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ABSTRACT

Recently locality-sensitive hashing (LSH) algorithms have
attracted much attention owing to its empirical success and
theoretic guarantee in large-scale visual search. In this pa-
per we address the new topic of hashing with multi-label
data, in which images in the database are assumed to be
associated with missing or noisy multiple labels and each
query consists of a query image and several textual search
terms, similar to the new “Search with Image” function in-
troduced by the Google Image Search. The returned images
are judged based on the combination of visual similarity and
semantic information conveyed by search terms. In most of
the state-of-the-art approaches, the learned hashing func-
tions are universal for all labels. To further enhance the
hashing efficiency for such multi-label data, we propose a
novel scheme “boosted shared hashing”. Our basic observa-
tion is that image labels typically form cliques in the fea-
ture space. Hashing efficacy can be greatly improved by
making each hashing function more targeted at and only
shared across such cliques instead of all labels in convention-
al hashing methods. In other words, each hashing function
is deliberately designed such that it is especially effective
for a subset of labels. The targeted, but sparse association
between labels and hash bits reduces the computation and
storage when indexing a new datum, since only a small num-
ber of relevant hashing functions become active given the
labels. We develop a Boosting-style algorithm for simulta-
neously optimizing the label subset and hashing function in
a unified framework. Experimental results on standard im-
age benchmarks like CIFAR-10 and NUS-WIDE show that
the proposed hashing scheme achieves substantially superior
performances over conventional methods in terms of accu-
racy under the same hash bit budget.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; 1.2.10 [Artificial Intelligence]: Vi-
sion and Scene Understanding
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1. INTRODUCTION

With the rapid growth of multimedia data on the Internet
and personal albums, storing, indexing and retrieving these
data (usually represented by high dimensional features, such
as SIFT or SURF) have become one of the major challenges
in the multimedia community. Recently, a large amount of
research attentions have been arisen by the problem of ap-
prozimate nearest neighbor (ANN) search. On the one hand,
many multimedia tasks (e.g., content-based image retrieval)
can be formulated as a nearest neighbor search problem.
On other hand, an empirical observation is that exact near-
est neighbor is computationally expensive yet unnecessary.
In fact, approximate nearest neighbor gives a good balance
between the performance of multimedia system and compu-
tational complexity. Among those ANN methods developed
in the past decade, locality-sensitive hashing (LSH) [9] is one
of the most popular methods owing to its empirical success
and elegant theoretic guarantee.

The complications of applying LSH algorithms onto mul-
timedia data stem from the diverse multimedia semantics.
Conventional LSH algorithms are mostly targeting the un-
supervised input, and mild conditions are postulated (e.g.,
uniform data distribution [9]). However, the multimedia
data show several important characteristics, including 1)
multiple categories: the number of semantic categories
varies with respect to different image benchmarks and mul-
timedia tasks. For example, the MNIST digit dataset con-
tains 60,000 images corresponding to digits ‘0’-‘9’. Ima-
geNet dataset [6] contains more than 10,000 object cate-
gories, which significantly complicates the visual retrieval
operation; and 2) multiple labels: namely an image or
video is associated with several semantic labels, as seen in
the large-scale image benchmark NUS-WIDE [4]. Such da-
ta are more general and receiving increasing attention now
in various areas [2, 19, 10]. Note that these two notations
“multiple categories” and “multiple labels” are distinguished
by subtle differences, especially the possible number of la-
bels associated with each image (single label for the former
and arbitrarily many for the latter). For brevity, we abuse
the notation “multiple labels” to denote both (since multiple
categories can be regarded as a special case in some sense)
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Figure 1: We propose a novel learning framework to design compact hashing functions with strong association with
labels. The left panel shows several hash projection functions, each of which targets at preserving consistence of only a
different subset of labels (e.g., hashing function 1 preserves the Blue label completely while function 3 preserves Green
and Orange labels). The final association relations between labels and hashing functions are summarized in the table.
At the query time, the specific query image and query labels are used to select a subset of hashing functions that are

most effective in retrieving similar images for the given query.

until otherwise mentioned.

