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ABSTRACT
The fact that video annotation is labor-intensive inspires recent
research to endeavor on few-shot video classification. The core
motivation of our work is to mitigate the supervision scarcity issue
in this few-shot setting via cross-domain meta-learning. Particu-
larly, we aim to harness large-scale richly-annotated image data (i.e.,
source domain) for few-shot video classification (i.e., target domain).
The source data is heterogeneous (image v.s. video) and has noisy
labels, not directly usable in the target domain. This work proposes
meta-learning input-transformer (MLIT), a novel deep network that
tames the noisy source data such that they are more amenable
for being used in the target domain. It has two key traits. First, to
bridge the data distribution gap between source / target domains,
MLIT includes learnable neural layers to reweigh and transform
the source data, effectively suppressing corrupted or noisy source
data. Secondly, MLIT is designed to learn from historic video clas-
sification tasks in the target domain, which significantly elevates
the accuracy of the unseen video category. Comprehensive empiri-
cal evaluations on two large-scale video datasets, ActivityNet and
Kinetics-400, have strongly shown the superiority of our proposed
method.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks; • In-
formation systems→ Information systems applications.
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1 INTRODUCTION
Deep learning has revolutionarily re-calibrated the state-of-the-art
of many research tasks in the domains of computer vision, natural
language processing and robotics etc. Despite its empirical success,
some open problems remain unsolved. One of the most notorious
ones is the data-hungry issue. Typically, gigantic meticulously-
annotated data is required to ensure the learned model’s general-
ization performance. Considering that annotating data can be intol-
erably labor-, money- and time-consuming in many tasks, learning
from small samples (known as few-shot learning in the literature)
becomes a technique that requires urgent exploration.

This work addresses few-shot video classification. Since video an-
notation demands at least a full-pass browsing of inspected videos,
the scarcity of annotated data becomes particularly severe in video-
oriented research. Although some large-scale video benchmarks
have been recently established (such as Kinetics [11]), their tremen-
dous annotating cost implies that this strategy cannot be trivially
applied to other novel video categories. Our work is distinguished
from exiting few-shot video classification methods by exploring
two insights:

First, a majority of previous relevant efforts (such as compound
memory network in [41]) only use very limited training samples and
focus on maximally squeezing useful information from them. We
here advocate a different approach of using cross-domain data. For
example, web images can be semi-automatically annotated by their
surrounding text. This sets up a massive albeit noisily-labeled data
domain (hereafter referred to as the source domain). To overcome
the domain discrepancy issue, we develop meta-learning input-
transformer (MLIT), which aims to tame the source data such that
they are more amenable for effectively augmenting the original few-
shot data in the target domain. Specifically, MLIT jointly re-weighs
each sample in the source / target domain based on its relative
importance and mutual complementariness.

Secondly, some early work on few-shot learning [16] revealed
the importance of taking advantage of previously-learned tasks
when learning a new task. More recent progress elaborates on
a novel learning-to-learn paradigm [4, 25, 38], dubbed as meta-
learning. The learned model in meta-learning, called meta-learner,
tunes part of its parameters concurrently by all historic relevant
tasks and optimizes the rest specially for the current task. It is
task-dependent to design the specific module whose parameters
are used to “memorize" historic tasks. The module could be an opti-
mizer [25], a scheme of parameter initialization [4], or a predictor
for learner’s weights [38]. In our proposed MLIT, a novel class-wise
memory module and a transformer module are where previous
video classification tasks pilot the re-weighing of all source / target
data in a new task.
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The proposed MLIT utilizes meta-learning for cross-domain
data transfer. On the one hand, data from another source domain,
transformed by MLIT, effectively mitigates the data scarcity issue in
few-shot learning. On the other hand, the meta-learning framework
enables learning from relevant tasks, which further elevates the
performance.We conduct comprehensive experiments on two large-
scale video classification datasets, ActivityNet [9] and Kinetics-
400 [11]. All results strongly show that our model re-calibrates the
state-of-the-art of few-shot video classification. We also provide
various ablation study for algorithm analysis.

