds to a unique bin in the matrix
structure. A vote count for each bin is calculated from the fre-
quencies of the code words. Moreover, although the example in
Figure 3 uses two code words from the same frame, it is ben-
eficial to extend it to several adjacent frames. Although the
matrix-based video pooling method captures more discrimina-
tive information, it suffers from the high dimensionality of the
resultant feature, which requires tremendous storage and com-
puting time. For example, suppose we use a code book of d
distinct visual words, the matrix for temporal phrase will be of
the dimension d × d. Since a typical value for d is O(103), it
implies a feature length on the million scale. To obtain tolerable
computing and storage overheads, we further propose to build
compact “sketch” for the matrix structure. Table 1 shows the
mAP scores of our proposed high-order features on our held-
out random 20% threshold data partition (not used during event
model training). It is observed that the performances of high-
order features are comparable to that of original feature, yet the
storage overhead is much smaller. More algorithmic details are
postponed to our internal technique report.

1.2.4 Audio Features

We calculated two types of low-level audio features over non-
overlapping 2 second windows for each video. The first features
are based on conventional MFCCs, and constitute the mean and
full covariance matrix of the MFCCs. We use 20 MFCC dimen-
sions in our basic feature (for a finer description of the spectrum
than is typically used in speech recognition); we also calculate
the deltas and double-deltas. MFCCs are calculated over 32
ms windows every 16 ms, and the delta and double-delta fea-
tures are calculated over blocks of 9 adjacent feature frames
(i.e., around 300 ms). The full representation of each window

Feature Name Dimension mAP
colorsift 7500 .2200
densesift 5000 .1893
classemes 2659 .1945
colorsift highorder 1000 (bytes) .1674
densesift highorder 1000 (bytes) .1593
classemes highorder 1000 (bytes) .2055
colorsift classemes highorder 1000 (bytes) .2191
densesift classemes highorder 1000 (bytes) .2008

Table 1: Averaged detection performance over all events for original
low-level feature and our proposed matrix-based high-order feature. The
performances are reported in terms of mean-average-precision (MAP)
(0-1). Note that all high-order features are represented by 1000 bytes.
The length is much shorter compared with that of original features. For
example, dense SIFT feature requires 20000 bytes (assume we use 4
bytes to store the value of each dimension).

then consists of 60 mean values for each dimension of the di-
rect, delta, and double-delta features, plus the 1830 (61× 60/2)
unique elements of the covariance matrix calculated over the 125
frames contained within each 2 sec block. In practice, we used
only the 60 means plus the first 3 leading diagonals of the co-
variance matrix for 60+60+59+58 = 237 feature dimensions.
Each dimension was mean and variance normalized across the
training set before creating a Euclidean distance matrix between
2 sec clips to be used as the basis of SVM training.

The second feature type was based on the Auditory Image
Model of [9], which captures the fine temporal structure of the
audio signal across a set of frequency bands, chops this “audi-
tory image” into a number of different subregions, uses vector
quantization to capture the information in each subregion, then
performs classification on the concatenated VQ codeword his-
tograms. We replaced the detailed (and rather slow) auditory
front-end with a simplified approximation of a linear band-pass
filterbank followed by running autocorrelation, and performed
VQ on the resulting a PCA reduction of the resulting “correl-
ogram” image in four separate frequency regions (each of 6
bands). With 1000 entries in each codebook, each 2 sec win-
dow was represented by a normalized 4000 dimensional his-
togram. In our experiments, this simplified model performed
essentially the same as the full Lyon model, and a little worse
than the MFCC features. However, combining MFCC-based
and auditory-model-based features gave a substantial improve-
ment of around 15% relative, indicating their complementary
information. We used Chi-squared distance to turn this into a
distance matrix for use with the SVM.

Both kinds of features can be automatically and exactly ag-
gregated to larger time spans, for instance to calculate the over-
all features for an entire video. This is implemented within our



feature file retrieval routine.

1.3 Semantic Modeling

Traditional methods of modeling video events have been to use
machine learning algorithms, such as support vector machines
(SVMs), to train models directly from low-level features of
video examples that depict the relevant event class as well as
unrelated background video examples. However, this approach
leaves some key challenges unaddressed. First, the user must
formulate a query as a collection of examples of what they are
looking for, which may require considerable effort to collect and
supply such examples. Second, the patterns learned and used
to discriminate between events may significantly deviate from
those that a human uses to define those same events in the first
place. By providing the system with specific examples, one does
not guarantee that the machine learning algorithm will actually
learn the concept that the user is searching for, but rather some-
thing that may be far too specific, generic, or entirely shifted
away from the focus of that concept.

To understand these problems in greater detail, consider the
following scenario: perhaps a user would like to retrieve videos
of a person changing a vehicle tire. In this case, the user might
supply 10 example videos: a few of a person changing a pas-
senger vehicle tire, a few of a truck, and maybe one of a bicyle.
With such a limited number example videos, the query is al-
most guaranteed to represent not only the concept to be searched
for, but an additional unwanted bias, i.e., all the supplied ex-
amples might demonstrate a person changing a vehicle tire out-
doors. Does such a query data distribution imply that the user
does not want to search for tires being changed indoors, perhaps
in a garage? Should the system return a motorcycle tire being
changed, or not? The answer to these questions are ambiguous
without additional data supplied by the user. When the user does
not supply enough data, the query is ill-posed, and the ”correct”
retrieval results depends on information that has been essentially
”hidden” from the system. Typical methods to deal with ”hid-
den” information make use of prior assumptions in the modeling
process that regularize the results, essentially trying to introduce
characteristics of the ”hidden” information into the model itself,
rather than the data. But, in a sense, the algorithm cannot ”read
the user’s mind,” especially as these assumptions change from
query to query, and thus the system may return results that are
indeed incorrect.

We believe event detection may be made more robust, sim-
pler, and more space efficient, if the videos were described by
their content in terms of higher level semantics. Some early
work done by our group displayed significant performance im-
provements for event detection on TRECVID MED 2010 data
using SVM based event models trained on top of high-level se-

mantics, as opposed to directly from the visual low-level fea-
tures from which the semantics are defined [10]. More recent
experiments agree with this finding (Fig. 20).Such results sug-
gest that semantics may be better suited to represent video con-
tent. In addition, a semantic representation of the video may
permit the ability to perform semantic based text queries against
the data. For example, instead of providing tens or hundreds of
examples of a person changing a vehicle tire, the event can be
described textually with a query such as ”Person handling wheel,
presence of a road vehicle.” In this scenario, the query is much
more specific. The user has intentionally not specified ”indoor
vs. outdoor,” so it may be safely assumed to return both cases.
In addition, the user has specified the general term ”road vehi-
cle,” so the system knows this can be any variety of car, truck,
or bicycle.