Hashing with multi-label data is well motivated by recent
advance in content-based image retrieval. A typical exam-
ple is the “search by image” function® released by Google in
2011, whose input is the hybrid of a query image and sev-
eral describing textual words. These words could be either
provided by the users or inferred by the retrieval system.
The final rank of an image in the database is determined by
both the visual proximity to the query image and matching
the image surrounding text with the input query words. In
practice the additional textual hint greatly helps reduce the
ambiguity of user intention and therefore refines the retrieval
accuracy. This new paradigm of image retrieval naturally
proposes the challenge of effective indexing multi-label mul-
timedia data. Prior research on multi-label hashing can be
roughly cast into two directions as below:

e Learn hashing functions universal for all labels.
Several works have been devoted to indexing multi-
category image data, which are also immediately ex-
tended for multi-label data. Representative works in-
clude kernel-based hashing with weak supervision [15]
and semi-supervised hashing [17]. The key idea in
these works is pushing same-label samples as close as
possible in the hash-bit Hamming space, and simul-
taneously maximizing the separation between differ-
ent semantic labels. The work of Mu et al. [15] al-
so supports sparsely-specified pairwise similarity (or
dissimilarity) constraints, which are common in many
real-world applications. However, since most of pre-
vious approaches adopt linear hashing functions, for
complex data it is difficult to have each hashing func-
tion significantly benefit all labels. In multi-label set-
ting, query-adaptive hashing schemes are more desired,
namely the hashing functions are dependent on the la-
bels of the query (they are assumed to be known as in
Google “search by image”).

Thttp:/ /www.google.com/searchbyimage

Table 1: Description of data setting in the adopted
image retrieval paradigm. See text for the defini-
tions of three data categories.

LABELS VISUAL FEATURES

TRAINING DATA N N
DATABASE DATA X 4
QUERY v v

e Hash bit selection and reweighing. It represents
the most relevant works to our work. The key idea
is building a large pool of random hashing functions
and selecting a subset of optimal hash bits (possibly
reweighing them) for each label. The selection proce-
dure is independent for different labels, therefore this
method is scalable for large set of labels and extensible
to those labels unseen during training. Representative
works include [14] and [11]. The over-complete hash
bit pool is a double-edged sword. On the one hand, it is
effortlessly adaptive to semantic changes by adjusting
selected hash bits and corresponding weights. How-
ever, on other hand, it is inefficient when processing
the multi-label data. As afore-mentioned, this method
relies on a large pool of over-complete hash bits and
selects a subset for each label. Typically the subsets
of different labels seldom intersect with each other and
each hashing function is only targeted at a single la-
bel. Suppose a sample is associated with k labels, and
each label is indexed using L bits. In the worst case,
kL hashing bits will be required to store the sample,
which is far from being optimal considering the heavy
redundancy within semantic labels.

In this paper we propose a new hashing scheme to enhance
the performance of multi-label data indexing. The key idea
is akin to the works in [14, 11], as illustrated in Figure 1.
Following the image retrieval paradigm as in Google “search
by image”, it is assumed that both the visual feature and a



few user-specified labels are bundled together as the query,
as seen in the right panel of Figure 1. As Table 1 shows, the
label information of the database set is assumed to be mostly
unknown, partially missing and too noisy to be reliable as
in the real-world image corpus on Flickr?. To learn compact
hash codes, a relatively-small training set is collected and
manually annotated. Then both the hashing functions and
their sparse association with labels are learned sequentially.
During the retrieval stage, a query-adaptive subset of the
hash bits are selected to be active (algorithmic details are
postponed to Section 2) for image retrieval.

We later show that the proposed scheme is able to enhance
both the computational efficiency (fewer active hash bits)
and the retrieval accuracy (query-adaptive). In brief, our
contributions lie in three-folds, summarized as following:

1. Rare works have been devoted to the problem of hash-
ing with multi-label image data. Our proposed new
scheme, to the best of our knowledge, is the first com-
pact hashing technique for mixed image-keyword search
over multi-labeled images. It exploits the shared sub-
spaces between the labels to help index multi-label da-
ta. Specifically, each hash function projects the data
onto a 1-D linear subspace, where a subset of labels
(those marked with ticks in the left panel of Figure 1)
are well separated from other labels. In this way it s-
parsifies the association between the hashing functions
and labels. The sparsification is crucial for improving
the multi-label hashing performance since it enables
query-adaptive hashing via label-oriented hash bit se-
lection.

