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ABSTRACT
Deep convolutional neural networks (CNNs) have re-
calibrated the state-of-the-art for a plethora of applications
in medical image analyzing such as segmentation and clas-
sification. Large receptive field is crucial for modeling long-
range spatial dependency in medical images. In this paper, we
propose a novel architectural network design for accomplish-
ing a full-image global receptive field, which we call spec-
tral residual block (SRB). Specifically, we propose to utilize
a unitary transform that essentially conducts a local-to-global
transform. All elements are mapped to spectral domain and
thus globally depend on each other. A variety of global op-
erators are carefully devised and efficiently enforce a full-
image receptive field, including spectral ReLU for frequency-
sensitive filtering and spectral convolutions. The output in
spectral domain is eventually converted back global-to-local
via a reverse unitary transform. The proposed framework is
generic and flexible, and could be applied to various network
structures and tasks. Comprehensive evaluations on skin le-
sion segmentation and Chest X-Ray classification show that
our method achieves the state-of-the-art performance, demon-
strating both effectiveness and efficiency.

Index Terms— Non-local, Medical image analysis, Seg-
mentation, Classification, Neural network

1. INTRODUCTION

Deep convolutional neural networks (CNNs) have become
major workhorses for a variety of medical image classifica-
tion and segmentation applications [1, 2]. The key build-
ing block in a majority of neural network architectures is
the convolutional layer, which relies on local connection and
learns filters capturing informative patterns across local spa-
tial neighborhood and feature channels. For many image-
oriented tasks (such as human pose estimation [3] or image
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(61772037).

segmentation [1]), investigating long-range spatial dependen-
cies, rather than local image pixels or regions, plays a key role
in contextual modeling. Typically, such long-distance depen-
dencies are modelled by large receptive fields, whose extents
can be enlarged by recurrently stacking many small-kernel
convolutional layers (such as the 3× 3 kernels in ResNet [4])
or using dilated or deformable convolutions [5]. More recent
solutions devise various non-local connections with learnable
parameters, exemplified by the self-attentive operator in [6].

All above-mentioned non-local convolutional schemes
suffer from several weaknesses. Firstly, the dominant solu-
tions like dilation [7] or deformable convolutions [8, 5] are
still essentially local. To capture long-range dependencies,
they need to be applied repeatedly to convey some message
to far locations. It only connects distant sites indirectly, thus
not effective enough. In addition, despite of fewer param-
eters to be tuned, it is also computationally inefficient and
arguably complicates the numerical optimization. Secondly,
the recent trend of directly connecting two positions within a
feature map [6, 9], though avoiding recurrent multi-hop prop-
agation, significantly increases the computational complexity
and is thus beyond the scope of most practitioners.

This work novelly designs spectral residual block, which
can be inserted into an ordinary neural network for accom-
plishing a global receptive field. This is achieved by two
paired operations: local-to-global and global-to-local trans-
forms. The former converts a feature map into some spectral
domain, wherein updating an element globally affects all oth-
ers. A number of spectral operators are defined, including
spectral ReLU for frequency-sensitive filtering and spectral
convolutions for channel-wise information fusion. When ap-
plied, they efficiently enforce a full-image receptive field. The
output in the spectral domain is finally de-correlated via the
global-to-local transform. Both cross-domain transforms are
efficiently implemented by some bi-linear unitary transforms,
either fixed or learnable by gradient back-propagation.

There are several advantages of spectral residual block:
1) The proposed framework is generic, instantiated by vari-
ous unitary transforms and spectral operators. In particular,
we mainly choose Fourier transform for demonstration pur-
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Fig. 1. Illustration of the spectral residual block (SRB). X̂ = f(X) and Y = f−1(ϕ(X̂)) +X (note the residual link between X,Y).

pose; 2) It provides more powerful long-range dependencies
than [8, 5] by spectrally computing interactions between any
two positions, regardless of their positional distance. 3) It also
requires significantly lower complexity and fewer parameters
than [6, 9], to achieve a similar level of performance.