2 RELATEDWORK
Few-shot Learning: The early development of few-shot learning
can at least date back to [20]. Later, [14, 16] both devised genera-
tive models for one-shot learning. Very recently, the renaissance
of deep neural networks [13] spurred various few-shot learning
systems comprised of neural layers. For example, learning task-
dependent metric from few samples exhibited strong performance
when deep networks were adopted as the backbone of the model,
including Siamese network [12], matching network [34], proto-
typical network [28], relation network [30] etc. Early thoughts
about enhancing the very limited training data can be exempli-
fied by hallucinating additional training examples for data-starved
classes [6], or harvesting auxiliary machine-labeled web images for
cross-domain object recognition [39].
Meta-learning: The concept of meta-learning or learning-to-learn
was previously developed in [22, 26, 31]. Unlike conventional su-
pervised learning, meta-learning treats a learning task (with its
own training and testing data) as an individual “sample". It aims
to learn a meta-learner on a group of tasks, such that the learned
meta-leaner can adapt to a new task with least effort and be more
overfitting-resistant. To this end, part of its parameters are designed
to “memorize" historic tasks, and the rest are specially optimized
for a new task. The module used to “memorize" historic tasks varies
across different tasks. For example, the module could be an opti-
mizer [1, 17, 25], a scheme of parameter initialization [4], a predictor
for learner’s weights [38], a collection of optimization settings (e.g.,
initial parameters, update direction and learning rate) [18]. In [21],
authors designed this module as a learnable black-box function
instead of a hand-crafted one.
Video Classification: It has been a long-standing research task
and recently revolutionized by deep networks. Early works used
hand-designed features like STIP [15] and improved dense trajecto-
ries (iDT) [35]. Recent research has emphasized end-to-end deep
networks, particularly 3-D convolutional CNN [2, 24, 32], recurrent
networks [23, 40], and multi-stream fusion [27, 36]. All aforemen-
tioned methods suffer from the intrinsic data-hungry issue of deep
models. Few-shot video classification, which is the main scope of
this work, aims to relieve the data requirement and obtain good
model performance with few training videos.

3 APPROACH
3.1 Task Settings
Our formulation for few-shot video classification elegantly uni-
fies both cross-domain data transfer and learning from historic
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Figure 1: Illustration of an episode of 4-way 2-shot meta-
learning.

tasks under meta-learning framework. Formally, we have three
meta sets called meta-training, meta-validation and meta-testing
set respectively. The role of meta-sets is essentially akin to the
train / validation / test sets in standard supervised learning, but
the “samples" in meta-sets are few-shot classification tasks rather
than individual videos. Training a meta-learner is accomplished
by performing a series of 𝑛-way 𝑘-shot episodes (analogous to an
optimization iteration in standard supervised learning). To start a
new episode, the algorithm samples 𝑛 categories from one meta-set,
with 𝑘 videos selected for each of them, forming a support set of
𝑛 × 𝑘 samples. Likewise we construct another query set for evaluat-
ing models adapted on the support set. Figure 1 depicts a typical
4-way 2-shot episode in few-shot video classification.

A meta-learner is expected to fully memorize category-agnostic
knowledge from episodes sampled from meta-training, and gener-
alize well to episodes in meta-testing with novel categories. To this
end, the optimization of a meta-learner is performed as follows:
we first optimize the loss on the support set to refine all episode-
dependent parameters. Then the loss on the query set is calculated,
but the corresponding gradient is only used to update all episode-
independent parameters (which encode common knowledge for
all categories). When learning never-seen categories from meta-
testing, the episode-independent parameters are frozen, and the
rest are optimized via the support set. Performance on the query set
is recorded for each episode, and averaged accuracy on all episodes
in meta-testing are taken as the generalization performance of the
meta-learner. The whole process is described in Algorithm 1.

Our model exploits other cross-domain data sources that are
imperfect but plentiful. Particularly, we treat each video category



Algorithm 1 Cross-Domain Meta-Learning for Few-Shot Video
Classification
1: Input: data sets including meta-train D𝑚𝑒𝑡𝑎_𝑡𝑟𝑎𝑖𝑛 , meta-val
D𝑚𝑒𝑡𝑎_𝑣𝑎𝑙 and meta-test D𝑚𝑒𝑡𝑎_𝑡𝑒𝑠𝑡 , all of which are augmented
by webly-crawled images;

2: Parameters: FC layers in feature extractor; LSTM in MLIT; hyper-
parameters (visual feature dimension, memory size and𝑇 in MLIT etc.);

3: Output: Feature extractor; LSTM; down-stream classifier;
Phase of Meta-Training