The bridge between low level features and high level events is
referred to as the “Semantic Gap”. We propose a technique that
fills this gap with an additional semantic layer, connecting low
level features to video events through a hierarchy of the visual
and audio semantic content of the video. In total, we used 958
visual semantic concepts and 100 audio semantic concepts.

1.3.1 Semantic Taxonomy

For the MED11 event detection task, our team utilized a taxon-
omy of visual concepts/categories based on the IBM Multime-
dia Analysis and Retrieval System (IMARS) taxonomy [4]. The
IMARS taxonomy is a set of federated multiple facets of con-
cept trees using four conceptual constructs: entity (node), facet
(node), is-a (link) and facet-of (link). The top level facets and the
number of example images in each is shown in Figure 4. Adopt-
ing the facet node type and “facet-of” link type allows greater
flexibility in modeling mutually non-exclusive concepts, which
represent different view perspective of a same entity (e.g. peo-
ple - number of people, age of people). Sibling concepts (nodes)
with an entity parent node in the taxonomy tree are mutually ex-
clusive. By inferencing the structure and semantic relationships,
the taxonomy system can perform efficient labeling of training
images by associating images with the each entity node in the
hierarchy, and allocates negative training examples accordingly
with the recognition of exclusiveness of entity nodes and non-
exclusiveness of facet nodes.

One of the limitations with the 2011 version of IMARS sys-
tem was the difficulity to visualize and comprehend the rela-
tions between some concepts due to the nested levels of facets.
The other issue was the imbalanced distribution of training sam-
ples for concepts, and our experiments have shown the size of
training samples has very strong correlation to the performance
of concept detectors or classifiers. Figure 5 plots the correla-
tion between training sample size and validation score (AP),



Figure 4: Visual taxonomy: distribution of categries and images
across top facets

Figure 5: Correlation of sample size and performance

which clearly shows negative performance impact of small sam-
ple size. To overcome these limitations, we have implemented:
(1) structural transformation of IMARS taxonomy from nested
faceted structure to federated faceted structure and (2) expan-
sion of training samples for all the conepts. For the MED12
event detection task, our team utilized this improved taxonomy
of 615 visual concepts/categories and over 500K positive train-
ing examples.

Figure 6 provides an top-level overview of the current version
of IMARS taxonomy includingn 12 facets (setting, sky scene,
buidling view, people, object, people of affiliation, view of a
human, animals, activity, sport, disaster scene, and dorminant
color) with the distributions of categories and image examples
among them.

1.3.2 Semantic Indexing (SIN) Task

Our team made a submission to the full semantic indexing task.
This task consisted of 346 semantic concepts for which posi-

Figure 6: Overview of IMARS Taxonomy

tive and negative examples are supplied from TRECVID video
dataset frames. We organized the data into training folders
which could be fed through our IMARS system to model the
semantics (see Section 1.3.3 and Fig. 8). The resultant models
were used in conjunction with our own internal semantic taxon-
omy to extract semantic concepts from the MED video frames.

Given that our team was working under severe time con-
straints due to an incorrect website link to ground truth data,
we sampled the images for each concept by capping the number
of positive examples and the number of negative examples each
to 2000 per concept, leading to a maximum of 4000 images to
represent each concept. Our results this year were negatively af-
fected this, as well as a normalization bug in our scoring system
that we discovered after submission (see Section 1.5.3). This
bug added noise to the concept scores on the test dataset, but did
not affect performance on our own internal validation set used
for Unit Model fusion.

The average precision scores on our internal validation dataset
used for Unit Model fusion, as well as the SIN test dataset, is
shown in Fig. 7. While not achieving the top performance, the
utility of our system was demonstrated in terms of the amount
of time it took for our modeling pipeline to finish the full SIN
task: starting from scratch, processing time was on the order of
a couple of days. We are confident that given the opportunity to
utilize more data, fix our scoring bug, and implement additional
state-of-the-art low-level features, that our system performance
will improve significantly.

1.3.3 Visual Semantic Modeling

Visual semantic modeling is carried out by the IBM Multimedia
Analytics and Retrieval System (IMARS). IMARS is a machine
learning system designed for the extraction of semantic content
from images and videos. The system has been in development
for a period of over ten years, and is unique in its ability to eval-



Figure 7: Top: SIN model performance on our internal valida-
tion dataset used for Unit Model fusion. Bottom: results on the
SIN test dataset. Inferred MAP was 0.142. The scores of our
models were affected by a bug in our scoring pipeline, which
has since been fixed. We have begun the process of rebuilding
and re-evaluating our models, which we expect to improve.

uate a multitude of modeling strategies to determine the best ap-
proach for each semantic concept. In addition, the structure of
the system gives it the ability to arbitrarily scale to large learning
problems.

Instead of training very large models by concatenating all
features in early fusion, and training models from all available
data, our system trains smaller Unit Models [18]. For each con-
cept, Unit Models are trained on a single feature, a single image
granularity (such as whole image, which results in a descriptor
matching the dimensionality of the feature, or a 5x5 grid result-
ing in a descriptor 25 times the dimensionality of the original
feature), and a random subsample of data, referred to as a bag
(Fig. 8). For each Unit Model, the system tries a variety of
modeling strategies and kernel parameters (29 or more), select-
ing the most effective approach via n-fold cross-validation. The
most discriminative Unit Models for each concept are selected to
be fused into an ensemble classifier based on their performance
on a held-out validation set.

Building models in this manner yields several desirable prop-
erties:

Figure 8: IBM Multimedia Analytics and Retrieval System
(IMARS) learning approach. Training data is partitioned into
Learning and Validation sets, which are further divided by fea-
tures and data samples, referred to as ”bags.” Unit Models are
trained for each bag, and an ensemble fusion approach using
forward model selection determines the best combination of unit
models to discriminate for the given concept.

1. The first is that data imbalance is markedly reduced. When
a Unit Model is sub-sampled, a maximum data imbalance
threshold is enforced. The whole of the majority class is
covered by the generation of many Unit Models, each with
a different sampling of examples.