We experiment with two medical image analysis tasks,
skin lesion segmentation and chest X-Ray classification, to
showcase the effectiveness of the proposed method. For the
segmentation task, the global receptive field helps to diag-
nose some large or indistinguishable skin lesions, while in
chest X-ray classification our method allows the model to
analyze a larger range area to detect the potential abnormal
region, thus long-range context is regarded to be useful in
both tasks. Comprehensive evaluations and ablative stud-
ies are conducted on two medical image benchmarks. Our
method achieves state-of-the-art results on all experimental
settings. This strongly demonstrates the empirical effective-
ness of richer contextual modeling brought by global recep-
tive field in a spectral domain.

2. FORMULATION AND INSTANTIATION
In this section, we first introduce the detailed formulation of
the module we designed and some symbol definitions. Then
we introduce two kinds of instantiations of the local-to-global
transform. Finally, we analyze the computational complexity
of each part of the proposed module.
Formulation: Fig. 1 shows a typical application scenario for
spectral residual block (hereafter SRB in short). Given an
ordinary deep CNN (like Unet [1] or ResNet [4]), the SRB can
be flexibly inserted wherever long-range dependencies need
to be tackled. Let X,Y ∈ RH×W×C be the input / output
tensors to an SRB, respectively. The mechanism of an SRB
can be compactly described as:

Y = f−1 (ϕ(f(X)) + f(X)) = f−1 (ϕ(f(X))) + X, (1)

where f denotes the local-to-global linear transform while
f−1 denotes the global-to-local transform and f−1(f(X)) =
X holds. ϕ : RH×W×C 7→ RH×W×C is some task-specific
sub-network that operates on the global tensor X̂ = f(X).

Here, we introduce two unitary matrices on the complex
domain P ∈ CH×H and Q ∈ CW×W . Let concat() be an
operator that concatenates a number of arrays along specific
dimension, and Xc ∈ RH×W be the cth channel of X. The

global-to-local / local-to-global transforms are computed in a
channel-wise fashion as below for efficacy consideration:

f(X) = concat (PX1Q, . . . ,PXCQ) , (2)

f−1(Ŷ) = concat
(

P∗Ŷ1Q∗, . . . ,P∗ŶCQ∗
)

(3)

where ∗ denotes conjugate transpose matrix. It is obvious that
f(X) is globalized, with each entry correlated with all others
in the same feature channel. A simple derivation of Eqn. (1)
shows ϕ(f(X)) = f(Y) − f(X) = f(Y − X) since f is
linear. It implies that ϕ is actually designed to approximate
the residual Y− X in some global domain induced by f .
Instantiation of f : In this proposed framework, f can be
flexibly defined. This work provides two different instanti-
ations, one is with fixed P and Q implemented as discrete
Fourier transform (DFT), while the other one with learnable
matrix adapted via gradient back-propagation.

Fourier transform is widely adopted in signal processing.
It converts a function of signals into the frequencies that make
it up, in a reversible way. Discrete Fourier transform can be
accomplished by matrix multiplication over complex num-
bers. The 2-D DFT can be formulated in the form of:

DFT (X) = PFFT XQFFT (4)

where PFFT ,QFFT are some special structural unitary ma-
trices that enable fast Fourier transform (FFT). In this senario,
we set f(X) = DFT (X) in Eqn. (2) and f−1 to inverse DFT.
It should be noted that some other commonly used spectral
transforms such as discrete cosine transform (DCT), or dis-
crete wavelet transform (DWT) can also be instantiated as f .
For efficiency, we only discuss the DFT version here.