4: for each episode do
5: Sample 𝑛 video classes from D𝑚𝑒𝑡𝑎_𝑡𝑟𝑎𝑖𝑛 each with 𝑘 examples in

support and some others as query, creating a 𝑛-way 𝑘-shot episode;
6: (On the support set) Run feature extractor; Insert feature vectors

into the memory module of MLIT;
7: (On the support set) Run transformer module and obtain 𝑤 for each

frame and web image; Calculate class prototypes by weighted sum-
mation of support features;

8: (On the query set) Extract video feature; Calculate video classification
loss and perform gradient descent to update model parameters;

9: end for

Phase of Meta-Validation

10: for each episode do
11: Sample from D𝑚𝑒𝑡𝑎_𝑣𝑎𝑙 and create a 𝑛-way 𝑘-shot episode;
12: Adapt task-dependent parameters on support set; Calculate and

record video classification loss on query set;
13: end for
14: Select optimal hyper-parameters;

Phase of Meta-Testing

15: for each episode do
16: Sample from D𝑚𝑒𝑡𝑎_𝑡𝑒𝑠𝑡 and create a 𝑛-way 𝑘-shot episode;
17: Adapt task-dependent parameters on support set; Calculate and

record video classification loss on query set;
18: end for
19: Calculate average accuracy;

name as keywords (with proper processing, such as converting
“passing American football (not in game)" to “passing American
football -game") and retrieve top-ranked images from Google’s
image search engine. Note that webly-crawled images are only
required in the support set since classifying videos in the query set
does not rely on external information, as shown in Figure 1.

The proposed model is comprised of three components: feature
extractor,meta-learning input-transformer (MLIT) and down-stream
classifier. Following a common practice in few-shot learning, the
classifier we adopt is a prototypical one, namely weighted average
of all training samples (including web images and video frames)
from specific video category. A novel video will be classified to the
closest prototype’s class. To update model parameters, classification
loss needs to be calculated on the query set, which roots the gradient
to be back-propagated. Suppose video x belongs to class 𝑐 among
all 𝑛 video classes in an episode. Inspired by [41], we use the loss
function below:

L(x, 𝑐) = max(𝛼 − 𝑠𝑐 (x) + sup
𝑘∈{1...𝑛}\𝑐

𝑠𝑘 (x), 0), (1)

where 𝑠𝑐 (x) is the classifier confidence of class 𝑐 for video x and
𝛼 is a hyper-parameter that defines the level of margin between
positive / negative classes.

3.2 Feature Extractor
Importantly, the image / video domains are intrinsically heteroge-
neous. To fairly compare with competitors (such as CMN [41]), we
simply follow the common practice that ignores the video temporal
dynamics and treat each video as a loose set of frames. All video
frames and webly-crawled images are fed into a feature extrac-
tor.Video frames and images first go through some pre-trained deep
model (we adopt ResNet50 [7, 8]). The feature map of the penul-
timate layer is extracted and flattened into a 2,048-dimensional
vector. A learnable fully-connected (FC) layer is followed to tune
the general features to be more task-specific.

3.3 Meta-Learning Input-Transformer (MLIT)
The core of ourmodel, whichwe call asmeta-learning input-transformer
(MLIT), is a new kind of meta-learner characterized with cross-
domain data transfer and memory-based meta learning. It is com-
prised of a memory module and a transformer module, as illustrated
in Figure 2.

3.3.1 Class-wise Memory Module. Memory module [5, 10, 33, 37]
is one of the research front in few-shot learning. It resembles a phys-
ical storage to store and fetch data. Modern representative memory
modules include end-to-end memory network [29] and key-value
memory network [19] etc. Previous works often use one single
memory where stored data from different classes are unsorted. In
order to model the class-aware context more conveniently, we de-
vise a dexterous memory module which stores different-class data
at isolated parts. Its architecture is found in Figure 2. For statement
clarity, let us denote the whole memory as𝑀𝑒𝑚 and sub-part for
class 𝑐 as𝑀𝑒𝑚𝑐 . 𝑐 = 1 . . . 𝑛 for 𝑛-way episode.

In all meta-learning phases, we first extract features of video
frames in the support set, and store each of them in corresponding
memory part 𝑀𝑒𝑚𝑐 based on its class 𝑐 (assume frames inherit
the video label). Web images are excluded from updating 𝑀𝑒𝑚
considering their inherent noises, thus unsuitable to serve as bases
of attention model as explained in Equations (3)(5). Given limited
slots in each 𝑀𝑒𝑚𝑐 , we pre-select a random sub-set frames from
the query set in order to fit the capacity of all𝑀𝑒𝑚𝑐 .