2. The second is that the learning problem is much more ef-
ficient when training many smaller models, instead of one
large model, since the computational complexity of train-
ing a model is polynomial in nature

O
(
k ·
(n
k

)c)
<< O (nc) (1)

, especially for large k and large c.

3. The third is that since each Unit Model is an independent
training task, we can easily parallelize to arbitrary scale.

4. The fourth is that since each Unit Model is trained over an
individual feature, the process of forward model selection
is also implicitly performing feature selection, as it deter-
mines the optimal combination of models to combine for
each concept.



Figure 9: Example top scoring semantic retrieval results on a
random sampling of 80,000 frames from the MED training data.
Note how the semantic classifiers can extract some subtle differ-
ences between concepts, such as that a steering wheel shown in
the red box is a ”Car Part” yet not a ”Car Tire” even though it
has a round shape.

Figure 10: Example top scoring semantic retrieval results on a
random sampling of 80,000 frames from the MED training data.

Some example retrieval results using the trained semantic
models are shown in Figures 9 and 10. Note how our classifiers
tend to be able to differentiate some subtle characteristics, such
as a steering wheel being a car part, and not a care tire, even
though both objects are round in shape.

1.3.4 Multimedia Event Recounting: Thematic roles

The current IBM-Columbia MER system is based on the close
connection between our semantic classifier ontology and the the-
ory of natural language thematic roles. Since both are grounded
in a similar representation, the outputs of our visual and aural
concept detectors map directly into the input slots of a template-
based grammar. Each temporal segment of a video with high
classifier responses therefore can generate a single sentence
for the segment. A typical output, for example, is: ”A Sin-
gle Person does Violent Action to a Home Appliance using a
Knife at a Kitchen or at a Laundry Room, with sounds of Vo-
cals.” In fact, segments are defined not by signal-level activity,

but by temporal clusters of those semantics that have been pre-
specified as being relevant to a particular event.

Thus, our MER output is very lightweight, taking as input a
matrix of classifier scores versus key frames; typically this is
only about 1000 rows by about 100 columns (one frame every
two seconds). During in-house user study experiments, this ap-
proach has led to near-perfect recognition of event type from the
short streams of sentences generated for each video, and above-
chance video identification.

1.3.5 Visual Attribute Modeling

Our semantic features are learned from the taxonomy, which is
manually defined based on expert knowledge. Although seman-
tically plausible, the taxonomy may not be consistent to the vi-
sual feature distributions. Consequently, some nodes are diffi-
cult to be modeled. In this section, we propose attributes as a
feature-consistent way of modeling semantics. Specifically, we
define attributes as multiple partitions of the concept pool (518
leaf nodes of the taxonomy). The partitions are optimized such
that they are discriminative in terms of separating the known
concepts, and consistent in terms of visual similarities based on
the low-level feature. Weighted SVM classifiers trained by such
partitions are then used as attribute feature extractors for event
modeling.

To test the performance of the proposed approach, we have
trained and extracted 2,500 dimensional attribute feature for the
pre-specified task. Figure 11 shows the performance of the
low-level feature and the proposed attribute feature, using linear
SVMs for modeling, and frames downsampled to 1 frame every
8 seconds. Impressively, attributes have achieved relative perfor-
mance gain over 60%, improving the MAP from 0.075 to 0.123.
Note that identical low-level features are used for direct event
modeling, training semantic features and training attributes.

1.3.6 Audio Semantic Modeling

We trained a total of 100 semantic audio models on our low-
level audio features. The particular models were defined pri-
marily by the availability of suitable training data. 55 of the
models were the same as 2011, and were based on earlier clip-
level labeling efforts based on YouTube data selected to consist
of unedited consumer videos [7, 5], and on the MED2010 data
segmented in to 10 sec chunks. The remaining 45 models were
based on the 60 CD BBC Sound Effects Library, which con-
sists of 2238 sound files covering a wide range of conditions,
each lasting anywhere from a second to several minutes. Each
track in the BBC collection comes with a one-line description
including several keywords describing the sound; we generated
a list of candidate semantic classes by choosing the 100 most



Figure 11: Average Precision results base on low-level feature
and attributes for full exemplar. The results are evaluated on
the internal threshold split containing 20% of the training data.
Linear SVMs are used for event modeling.

Table 2: The 45 semantic terms extracted from the brief annota-
tions of the BBC Sound Effects library.

stairs ambience speech
pavement babies cars
walking sports car
women steam boat
running cat transport
warfare vocals urban
wooden siren train
footsteps animals crowd
country rhythms electric
wood animal traffic
men birds street

horses rural children
emergency electronic household

construction horse crowds
futuristic aircraft voices

common words in these descriptions, and training preliminary
classifiers for each one. We then sorted the words by the accu-
racy of these preliminary classifiers, and further filtered it down
to 45 by choosing concepts that were semantically meaningful,
reasonably successfully detected, and not redundant with other
selected terms. The full list of 45 terms is in table 2.

Since our semantic classification features are to be provided
at 2 sec resolution, we need to train on frames of this size. The
training labels we have, however, are at the level of video or
sound clip – typically much longer. For instance, a video tagged
as containing “Music Performance” may include several win-
dows of non-music sound prior to the performance beginning.
Training a “Music Performance” classifier on these frames of

generic background noise might hurt its discrimination.
To address this, we developed a Multiple-Instance Learning

(MIL) procedure. MIL refers to the scenario in which data
points belong to “bags”, with labels that indicate whether a par-
ticular bag contains any items of that class. Thus a bag with a
negative label will consist only of negative examples, but a bag
with a positive label will in general contain a mixture of both
positive and negative examples (like the frames in our Music
Performance video). Our procedure first trains classifiers assum-
ing all frames in the positive bags are true positives, and attempts
to discriminate them from the frames in the negative bags. Every
item in each positive bag is then submitted to a classifier (with
cross-validation, so a classifier is never applied to frames used
in its training), and any frames that fall below some threshold
in classifier score are relabeled as negative, with the constraint
that at least one frame in the bag (and any other frames whose
classifier scores are very close to this “best” frame) must re-
tain positive labels. Ideally, this will remove negative examples
from the positive pool; classifiers are then retrained, and the pro-
cess repeats until no further increases are observed on held-out
development data (where a simple combination rule is used to
produce a clip-level label from individual frames).