The P and Q matrices are fixed in the DFT version. We
further propose a version which allows P and Q to be learned
automatically in training. In this version, both P and Q are ini-
tialized as real orthogonal matrices with normal distribution.
In other words: PPT = PT P = IH×H and QQT = QT Q =
IW×W . All values in the matrix can be adapted via the gra-
dient back-propagation process. However, simple application
of back-propagation may lead to non-orthogonal matrices. To
ensure the orthogonality, a QR decomposition is adopted as a
post-processing after each gradient-based update. This can be
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Fig. 2. The instantiation of SRB where f is FFT or AOM, f−1 is inverse FFT or AOM. Channel number in the blue blocks K = C/2 in
practice. ϕ is comprised of spectral version of 1× 1 group convolution / BN / ReLU. The peachy squares represent learnable parameters.

expressed as follows:

Pt = P̃
t
Rt

p, Pt+1 ← P̃
t

(5)

Qt = Q̃
t
Rt

q, Qt+1 ← Q̃
t

(6)

where P̃
t
,Rt

p are orthogonal and upper triangular matrix at

step t, respectively. And Pt+1 is simply set to P̃
t

in the post-
processing. The Q matrix could also be re-orthogonalized
in a similar fashion. We call this adaptive orthogonal matrix
(AOM) version.
Instantiation of ϕ : Fig. 2 shows an instance of ϕ inspired
by the bottle-neck block in ResNet [4]. It is comprised of a
pair of 1 × 1 convolutions which do channel reduction and
promotion respectively, batch normalization (BN) and ReLU.
Whenever needed, we use the prefix spectral to emphasize
all operations are conducted in a spectral domain. The com-
putations of spectral convolutions / BN are identical to ordi-
nary versions, yet operating on spectral frequencies and with
each update affect all image positions. For a globalized ten-
sor Z ∈ RH×W×K , spectral ReLU is controlled by learnable
parameters W,B ∈ RH×W and defined as:

Zi,j,k ← max (Wi,j · Zi,j,k + Bi,j , 0) , (7)
(i, j, k) ∈ [1 . . . H]× [1 . . .W ]× [1 . . .K],

which essentially does the job of frequency-sensitive filtering.
The learnable parameter α in Fig. 2 is introduced to balance
the residual block and original X as defined in Eqn. (1). And
α = 0 initializes an identity mapping in practice.

3. EVALUATIONS
To evaluate the effectiveness of our proposed method, we ex-
perimented on two large public medical datasets. Extensive
ablative studies are also conducted to investigate the key fac-
tors. For all the baselines, we adopt the original implementa-
tions by authors if it is available, or re-implemented by ourself
using the PyTorch framework.

3.1. Skin Lesion Segmentation
The first study is conducted on the ISIC Archive dataset [10]
for skin lesion segmentation, which is known as the largest
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Fig. 3. The Resnet-50 backbone and the SPM inspired by [11].
One SRB block is inserted before the 3*3 conv to capture the global
information. Dilated convolution is adopted to keep the feature map
resolution, which is denoted as “d-convs” in the diagram.

publicly available collection of quality-controlled dermo-
scopic images of skin lesions. The lesion images were
acquired with a variety of dermatoscope types, from all
anatomic sites (excluding mucosa and nails). Ground truth
masks are obtained by several means: fully automatically la-
beled and checked by human experts, hand-crafted flood-fill
algorithm, or manual polygon tracing. All 2,594 images with
mask annotations are included in our experiments.All original
images are uniformly resized to 512×512 before being fed to
the networks. Since the ground truth labels of original test
data are confidentially kept by dataset organizer, the direct
comparison between our methods and the original competing
methods is infeasible. We randomly shuffle the entire data
and build our own data partition: 90% for training and 10%
for evaluation.

Classic U-Net [1] and a simple parallel module (SPM)
inspired by the DeepLab V3 [11] are adopted as our basic
models, waiting for SRB application. The two basic mod-
els’ architecture are shown in the Fig. 1 and Fig. 3 respec-
tively. The popular ResNet-50 [4] is selected as the back-
bone of all basic models. For fair comparisons, all models are
trained from scratch and no data augmentation is applied. The
pixel-wise cross-entropy loss is used as the loss function and
an Adam optimizer with default setting (learning rate=10−3,
momentum=0.9, weight-decay=10−4) is adopted to tune all
the parameters. We train all models for 150 epochs for full
convergence. Following FCN [12], pixel-wise segmentation
accuracy and IoU metrics on the test set are jointly used for
performance comparison.