2. We develop an efficient Boosting-style algorithm to se-
quentially learn the hashing functions for multi-label
image data. In the proposed scheme, each hashing
function is expected to be active for a subset of the
labels (referred to as active labels hereafter). There-
fore, compared with the over-complete hash pool used
in [14, 11], our constructed hash codes demonstrate
higher compactness at the cost of tolerable training
effort. The proposed algorithm is able to simultane-
ously optimize the label subset and hashing function
in a unified framework.

3. Conventional content-based image retrieval takes on-
ly images as query. In our study we show both the
feasibility of label-aided retrieval and the scalability of
multi-label hashing. The evaluation conducted on the
large-scale multi-label image benchmark NUS-WIDE
contrasts not only different image retrieval paradigms,
but also different multi-label indexing schemes.

The remaining sections are organized as follows. Section 2
provides a sketch of the basic idea, and then elaborates on
the algorithm design, especially the Boosting-style multi-
label boosted-shared hashing algorithm and a quadratic com-
plexity method for optimized label subset selection. Sec-
tion 3 reviews related works. In Section 4, comprehensive
experimental results are presented to demonstrate the effec-
tiveness. Finally Section 5 concludes this paper.

2. MULTI-LABEL SHARED HASHING
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Figure 2: Illustration of multi-label graph construction.
The selected sample in the left sub-figure (highlighted in
red) has two labels. For each label, two kinds of neigh-
borhoods (homogeneous and heterogenous) are respec-
tively constructed. Better viewed in color.

In this section we elaborate on the proposed multi-label
hashing method. As aforementioned, the key idea is to en-
courage sparse association between hashing functions and
labels by exploiting shared subspaces among the labels. To
generate compact hash codes, Section 2.1 presents a formu-
lation in Boosting style. In each iteration, when the ac-
tive labels are known, the pursuit of optimal hashing func-
tion is shown to boil down to an eig-decomposition problem,
which is efficient to solve. Section 2.2 furthers describes a
quadratic-complexity strategy to determine the active labels
for each iteration.

2.1 Formulation

We first clarify the notations used in this section. Denote
(ws,1;) € RP x {0,1}F, 4 = 1...N to be the i-th feature
vectors together with the corresponding label vectors, where
D, N, L are the feature dimension, the numbers of data and
labels respectively. Note that I; is binary vector. Let l;(k)
to be the k-th element of I;. I;(k) = 1 reflects that z; is
associated with the k-th label. For multi-label data, the
number of nonzero elements is allowed to be more than one.
Hash function definition: Our goal is to optimally learn
B hash bits for the data. Let hy(-) be the b-th hashing
function. For tractability we adopt the linear form, i.e.,

hy(x) = sign (me) , (1)

where sign(-) is the signum function and w is the normal
vector of the hashing hyperplane.

Multi-label graph construction: The hashing vector w
in Equation (1) is typically randomly generated in original
LSH algorithms [5]. Recent years have witnessed the gener-
ation of compact hash codes by optimizing w according to
specific criterion [17, 8]. We propose to use a multi-graph
based learning framework to squeeze the most out of each
hash bit. Figure 2 illustrates the construction of our pro-
posed multi-label graphs. Specifically, for the k-th label, as-
sume the i-th sample has [;(k) = 1, and let N (i) denote its
homogeneous neighborhood, which comprises the indices of
its k°-nearest neighbors of the same label, and N (i) be the
heterogenous neighborhood containing its k°-nearest neigh-
bors of different labels. The subscript k in NZ (i), Ni(7)



Figure 3: Illustration of “active label set” (white cells)
on CIFAR-10. The horizontal axis is the index of 30 hash
bits learned by the proposed algorithm, and the vertical
axis corresponds to ten semantic labels.

reflects that they are pertained to the graph of the k-th la-
bel. Figure 2 shows the case for a sample with two labels.
Active label set: One defining feature of the proposed
method is the sparse association between hash bits and the
labels. Hereafter we use the term “active label set” and vari-
able Sy to indicate those labels that are associated with the
b-th hash bit. Figure 3 gives such an example on real-world
image benchmark by applying the proposed hashing scheme.
We postpone to present algorithmic details of choosing ac-
tive labels to Section 2.2. In the following presentation, Sp
is assumed to be known for clarity.