3.3.2 Attentional Transformer Module. The transformer module
in Figure 2 is based on LSTM and class-wise attention model. Its
main function is to re-weigh cross-domain data, such that most
informative data will be assigned higher weight in calculating class
prototype. The controller logic of transformer module is defined by
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Figure 2: Architecture of meta-learning input-transformer (MLIT). Better viewing in color mode.

the formulas below:

(𝐿𝑆𝑇𝑀) :𝑞𝑡 = 𝐿𝑆𝑇𝑀 (𝑞∗𝑡−1), (2)

(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛) :𝑒𝑖,𝑡 = 𝜓 (𝑚𝑖 )⊤𝜓 (𝑞𝑡 ), (3)

𝑎𝑖,𝑡 =
exp(𝑒𝑖,𝑡 )∑
𝑗 exp(𝑒 𝑗,𝑡 )

, (4)

(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛) :𝑟𝑡 =
∑
𝑖

𝑎𝑖,𝑡𝑚𝑖 , (5)

(𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛) :𝑞∗𝑡 = [𝑞𝑡 𝑟𝑡 ], (6)

(𝑊𝑒𝑖𝑔ℎ𝑡) :𝑤 = 𝑞⊤0 𝑞𝑇 , (7)

where𝜓 (·) denotes some learnable vector-to-vector mapping func-
tion.

For an arbitrary input instance (could be either a video frame or
web image), it first goes through the feature extractor as described
in Section 3.2. Denote the feature vector as 𝑞0 ∈ R𝑑 . The LSTM
unit in Figure 2 is initialized by simple all-zero cell state, and gets
recurrently updated according to Eqn. (2)-(6). This generates a se-
quence of hidden states 𝑞1, . . . , 𝑞𝑇 , where𝑇 is a hyper-parameter to
be tuned. Let 𝑐 be the video class that this instance is known to be
from or hypothesized. Critically, only slots in𝑀𝑒𝑚𝑐 are involved
in the computations. Denote the vector fetched from the 𝑖-th slot
of𝑀𝑒𝑚𝑐 as𝑚𝑖 ∈ R𝑑 . The computation at the recurrent iteration 𝑡
starts from comparing 𝑞𝑡 with each𝑚𝑖 , according to Eqns. (3)(4).
The resultant 𝑒𝑖,𝑡 are further normalized to obtain the attention
score 𝑎𝑖,𝑡 , which are then used to attentionally sum the memory

vectors to get an aggregated vector 𝑟𝑡 . Intuitively, 𝑟𝑡 encodes all rel-
evant information from the memory module to currently-inspected
instance. As seen in Eqn. (6), we finally concatenate 𝑟𝑡 and 𝑞𝑡 itself
for feeding the LSTM unit, generating a new hidden state (also the
input to the next recurrence) 𝑞𝑡+1.

Above recurrences do the job of progressively removing irrel-
evant information from the input instance. This module is richly
parameterized. It is thus capable of learning an optimal module
such that the final hidden state 𝑞𝑇 after 𝑇 steps preserves most of
class-specific information. Intuitively, large gap between 𝑞0 and
𝑞𝑇 implies a high level of noise in the input. We multiply the two
as Eqn. (7) to obtain a scalar𝑤 that plays a key role in computing
down-stream classifiers.

3.4 Down-Stream Classifier
After all frames / web images in the support set are weighted accord-
ing to Eqn. (7), we obtain a full collection of weights𝑤𝑐,𝑗 ( 𝑗 indexes
the frame and web image) for each class 𝑐 . A contextual weight
can be further computed via 𝑤𝑐,𝑗 ← exp(𝑤𝑐,𝑗 )/

∑
𝑗 exp(𝑤𝑐,𝑗 ). A

class-specific prototype 𝑝𝑐 (𝑐 = 1 . . . 𝑛 for all 𝑛 video categories) is
simply computed via weighted average, namely

𝑝𝑐 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
©­«
∑
𝑗

𝑤𝑐,𝑗 · 𝑞0 ( 𝑗)
ª®¬ , (8)

where 𝑞0 ( 𝑗) denotes extracted feature of video 𝑗 and 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 ()
ensures all prototypical vectors have unit norm.