We first select three very powerful methods as
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Table 1. Comparison with state-of-the-art methods on skin le-
sion segmentation. All models except the U-Net use the ResNet-50
as backbone. FW IoU is the frequency weighted intersection over
union. Over Acc represents the Overall Accuracy. Params indicates
the number of model parameters.

Model Mean Acc Over Acc Mean IoU FW IoU Params(M)
PSPNet 92.11 95.55 87.23 91.58 68.06
DeepLabV3 92.66 95.73 87.76 91.93 39.76
DANet 92.84 95.60 87.51 91.72 49.49
U-Net 91.84 94.64 85.17 90.08 1.943
+4 SRBF 92.93 95.66 87.66 91.83 2.076
SPM 93.14 95.62 87.60 91.77 29.59
+1 SRBF 93.25 95.72 87.87 91.95 31.70

Table 2. Experimental results and ablation study for skin lesion
segmentation. U-Net∗ denotes the model removed the last maxpool-
ing layer. upN denotes the Nth up-sampling layer in U-Net’s de-
coder. Among all, up4 is closest to the encoder. The sign a/ means
after and b/ means before.

Model Mean Acc Over Acc Mean IoU FW IoU
U-Net 91.84 94.64 85.17 90.08

+1 SRBF 92.21 95.41 86.92 91.35
+2 SRBF 92.80 95.46 87.17 91.48
+3 SRBF 92.75 95.64 87.57 91.78
+4 SRBF 92.93 95.66 87.66 91.83
+1 SRBA 92.02 95.40 86.86 91.33
+2 SRBA 92.09 95.60 87.34 91.67
+3 SRBA 92.65 95.40 87.01 91.38
+4 SRBA 92.95 95.60 87.53 91.73

U-Net∗ 90.60 93.79 83.10 88.65
+1 a/ up2 92.14 95.05 86.12 90.77
+1 a/ up3 91.87 95.48 86.99 91.44
+1 a/ up4 91.87 95.54 87.14 91.55
+1 b/ up4 92.38 95.61 87.42 91.70

+1 Nonlocal 91.92 95.33 86.69 91.22
+1 A2-Net 91.36 95.09 86.03 90.78

the baselines for comparison, which are PSPNet [13],
DeepLab V3 [11] and DANet [14] respectively. Results are
shown in the Table 1. It can be seen that by inserting four
SRBF s into the U-Net, there is a huge improvement in each
indicator, especially the ∼2.5 points improvement on Mean
IoU. And this help the U-Net achieve the comparable state-of-
the-art result with much less parameters (nearly 20 times less
than DeepLabV3). At the same time, only one SRBF module
insertion in SPM made it instantly exceed all the baselines and
get a new state-of-the-art performance with less model pa-
rameters than the previous methods. Compared to U-Net, the
promotion is not so impressive, and we believe this is because
that the backbone ResNet-50 network is already a relatively
deep network with a large receptive field, not to mention the
use of dilated convolutions, which may lead to saturated per-
formance.

Next, in order to better explore the influence of the num-
bers of SRB insertion, we choose the basic U-Net as the back-
bone and conduct some detailed ablation studies. First, we ex-
plore the number of SRBs and the effect of different f instan-
tiation. The results are shown in the upper and middle parts of
the Table 2. As seen from the table, inserting one SRB could
bring a massive improvement, while the inclusion of more
SRBs slightly improves in both FFT or AOM situations, yet
the resultant gains diminished quickly. We believe that in-

Table 3. Comparisons with other non-local blocks on skin lesion
segmentation. The increment of computation and parameters by
adding one block before the 4th up-sampling layer in the U-Net∗.