Our approach to choosing the threshold was to create his-
tograms of the classifier scores from the negative and positive
frames, calculate the cumulative distribution functions in op-
posite senses (i.e., P (score < θ) for the negative frames, and
P (score > θ) for the positive frames), then choose the thresh-
old θ where they intersect. By scaling one function prior to find-
ing the intersect, the threshold can be made to remove frames
from the positive bags more or less aggressively. Table 3 gives
an example of the changes in test set mean Average Precision
for iterative relabeling of the five frames in each 10 sec clip of
our segmented MED2010 set; performance at the clip level im-
proves for 4 epochs, then gets worse, so the labels for the 4th
epoch are used as the basis for the final 2 sec-resolution seman-
tic classifier. Note that we do not have any ground-truth labels at
2 sec resolution, so we cannot directly measure the frame-level
classifier performance.

Audio classifiers for the 100 semantic classes were trained
on both types of raw audio features, MFCC statistics and Audi-
tory Model histograms (Section 1.2.4). Because a single video
may contain hundreds of 2 sec windows, and because SVM dis-
tance matrix calculation is O(n2) in the number of frames, this
training was far more computationally expensive than training
whole-video classifiers. Further, because the histogram features
relied on a chi-squared distance measure, which is around 10
times slower to compute than the euclidean distance used for the
statistics, it was not possible to complete labeling of the MED12
development data in the available time; at 2 sec level, our 100 au-
dio semantic features are based only on MFCC statistic features.



Table 3: Mean Average Precision for labels aggregated to the
clip level from the iterative relabeling of 2 sec audio clips, for
the 10 sec segmented MED2010 corpus.

Epoch mAP
1 0.523
2 0.537
3 0.559
4 0.562
5 0.559

At whole-video level, however, we were able to train separate
sets of semantic classifiers on both low-level audio features. The
outputs of these classifiers – SVM distance-to-boundary scores,
which have been found to be largely comparable between dif-
ferent classifiers – were then combined by simple summing to
create a set of fused audio semantic features.

To evaluate these semantic features, and to compare them to
the raw features, we used a task based on the first release of the
MED2011 DEV data and the example videos for events 001 to
015. This gives a combined pool of 6354 videos, which were
broken into 5 cuts, with classifiers trained on 4/5ths of the data
and tested on the remaining 1/5th. For this test, all features were
at the whole-video level. 15 independent per-event classifiers
were trained using the different feature sets. The results are
shown in Figure 12. We see that the raw MFCC and Auditory
Model (sbpca) features have different strengths, with the Audi-
tory Model features doing particularly well for E004 Wedding
Ceremony, E008 Flash Mob Gathering, and E012 Parade. The
semantic features broadly reflect the raw feature performance,
but do better in some cases, such as E001 Attempting a Board
Trick and E009 Getting a Vehicle Unstuck (at least for MFCCs).
Finally, the fused semantic features (sema100sum) are generally
successful in capturing or improving on the best individual fea-
ture in each category, delivering a 15% relative improvement in
mean Average Precision, from 0.19 for the raw MFCC features
to 0.22 for the fused semantic features.

1.4 Event Modeling

1.4.1 Temporal Modeling & Feature Aggregation

When training an event model, a single descriptor must be gen-
erated for each video to represent its entirety. This is done typ-
ically by aggregating low or high level features from individual
frames using average or maximum values. One major draw-
back of this method is that temporal information is ignored. This
year we wanted to employ a method that could model the tem-
poral progressions of semantics in event kit videos. Our team

Figure 12: Audio-based Average Precision results for MED2011
event classifiers (6354 video set), comparing classifiers based
on raw features (MFCCs and Auditory Model (sbpca)), and on
100-class semantic audio features based on each set of raw fea-
tures (sema100mfcc, sema100sbpca), and fused by summing
(sema100sum).

has previously published studies that investigate the effects of
various temporal matching strategies on event detection perfor-
mance [17, 3], and found generally that such methods improve
system performance by signficant amonts (25% boost to MAP
on MED11 events as measured on MED11TEST). This year,
we chose to apply temporal pyramid models on top of the 958-
dimensional visual semantics for the Ad Hoc event kits. We
quantify the changes in event modeling performance on our in-
ternal held-out validation set used for model fusion, consisting
of a random 20% sampling of the training data.

The temporal pyramid structure is depicted in Fig. 14. The
pyramid is broken into individual components, each defined
by the number of temporal segments contained (or the level
of the pyramid), the aggregation style used, and whether fixed
or dynamic temporal segment boundaries were employed. Dy-
namic boundaries are a new approach, compared to our previous
studies: temporal segment boundaries are determined as those
frames where the derivative of the semantic features with re-
spect to time is greatest. The n-1 top values of this derivative
define the boundaries for the n-th pyramid level.

A sampling of data (a ”bag”) from each component then is
used to train a Unit Model, which is fed into the IMARS train-
ing platform. We use 30 bags of size 1000 to ensure complete
coverage of negative examples. For each Unit Model, the sys-
tem iterates over several modeling strategies that include both
static temporal order matching kernels, in addition to dynamic
order matching kernels (Fig. 13).

The comparison between temporal pyramids and single ag-
gregation event models is shown in Figure 15. As can be seen in
the figure, temporal pyramids improve overall event recognition
performance (in terms of MAP) from the baseline single aggre-



Figure 13: The IMARS system evaluates both static order and
dynamic order temporal matching kernels during Unit Model
training of Linear Temporal Pyramids, and selects the best
method for each Unit Model.

Figure 14: Visual depiction of constructing temporal pyramid
aggregations over video frames.

gation by about 30% once data saturation has been reached. This
performance boost is in agreement with results seen on MED11
data in our prior publication [3]. All events saw significant per-
formance improvements (over 10%).

The performance comparison between two single unit models
is shown in Figure 16: pyramid level 1 (a single average aggre-
gation) is compared to Pyramid level 10 (also an average aggre-
gation). It is important to note that at this stage, a unit model
has been trained on only 80% of the available training data, and
no model selection has been performed based on the held-out
20%. As can be seen in this figure, the increased temporal gran-
ularity improves performance substantially in two categories, as
compared to single aggregation, suggesting that the ability to ac-
count for temporal order improves event recognition accuracy.