When conducting classification on a querying video, we first
extract all of its frame features, and then average and normalize
all the features vectors to obtain a video mean vector. Denote it by
𝑞. The label of this video is regarded to be the specific class that
admits a maximal correlation, namely 𝑐 = arg max𝑐 𝑞⊤𝑝𝑐 where
where 𝑐 is the predicted video label.

4 EXPERIMENT
4.1 Data Description and Preparation
We experimented with two large-scale video benchmarks, whose
information is given below:
ActivityNet (version 1.3) [9]: contains totally 19,994 videos from
200 rich semantic classes (such as “paining", “cutting the grass" etc.).
We abandon the original testing set since the ground-truth labels are
kept by data organizers. For the rest data, we randomly split them
into 128, 24 and 48 non-overlapping classes as meta-train/val/test
respectively. For each video category, the top-400 images crawled
from Google image search engine are used as cross-domain data.
Kinetics-400 [11]: consists of 306,245 video clips from 400 cate-
gories. Videos have relatively shorter durations. Following [41],
we randomly select 100 classes out of 400, and split them into 64,
12 and 24 non-overlapping classes for constructing meta-sets. We
ensure all chosen classes have at least 150 videos. The first top-400
images crawled from Google image search engine are kept, same
as above.

4.2 Competing Methods
Since we adopt episodic training and evaluation, it makes more
fair comparisons between ours and meta-learning based methods.
We thus primarily include recent meta-learning methods, as well
as some traditional classifiers. The input for all baselines are pre-
extracted features of web images and video frames (ResNet50 fea-
tures in our experiments). All baselines are implemented in PyTorch,
either by original authors or us.

Nearest Neighbour (NN): We implemented two versions of
prototypical NN as follows: NN1: for each class in the support set,
it first averages all frame features of one video to obtain video-level
representation, and then all video-level features are further aver-
aged into a video prototype. All web images are also averaged into
an image prototype. The video / image prototypes are eventually
averaged and normalized to the prototype of current class. NN2:
almost the same to NN1, with slight difference that the class proto-
types are obtained by indiscriminately averaging all video frames /
web images.

Linear Classifier (LC): is parameterized as 𝑔(𝑥) =𝑊𝑥 + 𝑏. For
each episode, we randomly initialize parameters𝑊 and 𝑏, then
train the model using the support set for many iterations. After
convergence, its performance is evaluated on query data. Two ver-
sions of LC are implemented: LCmix: is trained using a hybrid of
video frame and web image features. LCsep: is pre-trained on web
image features and then fine-tuned on video frame features.

Support Vector Machine (SVM) [3]: We include both Lin-
earSVM and RBFSVM (using a standard RBF kernel).

Prototypical Network (ProtoNet) [28]: performs few-shot
classification via learning prototypical representation for each class.

We instantiate its embedding function with a 2048 × 2048 FC layer.
Euclidean distance is used when comparing a query with proto-
types.

Compound Memory Network (CMN) [41]: We implement
CMN as the original paper described. Since CMN is designed to
deal with videos (i.e., frame sets), we enable it to tackle web images
as follows: for every class, randomly sample 𝐾 web images to form
a pseudo-video’s frame set. Repeat the sampling𝑀 times to produce
𝑀 pseudo-videos. We empirically set 𝐾 = 100 and 𝑀 = 5 in the
experiments.

4.3 Evaluation
We evaluate the model under 5-way 1-shot (i.e., each episode con-
tains 5 active classes, each of which has exactly one video example
as in either the support or query set respectively) and 5-way 5-shot
settings on both ActivityNet and Kinetics-400. The performance is
reported in terms of average precision from multiple episodes, as
shown in Table 1. Some observations can be drawn as below:

1. MLIT is not the top performer under the settings that no web
data is involved. Without web images, because most video frames
are semantically relevant, the weights learned by MLIT are nearly
uniform. For example, for 5-way 1-shot meta-testing on ActivityNet,
the averaged min / max weights over many episodes are 0.0200
and 0.0202 respectively, implying a near-zero weight variance.In
such scenarios, our proposed method degrades to feature adapta-
tion + nearest neighbor classification. The reported accuracies are
thus reasonably in-between NN and other more sophisticated meth-
ods (such as CMN, which is specially designed for video temporal
structure).