Model SRBF SRBA Non-local A2-Net
∆ GFLOPs 0.028 0.031 2.126 0.071

∆ Params(K) 8.704 8.448 33.02 16.64

serting one SRB can enhance the model’s receptive field ef-
fectively, while the benefits of more are limited. At the same
time, it can be observed that the upgrades brought by the dif-
ferent SRBs are similar. We believe the reason that the SRBA

did not achieve better results may due to the loss of some use-
ful information in QR decomposition post-processing. Con-
sidering that SRBA requires more computation, the SRBF

is thus more favored in practice.
To explore the importance of the receptive field and the

effect of insertion locations in the network backbone, we first
remove the max pooling 4 layer in the decoder of U-Net (de-
noted as U-Net∗ in Table 2), which brings a reduced receptive
field for segmentation and thus supposedly easier to observe
the effect of SRB. The lower part of the Table 2 shows that
after removing the topmost layers, the baseline U-Net∗ drops
by 2 points in terms of Mean IoU. The models obtained by
inserting a single SRBF at different locations consistently
improve the performance metrics. Interestingly, the deeper
the inserted position is, the better performance we get. This
is because the feature of the deeper position contains more
high-level semantic information, which is more conducive to
extract relevant information.

For fair comparison, we also compared the performance
with two other non-local neural blocks the Non-local [6] and
A2-Nets [15]. Same as the above setting, we insert one block
into the U-Net∗ before the 4th up-sampling layer, respec-
tively. And the result are shown in the bottom part of Ta-
ble 2. It is obvious that our method achieved the best result
with the lowest computation complexity and least parameters
increment, which can be clarified in the Table 3.

To demonstrate the effectiveness more intuitively. Fig. 4
contrasts some segmentation masks obtained by U-Net and
our proposed method. Guided by richer context brought by
global receptive field, our model can achieve excellent re-
sults even on many challenging scenarios. Take the picture
in the column (C) as an example, the lesion is very inconspic-
uous, and U-Net can not segment any region. Benefit from
the global receptive field in SRB insertion, the overall infor-
mation is fused and compared, and then the inapparent lesions
are more easily to be distinguished in our method.

3.2. Thoracic Disease Classification

To evaluate the proposed method on the medical image clas-
sification task, we conduct the second experiment on the
ChestX-ray14 [16] dataset, which collects 112,120 frontal-
view images of 30,805 unique patients. Among the images,
51,708 are labeled with up to 14 pathologies, while others are
marked as “no finding”. In this way, each image is associated
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Fig. 4. Visualization of skin lesion segmentation results. Each column is an example. The green region on original images indicate the
residual between our result and the ground truth.

Table 4. Comparing classification performances on ChestX-ray14 [16]. Each pathology is denoted by its first four characters, except that
Pneu1 and Pneu2 are for Pneumonia and Pneumothorax respectively. Due to space limit, only a subset of pathologies are shown. The “mean”
column is averaged over all 14 pathologies. R50 / D121 are the abbreviations of ResNet-50 / DenseNet-121 respectively.

Method Atel Card Effu Infi Mass Nodu Pne1 Pne2 Cons Edem Fibr Pleu Mean
Wang et al.[16] 0.716 0.807 0.784 0.609 0.706 0.671 0.633 0.806 0.708 0.835 0.769 0.708 0.738
Yao et al.[17] 0.772 0.904 0.859 0.695 0.792 0.717 0.713 0.841 0.788 0.882 0.767 0.765 0.803

Rajpurkar et al.[18] 0.821 0.905 0.883 0.720 0.862 0.777 0.763 0.893 0.794 0.893 0.804 0.814 0.842
Kumar et al.[19] 0.762 0.913 0.864 0.692 0.750 0.666 0.715 0.859 0.784 0.888 0.756 0.774 0.795

Li et al.[20] 0.800 0.870 0.870 0.700 0.830 0.750 0.670 0.870 0.800 0.880 0.780 0.790 0.806
R50 0.823 0.908 0.881 0.715 0.868 0.777 0.760 0.881 0.804 0.901 0.824 0.820 0.837

R50 + 2 SRBF 0.830 0.917 0.887 0.726 0.881 0.797 0.766 0.896 0.811 0.906 0.834 0.828 0.848
D121 0.825 0.915 0.882 0.715 0.873 0.778 0.758 0.891 0.813 0.901 0.833 0.820 0.841

D121 + 2 SRBF 0.828 0.914 0.883 0.714 0.876 0.791 0.762 0.900 0.811 0.903 0.835 0.816 0.847

with a 14-D multi-hot label vector, with each dimension rep-
resenting for a separate pathology. We randomly shuffle and
split it into two sub-sets with a ratio of 1:4. The larger sub-
set with 89696 images is used for model training and the rest
with 22424 images is used for the evaluation purpose.