Exponential-loss oriented cost function: Based on the
multi-label graphs and active label set Sy, we further de-
fine the cost function to be optimized. Intuitively, a sample
is encouraged to share the same hash values with its ho-
mogeneous neighbors (in other words, small Hamming dis-
tance between their hash codes), and have significant differ-
ent hash codes compared with its heterogenous neighbors.
This likelihood can be measured via the function below:

B
F(ai,as,k) = 5[k e SO)] - hy(x:) - ho(x), (2)

b=1

where k denotes one of the labels that z; is associated with,
and 0(x) is the delta function that returns 1 if z is true,
otherwise 0. Obviously the delta function serves as the gat-
ing function for hash bit selection, which is consistent to the
idea illustrated in Figure 3. Accumulating over all neigh-
boring samples, the cost defined on z; (denoted as c(z;)) is
as following:

)OI

Ykl (3)=1 JENE (i)

Pz .z, 1 e
e F(zi,zj,k) + = Z eF(z,,IJ,k)
JENE (i)

Exponential function is adopted in the Equation above
owing to its robustness and the convenience for incremental
update. Let Ny (i) = Ng (i) UNE(3). For conciseness con-
sideration, we ignore the effect of k°, k® and introduce an
auxiliary variable z;; that takes value -1 if 5 € N (i), other-
wise 1. The cost function for all samples can be represented
as below:

J= Zc(mi) = Z Z Z PR ()

i=1 Vk,lj (i)=1 jEN} (i)

_ Z efzijF(;C,hwj,k), (4)

(1,3,k) €L

where the variable Z is introduced to denote the index set

of all valid triple sets (i, 7, k).

Taylor expansion and updating rule: Following the
spirit of the well-known AdaBoost algorithm [7], the hash-
ing function hy(-), b = 1...B is learned in an incremental
manner. According to Equation 2, the function F(z;,z;, k)
is additive, and thus at the b-th iteration it can be written
as:

F(b)(xhxﬁ k) = F(b_l)(xhxﬁ k) + f(b)(xi7xj7k)7 (5)

where f®) (z;,2;,k) = 6 [k € S(b)] - ho(x:) - ho(x;). Then any
binary term in Equation (4) can be therefore simplified as
following;:

—2; F®) (2,2;,k) —zi; FO D (ay,m5 k) 25 £ O (2,25 ,k)
e e e ,

ﬂ.(bfl)( *Zi_jf(w(ri»rj,k)’ (6)

miamjvkl) e

where the variable 7 is introduced to maintain a probabilistic
distribution over all neighbor pairs and can be estimated
from previous b — 1 iterations. From the Taylor expansion,
we can further obtain (the approximation below is resulted
from abandoning high-order terms in Taylor expansion):

D) (e
e~z [ (@@ k) %1—Zijf<b)(wi7xj7k)+

23 (f(b)(%wj’k))Q

2

For k € S(b), both the variable z;; and function f® (z;, z;, k)

are discrete, ranging over {—1,1}. Therefore the equation
above can be further written as:

) (g g
e F T g i fO (@i, @, k) + const. (7)

Finally, we relax the signum function to be continuous,
ice., fO(xi,xj, k) = sign(wTa;) - sign(wTz;) ~ wziz] w.
The optimization problem for the b-th iteration is as below:
min J° = — W(b_l)(ﬂci,a:]-, k) - zij -wT:cimJTw,
b (5,3, k) ET,RES (B)

N

(3,4,k) ET,kES(b)

b—1 T
7O (@4, 25, k) - 24 sz | w.

It can be efficiently solved by eig-decomposition. The w-
hole boosted shared hashing algorithm is shown by Algo-
rithm 1.