2. When supplemented with extra web images, MLIT consis-
tently shows its superiority by out-performing all baselines, except
for the 5-shot setting on Kinetics-400. We attribute the non-trivial
performance promotion to web image re-weighing conducted at
the transformer module of MLIT. In contrast, most of other com-
peting methods (except for CMN) indiscriminately use noise web
images. We can also find indirect cues of MLIT’s effectiveness by
investigating the min / max sample weights averaged over multiple
meta-testing episodes. For example, for 5-way 1-shot learning on
ActivityNet, the averaged min / max weights for web images are
0.0001 and 0.0339 respectively, implying some web images receive
higher importance after passing the transformer module of MLIT
and other noisy ones are suppressed. Visualization of cross-domain
sample weights are deferred to Section 4.5.

3. For 5-way 5-shot with web images on Kinetics-400, MLIT
still beats all other meta-learning based methods by large margins.
However, the traditional method RBFSVM tops all the others. In
fact, a close investigation reveals that the frame count of a single
video in Kinetics-400 is significantly larger than that in ActivityNet
(roughly 300 v.s. 100 frames, here we conducted temporal sub-
sampling for ActivityNet beforehand), making the situation similar
to large-shot learning. Consequently, non-meta-learning methods
take the advantage through adequate supervision.



Table 1: Average accuracy of 5-way 1-shot and 5-way 5-shot on the meta-testing set of ActivityNet (in top table) and Kinetics-
400 (in bottom table). The accuracies are reported in the range of [0,100].

Model 1-shot w/o web 1-shot w/ web 5-shot w/o web 5-shot w/ web
NN1 64.84 81.14 86.26 88.28
NN2 64.84 83.16 84.36 87.84
LCmix 61.4 86.48 83.7 90.2
LCsep - 83.3 - 88.72

LinearSVM 60.0 86.38 82.0 89.52
RBFSVM 54.52 85.06 81.9 89.36
ProtoNet 71.52 86.0 85.10 87.94
CMN 78.64 88.04 88.58 90.46

MLIT(ours) 68.14 88.96 86.8 90.76
Model 1-shot w/o web 1-shot w/ web 5-shot w/o web 5-shot w/ web
NN1 59.26 75.04 77.66 81.32
NN2 59.26 77.44 77.0 80.12
LCmix 55.14 81.06 77.16 82.9
LCsep - 78.84 - 81.88

LinearSVM 56.76 78.72 73.52 81.68
RBFSVM 48.96 80.48 74.94 83.32
ProtoNet 63.38 76.96 76.14 78.78
CMN 66.58 80.5 77.7 80.94

MLIT(ours) 63.74 81.3 79.44 81.84

Table 2: Noise-resistant experimental results on ActivityNet (in top table) and Kinetics-400 (in bottom table) under 5-way
1-shot settings. The reported are averaged precision in the testing episodes. The values in the parentheses are the relative
accuracy promotion with respect to the baseline whose performance is closest to MLIT’s.

Model 0 0.1 0.3 0.5 1.0
NN1 81.14 80.86 79.98 78.5 69.54
NN2 83.16 83.72 84.76 84.6 61.1
LCmix 86.48 86.92 84.62 82.02 42.3
LCsep 83.3 82.04 78.64 76.2 46.88

LinearSVM 86.38 84.48 80.12 75.48 27.98
RBFSVM 85.06 85.08 84.78 83.58 37.6
ProtoNet 86.0 85.40 85.32 84.34 60.52
CMN 88.04 87.98 87.22 87.28 73.02

MLIT(ours) 88.96(+0.92) 88.36(+0.38) 88.2(+0.98) 87.52(+0.24) 76.86(+3.84)
Model 0 0.1 0.3 0.5 1.0
NN1 75.04 74.56 72.8 70.24 61.5
NN2 77.44 77.38 76.22 74.3 60.4
LCmix 81.06 81.18 78.66 74.58 35.78
LCsep 78.84 78.46 76.4 73.86 51.24

LinearSVM 78.72 76.18 68.42 61.32 20.32
RBFSVM 80.48 80.54 79.48 79.36 21.28
ProtoNet 76.96 76.72 75.64 73.66 60.92
CMN 80.5 78.94 78.14 77.44 62.46

MLIT(ours) 81.3(+0.24) 80.7(-0.48) 80.58(+1.1) 79.46(+0.1) 66.16(+3.7)