In all experiments, the original images will be first resized
to 240 × 240. Standard engineering tricks (such as random
cropping, color jittering, horizontal flipping, mulit-crop aver-
age etc.) are applied at either the training or evaluation stage.
Following common practice [18], ResNet-50 and DenseNet-
121 are utilized as our network backbones, and a weighted
binary cross-entropy layer is appended to render the classifi-
cation loss. All models are optimized in a typical setting (e.g.,
Adam optimizer, an initial learning rate of 10−3 that attenu-
ates by 1/10 for every 20 epochs, a momentum of 0.9). The
early stop strategy is adopted to avoid over-fitting. AUC (the
area under the receiver operating characteristic curve) score
is used as the performance metric.

Table 4 summarizes the AUC scores obtained by various
competing methods and several variants of our model. It can
be observed that our method dominates all the baseline meth-
ods by inserting two additional SRBF s into the basic models
(R50 and D121) in Table 4. We can also find that the same

SRB could bring more promotion on the ResNet-50 than the
DenseNet-121. This is also due to the fact that deeper models
(DenseNet-121) have an already larger receptive field, which
is consistent with the conclusion we have in the skin segmen-
tation experiments. However, with the addition of SRB, we
can achieve the comparable or even better results by simpler
models with fewer parameters than larger models.

For ablative studies, we also investigate different loca-
tions in the backbone to insert SRB (e.g., after different resid-
ual blocks of ResNet-50) and the number of inserted SRB
(varying from 1-3 SRBs). However, the resulting changes
of the performances with SRB are surprisingly almost neg-
ligible. We attribute this to the fact that classification is a
single-output problem and is thus less dependent on the spa-
tial context. Another explanation is that a quantity of thoracic
disease are relatively located in a pretty small range, so that
the global information has limited influences to improve the
results, which can be backed up in Figure 5.

To interpret the network predictions, we also produce
heatmaps to visualize the most indicative areas of the dis-
ease in the image using the class activation mappings (CAMs)
[21]. Figure 5 shows several examples of the CAMs on the
14-class pathology classification task. We can clearly see that
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for a wide range of lesions, our method can effectively diag-
nose and locate the lesions accurately, even if they are dis-
tributed in different parts of the chest, such as the effusion oc-
curs in 1(C) and the infiltrate shown in 2(A). However, there
are a lot of samples in which the pathology is just in a very
small region, such as 2(B) and 2(C). In these cases, the global
receptive field is difficult to play a large role, so there are some
deviations on the pathologies localization.

(A)                   (B)                   (C)

1

Atelectasis

Atelectasis

Cardiomegaly

Cardiomegaly

Effusion

Effusion

Infiltrate

Infiltrate

Nodule

Nodule

2

Fig. 5. Examples of pathologies localization using Class Activation
Maps on the test images, which highlight the areas of the X-ray that
are most important for making a particular pathology classification.
All examples are positive for corresponding labels. The ground truth
bounding boxes in green on the results are provided by the dataset.

4. CONCLUDING REMARKS
We proposed a novel method for learning global receptive
field in deep neural networks. Our key idea is conducting
residual learning in some spectral domain brought by bilinear
unitary transform based local-to-global transform. We care-
fully design several spectral operators and empirically vali-
date the proposed spectral residual blocks on two public large-
scale datasets. Strong evidence is observed to demonstrate its
effectiveness and generalisability on different medical image
analysis tasks. For future work, we can extend the transform
to 3D data, such as CT or MR data. By integrating informa-
tion on different slices, we believe this will lead to further
performance promotion.
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