We believe that the events, while they may not contain any
explicit temporal information in their textual event description

Figure 15: Performance of event models that use temporal pyra-
mid matching, as compared to single level aggregations. Signifi-
cant improvements in performance are seen across all categories.

Figure 16: Performance of individual unit models across events.
Those shown are single level average aggregations, and a 10 seg-
ment average aggregation using fixed partitions.

(i.e. step 1, step 2, step 3, etc), may have a tendancy toward
temporal trends, as in the case of Fig. 17. In other words, the
temporal order is not necessary for the event to be defined, but is
common. Due to this, when temporal pyramids are applied, our
forward model selection algorithm is able to choose which tem-
poral granularity, which partitioning (fixed or dynamic temporal
boundaries), which pooling method (avg, max, min, or range),
and which kernel method (fixed or dynamic temporal matching)
fits the data in the best possible manner. This rich spectrum of
modeling strategies in combination with a robust selection al-
gorithm has demonstrated systematic improvements in perfor-
mance across categories.

1.4.2 Kernel Approximation Modeling

To explore different aspects of visual phenomenon, we need a
good fusion strategy for multiple features. However, some com-
plicated feature fusion strategy are not applicable for the large
scale training dataset. Traditional nonlinear Supporting Vector
Machine (SVM), builds classification model with many support
vectors. The number of support vectors grows with the the size
of training samples, which will make both the training and test-



Figure 17: Example of temporal trends in event E019, ”In-
stalling Flooring.” Many videos start off with a bare floor fol-
lowed by a floor that has been further finished. However, some
do not have a clear direction from the camera angle given.

ing stage slow. When the number of images grows, or when
the feature dimension increases, traditional SVM solvers will be
efficient enough for large scale problems. Among all the ker-
nels in practice, the exponential Chi-square kernel often yields
very good performance compared with the others. Moreover,
a large amount of our features, including LBP histogram, edge
histogram, color histogram, and SIFT histogram, are in the form
of histogram features. Exponential Chi-square kernel is arguable
regarded as the first choice for histogram form features. In our
work, we focus on how to efficiently solve exponential Chi-
square kernel only.

We consider the Chi-square kernel in the form of

K(x , y) =
∑
d

2xdyd
xd + yd

, (2)

where x = [x1, x2, · · · , xd, · · · , y = [y1, y2, · · · , yd, · · · .
It is easy to see that Eq.(2) is defined as the additive sum of

different dimensions. Such a kernel is referred to as an additive
kernel. As suggested by [16], such a group of kernels can be
approximated by mapping the feature into a high dimensional
space. By the representer theorem [6], the solution of classifica-
tion model can be written in the form of

f(x ) =
N∑
i=1

K(x , xi),

where i denotes the index of training samples. For any positive
definite kernel, there exists a mapping x → φ(x) so that the
final classification model becomes

f(x ) = wTφ φ(x) + b

Figure 18: Comparing the new fusion method with traditional
approach.

where wφ denotes the weights of the linear model in the mapped
space. In this work, we will use Nystrom’s approximation to
construct the mapping function explicitly.

To make the representation simply we let

k(x, y) =
2xdyd
xd + yd

,

then we can see the kernel is

K(x , y) =
∑
d

k(xd, yd). (3)

Next we will discuss how to approximate k(x, y), which is a
function on 1D space.To approximate k(x, y), we employ ex-
plicitly kernel mappling [16].

Figure 18 compares the fusion method with traditional
method. It is easy to see the new method reduce the computa-
tional complexity. Suppose we have m features, 1 ≤ m ≤ M ,
and each feature is of dimension dm. The number of training
samples is N , and size of testing set is T . For each dm features,
we map it to the space of dimension 7dm. Note that the evalu-
ation of kernel SVM depends on the number of support vectors,
which in practice is proportional to the number of training ex-
amples. Also our linear approximation requires the extra cost of
feature mapping, which is 7dN for training and 7dT for test-
ing. Table 4 compares the computational complexity of the two
methods. It is easy to see our linear approximation is much more
efficient in both training and testing stage. Our linear approxi-
mation is even plausible for the scenario with a lot of features.

1.4.3 Limited Exemplar Modeling

Pre-Specified

For the Pre-Specified limited exemplar, we tried to generate
an 80% learning and 20% fusion split to assess performance of
each component method; however, under these conditions no



Table 4: Comparing the computational cost of kernelized SVM and linear approximation.
Training Testing

Kernel SVM O(N2∑
m dm) O(TN

∑
m dm)

Linear approx O(αN
∑
m dm) +O(N

∑
m dm) O(αT

∑
m dm) +O(T

∑
m dm)

component produced any appreciable performance. As a result,
we opted to train the low-level component run on all 10 training
examples, fuse different features using manually-determined
weights (the fusion weights are nearly identical for different
features), score the training dataset using these generated
event models, and set the threshold as the minimum score
produced by the 10 positive examples. Therefore, we have no
performance plots to report for this case.

Ad Hoc
We conjectured that our difficulties with limited exemplar may
have been in part the result of severe data imbalance and poor
representation of the actual event distributions in each space. In
order to address this challenge, we made the assumption that
in the semantic space, the 10 examples might form, roughly
speaking, a convex hull, or subspace, of the event distribution
(Fig. 19). This assumption is similar to the assumption taken
when training a linear SVM on top of the data. Previously, we
have shown that linear SVMs perform better over high-level se-
mantics than from low-level features on which the semantics are
trained (Fig. 20); therefore, we believe this to be reasonable.

Under these assumptions, we create synthetic training data
by taking random subspace projections (RSS), or random linear
combinations, of the given examples, and then retrain our mod-
els on the synthetic data. While the new distribution might not
exactly represent the event distribution, the intent is to help the
learned decision boundary better generalize.

Our method loosely resembles the SMOTE technique [11],
however, in our case, k=7 since we train on 8 examples and cre-
ate synthetic data from random linear combinations of all dat-
apoints. In addition, synethic points are allowed to exist any-
where in the subspace of points used to generate them, instead
of on the line connecting a pair of neighboring points.