4.4 Ablative Study
The major advantage of MLIT is its noise-resist property to cross-
domain data noise. We there conduct two ablative experiments
regarding the effect of denoising.
Effect of Noise Level: To compare the robustness under varying
noise levels, we manually control the noise level in web images as
follows: Given a target noise level 𝑝 ∈ [0, 1] and assume there are

totally 𝑁𝑐
𝑖𝑚𝑔

web images in class 𝑐 , we randomly choose 𝑝 × 𝑁𝑐
𝑖𝑚𝑔

images from class 𝑐 , and replace them with some random images
from other classes. Obviously, 𝑝 = 0 boils down to the original
setting and 𝑝 = 1.0 implies fully noisy cross-domain data. With
above-mentioned synthetic noisy data, we conduct comparative
studies under the 1-shot setting.



Table 3: Average accuracy for MLIT with (marked by ✓) and without (marked by ✗) transformer module on ActivityNet (in top
table) and Kinetics-400 (in bottom table). Values in the parentheses are the relative promotion.

w/ transformer 1-shot w/o web 1-shot w/ web 5-shot w/o web 5-shot w/ web
✗ 68.02 87.94 86.74 90.72
✓ 68.14(+0.12) 88.96(+1.02) 86.8(+0.06) 90.76(+0.04)

w/ transformer 1-shot w/o web 1-shot w/ web 5-shot w/o web 5-shot w/ web
✗ 63.5 79.9 79.08 80.76
✓ 63.74(+0.24) 81.3(+1.4) 79.44(+0.36) 81.84(+1.08)

0.0229 0.0184 0.0127 0.0002 0.0002 0.0002

0.0289 0.0161 0.0111 0.0002 0.0002 0.0002

0.0294 0.0127 0.0113 0.0003 0.0003 0.0002

0.0241 0.0157 0.0124 0.0002 0.0002 0.0001

0.0127 0.0115 0.0112 0.0002 0.0001 0.0001

0.0288 0.0139 0.0124 0.0002 0.0002 0.0001

0.0170 0.0137 0.0104 0.0003 0.0003 0.0002

0.0149 0.0137 0.0101 0.0002 0.0002 0.0001

Figure 3: Some typical image-weight pairs generated by MLIT. The left four classes are drawn from the meta-train set, and the
right four are from the meta-test sets. Sample weights are plotted under corresponding video frames or web images. Specifi-
cally, high-weight / low-weight images are shown in green / red color respectively.

Table 2 summarizes the experimental results on ActivityNet and
Kinetics-400 respectively. As seen, on ActivityNet our proposed
MLIT dominates at all noise levels and performs best at a majority
of noisy levels on Kinetics-400. Remarkably, the performance gap
between MLIT and the second best baseline tends to become larger
as the noise levels grow. Under the extreme condition of 𝑝 = 1.0,
MLIT surpasses the second best model CMN with large gaps of
3.84% and 3.7% for the two datasets, respectively. This faithfully
demonstrates MLIT’s ability of suppressing cross-domain noises
and distilling useful information.
Effect of Transformer Module: As the core of our model, the
transformer module learns to denoise cross-domain data. To quan-
titatively illustrate the benefit of including the transformer module
in the pipeline, we also experiment with or without (namely only
feature adaptation is kept) this module under various settings. Ta-
ble 3 summarizes the comparisons on ActivityNet and Kinetics-400
respectively. Importantly, the performance gains are notably larger
when web data is included. It strongly explains the effectiveness of
our proposed transformer module.

4.5 Visualization of Sample Weighting
As stated before, video frames and web images are mixed and fed
into the transformer module. A natural way for investigating the
data denoising effect is via checking real images and the associated
weights assigned by the transformer. To this end, we select some

typical image-weight pairs from both meta-train and meta-test sets
and make visualization in Figure 3. It can be intuitively observed
that semantically relevant / irrelevant images are discriminatively
weighed, which further corroborates the effectiveness of MLIT.

5 CONCLUDING REMARKS
This work tackles the data scarcity issue inherent in few-shot video
classification by harnessing large-scale richly-annotated image data
from theWeb. The proposedmodel,meta-learning input-transformer
(MLIT), follows the idea of meta-learning, while utilizes a novel
input transformer module to suppress corrupted or noisy data, and
extract useful information to supplement the supervision. Exper-
iments on two large-scale datasets, ActivityNet and Kinetics-400,
clearly shows the superiority of our proposed method. More anal-
ysis and interference experiments further prove the effectiveness
and robustness of MLIT.
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