Our submission for limited exemplar query of the Ad Hoc
task was thus to combine the temporal pyramids of visual se-
mantics, using RSS to generate additional synthetic training
data: the 8 examples used for model training were expanded

Figure 19: Illustration of Random Subspace Projection method
for limited exemplar conditions. Top: Limited exemplar case,
where only 10 examples are given. Middle: Actual decision
boundary. Bottom: Under the assumption that in the realm of
semantic space, the 10 examples form a convex hull, or sub-
space, of the event distribution, synthetic training examples can
be produced by taking random normalized linear combinations
of the 10 positive examples to fill in the subspace.

to 208 examples. The 2 for model fusion were independently
expanded to 202. The resultant models were then scored against
the original 20% held-out data consisting of 2 positive examples
per event.



Figure 20: Event modeling results comparing high-level seman-
tic features to the low-level features used to build the semantic
models. Experiment was performed using linear SVM on a set
of average value aggregated frames that were downsampled to 1
per 8 seconds.

1.4.4 Fusion Modeling

Fusion of Low-Level Features

From the diverse feature set that we define for the MED task,
a large number of components can be accordingly generated,
characterized by the feature type, kernel choice (e.g., RBF ker-
nel or histogram intersection kernel) and parameter selection.
Optimally fusing all these information is a critical operation for
the final performance. Two most popular strategies for feature
fusion is known as early fusion (i.e., fuse features before send-
ing them to the event models) and late fusion (i.e., fuse the de-
cision scores generated by different event models). In practice
we have evaluated the performance under both settings. How-
ever, we find that early fusion will significantly uplift the feature
dimension and increase the computational overhead. Therefore,
we mainly capitalize on the idea of late fusion to boost the event
detection accuracies.

Specifically, we adopt the ridge regression method for late fu-
sion due to its simplicity and robustness (we have empirically
compare ridge regression with other methods, e.g. linear regres-
sion with sparsity regularization, and observe comparable per-
formances for all methods). Suppose we have K components,
generating scores X1, . . . , XK ∈ Rn, where n is the number
of training data. Denote the ground truth event labels as vector
y ∈ {0, 1}n, and the regression coefficients as α ∈ RK . The
optimal solution of ridge regression is obtained by solving the
following problem:

min
α

‖Xα− y‖2 + λ‖α‖2, (4)

where X = [X1, . . . , XK ] is the concatenation of all compo-
nents. It is well known that the above problem has close-form
solution α∗ = (XTX + λI)−1XT y, where I is the identity

matrix.

Fusion of Component Runs

Each major component of our system was scored against the
progress set, and our internal held-out set of 20%, indepen-
dently. This included Low-Level, Visual Semantics, Audio Se-
mantics, Attributes, and Kernel Approximation. Fusion between
runs was performed as a weighted sum of normalized scores.

Components are fused together one at a time. Fused compo-
nents are considered a single component during the fusion of the
next component. Weights were initialized to the average preci-
sion scores of each component on the threshold set, and updated
iteratively as follows: if after fusion, the combined performance
(in terms of average precision) is greater, the weight is kept. If
the combined performance is lower than the best single compo-
nent, the weights are re-adjusted in favor of the best single com-
ponent. This process is iterated until at least the performance of
the single best component is matched.

1.5 Scaling

We used computing clusters for two aspects of our system:
learning model classifiers from a training set and applying those
models to evaluation sets to produce semantic model vectors.
We also call this process of applying the models “scoring”. We
made use of two platforms: Apache Hadoop, and IBM InfoS-
phere Streams, which are both part of IBM BigInsights3.

1.5.1 Learning Visual Semantic Models

Scalability is achieved by implementing the IMARS learning
system in the Map-Reduce framework (Open-Source Hadoop,
or BigInsights as offered by IBM), where modeling is performed
in two stages: a Map stage, where typically millions of Unit
Models are constructed. Each of these models is an independent
learning job, which makes them suitable as a Map task; however,
several thousand such models typically correspond to a single
concept being learned. This makes it possible to pass the resul-
tant Unit Models to the second stage, or Reduce stage, where for
each concept, the set of all Unit Models for that concept are sub-
ject to a process of forward model selection that determines the
most effective combination of these Unit Models. Our system
was implmeneted on dual-rack Apache Hadoop 0.20.2 system,
with 224 CPU cores, 448 GB of total RAM, and 14 TB of HDFS
storage.

Similar to the learning framework, our image scoring frame-
work is also suitable for arbitrary scale, built around the Map-
Reduce paradigm. During a scoring job, each Unit Model is

3http://www.ibm.com/software/data/infosphere/biginsights



applied to the data in the Map step, and their outputs for each
concept are combined in a Reduce step.

1.5.2 Scoring Visual Semantic Models

The process of scoring the previously learned models on a test
set of frames is computationally intensive. For example, scor-
ing our 958 semantic models takes over 100 times longer than
low-level visual feature extraction. The memory requirements
are not exceptionally large, at about 90GB total for our set of
semantic models. It is still somewhat uncommon for single
machines to have that much memory, for instance our typical
servers have 16 or 32GB. By spreading the models across a set
of machines, we both parallelize the computations and sidestep
the large memory requirement.

InfoSphere Streams is a scalable IBM software platform
which fits video processing tasks well. It is designed for data
in motion, such as frame by frame processing, and defines a
set of stream operators that make it easy to filter and process
streaming data in a cluster. We had temporary access to a clus-
ter of 36 nodes containing a total of 336 virtual CPU cores.
The nodes each had 4,8, or 16 cores, some employing hyper-
threading. Each node has between 8 and 132GB of RAM and
access to shared disk storage where the learned models were
stored, which were about 90GB on disk. Streams allows us to
assign sub-tasks to nodes based on their capability in order to
maximize throughput.

Furthermore, some of the 958 models had many more support
vectors than others, which was directly correlates with the rela-
tive amount of time required to evaluate them, as noted in Yan
et al.[18]

In order to balance the processing time across nodes so that
no CPU was starved for tasks, we used a bin-packing heuristic
algorithm to allocate the 958 models into groups. A node would
be assigned a number of model groups equal to the number of
cores on the node. We wanted the model data to be in RAM at
all times, so he target group size (in RAM space required) was
selected so that the number of cores on a node times the size was
less than 80% of the RAM on the node. So for a subtask on a set
of 5 nodes, 16 cores each, with 32GB RAM per node, we had 80
total cores, and 80 model groups. The total of the models was
about 90GB, so each model group was about 1125MB, requiring
18GB total RAM per node. With more nodes, we could scale by
either making more model groups, or by replicating the task,
splitting the input image frames into distinct sets and running
them in parallel. If, for example, we had 1 core per model, we
found we could score models at about 12 frames per second,
either by model or frame based parallelism. We found that the
Streams platform added minimal overhead to the processing.

1.5.3 Note About Distributed Software Bug

Both of our distributed systems, Hadoop and Streams, were
used to extract semantic information from video frames of the
progress set through their respective scoring pipelines. Each
system was responsible for one half of the data. Additionally,
our Hadoop distributed system was used extract semantics from
training dataset frames, as well as to apply semantic event mod-
els generated from the training dataset to the entire progress set
after aggregation to video level semantic features.

Midway between our Pre-Specified submissions and our Ad-
Hoc submission, we discovered a bug in our Hadoop scoring
pipeline. The Hadoop scoring bug had two significant conse-
quences in our Pre-Specified submission: 1) The two halves of
the progress set have different semantic statistics. This leads to
semantic event model scores on one half of the progress to con-
tain additional noise and a constant offset. 2) The semantic event
models themselves produce additional noise on all data scored,
since the same Hadoop pipeline was also used for this purpose.
This would lead to a drop in event modeling performance. Event
model scoring on the internal threshold data was not effected,
since this process is actually embedded in our learning frame-
work, which in part explains why we saw better performance
internally than was produced on the progress set.

For our Ad Hoc submission, we attempted to mitigate the ef-
fects of the bug as follows:

The bug was fixed to prevent it from adding noise to the scores
of any subsequent event models. However, this does not address
the problem that our semantic models have different statistics on
the two halves of the progress set. In order to reduce the effects
of this problem, rank normalization was applied to the event
model scores of each half of the progress set independently, and
the data was recombined into one dataset. This mitigates the
effects of any constant offsets in our event model scores, enforc-
ing consistency in the distributions of scores between the two
halves.

As can be seen from our results, we believe that the Hadoop
scoring bug had a significant impact on the performance of our
semantic models; however, our mitigation strategies helped re-
duce the affect of this bug in our later Ad Hoc submission. We
expect that on a re-run of our system, we should see increases
in performance for all of our semantic runs, both on internal and
external data.

1.6 Score Calibration & Threshold Selection

Pre-Specified
To facilitate the selection of the optimal threshold for event
recognition, the prediction scores from the event models need
to be normalized. In our experiments, we normalize the pre-



diction scores from the event models using a Sigmoid function,
i.e.,

p(s) =
1

1 + e−as
(5)

where s is score from the event model, p(s) is the normalized
score between 0 and 1, a is a scaling factor learned from the
collection statistics on the internal 20% threshold dataset.

Full Exemplar Threshold Selection
To pick up the optimal threshold for event prediction, we first
obtain the ROC curve of the event recognition results on the
internal threshold dataset. Then we pick up the threshold
corresponding to the best operating point on the ROC curve.

Limited Exemplar Threshold Selection
For this case, we used all the training data to build event models.
We then score the training data, and used the lowest score on
the positive examples as the threshold.

Ad-Hoc
After discovering the bug in our Hadoop scoring pipeline
(Section 1.5.3), for our Ad-Hoc submission, we switched to
applying rank normalization to each half of the progress set
indepently (since semantics were extracted from one half in a
buggy Hadoop system, and the other half in a bug-free Streams
environment), and then recombining the scores into a single
set. This approach was taken to compensate for event model
score shifts between the two halves as a result of the bug. Rank
normalization was applied to all component runs prior to fusion.

Full & Limited Exemplar Threshold Selection
To pick up the optimal threshold for event prediction, we first
obtain the ROC curve of the event recognition results on the
internal threshold dataset. Then we pick up the threshold
corresponding to the best operating point on the ROC curve.

2 Experimental Results

Pre-Specified
Figure 21 shows the results of the various modeling strategies

we applied to the pre-specified event task using the full train-
ing dataset. Single aggregations ignoring temporal information
were applied to all components. Low-level features achieved top
performance for any single approach.

For the Pre-Specified limited exemplar, we tried to generate
an 80% learning and 20% fusion split to assess performance of
each component method; however, under these conditions no
component produced any appreciable performance. As a result,

Figure 21: Results of various modeling strategies on the pre-
specified events using full training data. Average precision
scores were measured on the 20% threshold partition used for
model fusion and threshold selection.

Figure 22: Ad Hoc event modeling performance on the full
training data task. Average precision scores were measured on
the 20% threshold partition used for model fusion and threshold
selection. ”Semantics (Single)” refers to video level aggrega-
tions of visual semantics ignoring temporal information. ”Se-
mantics (LTP)” refers to video level aggregations of visual se-
mantics using the Linear Temporal Pyramid (LTP).

we opted to train the low-level component run on all 10 training
examples, score the training dataset using these generated event



Figure 23: Ad Hoc event modeling performance on the limited
exemplar training data task. Average precision scores were mea-
sured on the 20% threshold partition (2 positive examples per
event) used for model fusion and threshold selection. The only
component to produce appreciable results was Visual Semantics
with Linear Temporal Pyramids and Random Subspace Projec-
tions for generation of synthetic training data.

models, and set the threshold as the minimum score produced by
the 10 positive examples. Therefore, we have no performance
plots to report for this case.

The following summarizes the components included in each
run our team submitted:

• Run 1: Low-Level event models only.

• Run 2: Limited Exemplar. Low-Level event models only.

• Run 3: Fusion of Visual and Audio Semantics, as well as
Visual Attributes.

• Run 4: Fusion of Visual and Audio Semantics, Visual At-
tributes, Low-Level, and Kernel Approximation methods.

Ad Hoc
Figure 22 summarizes the results of Ad Hoc full-exemplar

experiments. Visual semantics using single aggregations and
linear temporal pyramids are shown as the first two components,
followed by low-level event models, and the fusion between se-
mantics with temporal pyramids and low-level.

These experiments demonstrate an important observation:
linear temporal pyramids of semantics built on top of mostly
simple global features virutally matches the performance of
event models build directly on top of the more sophisticated low-
level features fused via ridge regression. This demonstrates that
semantic and temporal modeling on top of low-level features
holds great promise for significantly boosting the performance
of direct event modeling on top of low-level features.

For the Ad-Hoc limited exemplar case, we again attempted to
generate an 80% learning and 20% fusion split to assess perfor-

mance of each component method. This time we used tempo-
ral pyramids on top of visual semantics, and implemented Ran-
dom Subspace Projections to generate synthetic training data.
With RSS, 8 positive examples used for model learning were ex-
panded to 208. 2 positive examples used for Unit Model fusion
were expanded to 202 examples. Once models were trained us-
ing these two sets, and the subsequently produced models were
scored on the threshold dataset containing only the original 2
positive examples. The results of this approach are shown in
Figure 23, and was the only one to produce appreciable results;
therefore, it was selected for our submission.

The following summarizes the components included in each
run our team submitted:

• Run 5: Fusion of Visual Semantics using Linear Temporal
Pyramids and Low-Level event models.

• Run 6: Limited Exemplar. Visual Semantics using Lin-
ear Temporal Pyramids (levels 1-5) in conjunction with
random subspace projections to synthesize 200 additional
training data.

3 Conclusion

This year our team focused its efforts on pushing the boundaries
of novelty and originality to examine a variety of approaches
that, while alone may not achieve top performance, provide
unique and complimentary strengths in comparison to other sys-
tems. We performed a broad range of experiments that have
contributed useful information to each part of the event model-
ing pipeline. Our results suggest the following:

1. Methods that map low-level features to high-level seman-
tics improve event modeling performance, in comparison
to modeling directly on those same low-level features, in
both visual and audio domains.

2. Event kits data contain temporal patterns that when prop-
erly modeled, hold potential to signficantly improve per-
formance.

3. Mid-level visual attributes provide complimentary infor-
mation to both high-level semantics and low-level visual
features.

4. Kernel approximation methods greatly improving model-
ing and scoring efficiency, and show the potential to vastly
expand the array of techniques that are used in parallel to
model events on large datasets, which may lead to further
improvements in performance.



5. There is no ”magic bullet” method to model events based
on examples. The best approach is to use a broad variety
of techniques, and dynamically determine which methods
best model the unique characteristics of each event.

While our semantic runs were negatively effected by a bug in
our scoring pipeline, we intend to correct the problem and re-
run our internal experiments before the submission of the final
version of this manuscript.

References

[1] Murray Campbell, Alexander Haubold, Ming Liu, Apos-
tol Natsev, John R. Smith, Jelena Tesic, Lexing Xie, Rong
Yan, and Jun Yang. Ibm research trecvid-2007 video re-
trieval system. Proc. NIST TRECVID Workshop, 2007.

[2] Liangliang Cao, Shih-Fu Chang, Noel Codella, Courtenay
Cotton, Dan Ellis, Leiguang Gong, Matthew Hill, Gang
Hua, John Kender, Michele Merler, Yadong Mu, Apostol
Natsev, and John R. Smith. Ibm research and columbia uni-
versity trecvid-2011 multimedia event detection system.
Proc. NIST TRECVID Workshop, 2011.

[3] Noel C. F. Codella, Apostol Natsev, Gang Hua, Matthew
Hill, Liangliang Cao, Leiguang Gong, and John R. Smith.
Video event detection using temporal pyramids of visual
semantics with kernel optimization and model subspace
boosting. In IEEE International Conference on Multime-
dia and Expo, pages 747–752, 2012.

[4] A. Haubold and A. Natsev. Web-based information con-
tent and its application to concept-based video retrieval.
In ACM International Conference on Image and Video Re-
trieval (ACM CIVR), 2008.

[5] Yu-Gang Jiang, Guangnan Ye, Shih-Fu Chang, Daniel
P. W. Ellis, and Alexander C. Loui. Consumer video un-
derstanding: A benchmark database and an evaluation of
human and machine performance. In ACM International
Conference on Multimedia Retrieval (ICMR), Trento, Italy,
Trento, Apr 2011.

[6] George Kimeldorf and Grace Wahba. Some results on
tchebycheffian spline functions. In Journal of Mathemati-
cal Analysis and Applications, volume 33, 1971.

[7] Keansub Lee and D. P. W. Ellis. Audio-based semantic
concept classification for consumer video. IEEE Tr. Audio,
Speech, Lang. Proc., 18(6):1406–1416, Aug 2010.

[8] David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60:91–110, 2004.

[9] R.F. Lyon, M. Rehn, S. Bengio, T.C. Walters, and
G. Chechik. Sound retrieval and ranking using sparse au-
ditory representations. Neural Computation, 22(9), Sept.
2010.

[10] Lexing Xie Gang Hua Michele Merler, Bert Huang and
Apostol Natsev. Semantic model vectors for complex
video event recognition. In IEEE Transactions on Mul-
timedia, Special issue on Object and Event Classification
in Large-Scale Video Collections, 2012.

[11] Lawrence O. Hall W. Philip Kegelmeyer Nitesh V. Chawla,
Kevin W. Bowyer. Smote: Synthetic minority over-
sampling technique. In Journal of Artificial Intelligence
Research, volume 16, pages 321–357, 2002.

[12] Alan F. Smeaton, Paul Over, and Wessel Kraaij. High level
feature detection from video in trecvid: a 5-year retrospec-
tive of achievements. Multimedia Content Analysis, pages
151–174, 2009.

[13] Abdenour Hadid Timo Ahonen and Matti Pietikainen.
Face recognition with local binary patterns. In European
Conference on Computer Vision (ECCV), pages 469–481,
2004.

[14] Lorenzo Torresani, Martin Szummer, and Andrew Fitzgib-
bon. Efficient object category recognition using classemes.
In European Conference on Computer Vision, 2010.

[15] Jan C. van Gemert, Cees G. M. Snoek, Cor J. Veen-
man, Arnold W. M. Smeulders, and Jan-Mark Geusebroek.
Comparing compact codebooks for visual categorization.
Journal of Computer Vision and Image Understanding,
2010.

[16] Andrea Vedaldi and Andrew Zisserman. Efficient additive
kernels via explicit feature maps. In IEEE Trans. Pattern
Analysis and Machine Intelligence, volume 3, 2012.

[17] Dong Xu and Shih-Fu Chang. Video event recognition
using kernel methods with multilevel temporal alignment.
IEEE Trans on Pattern Analysis and Machine Intelligence,
30:1985 – 1997, 2008.

[18] R. Yan, M. Fleury, M. Merler, A. Natsev, and J. R. Smith.
Large-scale multimedia semantic concept modeling using
robust subspace bagging and mapreduce. In ACM Multi-
media Workshop on Large-Scale Multimedia Retrieval and
Mining (LS-MMRM), Oct. 2009.