2.2 Active label set selection

In Section 2.1, the active label set S(b) is assumed to be
known for clear presentation. This section elaborates on a
scalable algorithm for selecting S(b) in O(L?) complexity
(recall that L is the number of labels), rather than exhaus-
tively comparing all possible 2 subsets. The scalability to
large label set mainly stems from a greedy selection strate-
gy. At the beginning, the active label set S is initialized to
be the label that best minimizes Problem (8). The optimal
w™ is recorded. At each following iteration, it expands Sy
by adding another label. Specifically, for each un-selected
label k, it calculates the value of J in Equation (4) with the
relaxation in Equation (7), using active label set S(b) U {k}
and current w*. The one that most decreases the objective
value is selected, and w* is afterwards re-calculated by opti-
mizing Problem (8). The procedure is terminated when the
gain is only incremental (say, below 5% compared with the
previous iteration).



Algorithm 1 Boosted Shared Hashing.

1: Initialize the weights 7r<0)(i,j, k) =1for (i,7,k) € T and
normalize them to form a probability distribution. Set
F(xi,x]-, k) =0.

2: // Learn the hash bits

3: forb=1,2,...,B do

4:  // Learn the active label set

5 S(b) = 0;

6: while |S(b)| <=L do

7.

8

for any un-selected label k do
Calculate the decrease amount of J in Equa-
tion (4) with active label set S(b) U {k};
9: end for
10: Select the label with maximal decrease. Terminate
if the decrease is below pre-specified threshold;
11:  end while
12:  Calculate the hashing vector w, by optimizing Prob-
lem (8);
13:  Update the weights and normalize them:

® (0,5, k) = 7@V (i, 5, ) - e k)

14:  Update F(z;,x;, k) via Equation (5).
15: end for

2.3 The retrieval stage

Sections 2.1 and 2.2 have presented the algorithms for
learning the hashing functions and active label sets, which
encourage sparse association between the hash bits and la-
bels. We denote the learned bit-label association matrix to
be A € {0,1}X*B. When a query (z4,l;) comes, the re-
trieval task boils down to selecting specific number of hash
bits from the learned B hash bits.

Unfortunately, this task is non-trivial since

e A natural idea is finding the associated bits for each
textual query word and taking their union. However,
this strategy fails when ||l4]|o is large. In the extreme
case, all B bits will be selected.

e The number of associated bits in matrix A is vary-
ing for different labels, which complicates adaptively
choosing proper number of hash bits for the retrieval.

‘We propose to use a simple matching-score based bit rank-
ing method for bit selection. A matching score is computed
between each bit-label association vector a (any column of
matrix A) and lq, as following:

la iy
sy(a,lq) = 9
J(7¢Z) laUlq|, ()
where | - | denotes the number of nonzero elements in a set.

N, U represent the intersection and union operations on t-
wo sets respectively. Recall that both a and [, are binary
vectors. Intuitively, sy calculates the shared labels between
them, penalized by their union. It is known as the Jaccard
index in the hashing literature. Given a query (zq,lq), the
algorithm greedily selects specific number of hash bits from
A by sorting the scores s;(a,lq) in descending order.

3. RELATED WORKS

The seminal work of Indyk et al. [9] attacks the problem
of approximate nearest neighbor retrieval for binary vectors

equipped with Hamming distance. The so-called locality-
sensitive property refers to the fact that LSH algorithms
embed similar data under specific metric into similar codes
in Hamming space. They use the data structure of mul-
tiple hash table to accomplish a constructive proof for the
sub-linear complexity. The most important factor in LSH al-
gorithm design is the underlying metric to gauge data sim-
ilarity. In the past decade researchers from the theoretic
computer science community have explored hashing on a
diverse set of metrics, including l,-norm (p € (0, 2]) [5], Jac-
card index [1] etc. The idea of LSH is also tailored for other
scenarios, like kernelized hashing [12], learning-based com-
pact hashing [18], graph-based unsupervised hashing [13],
and semi-supervised hashing [17, 15].

Two lines of works are most relevant to our work in this
paper. The first one is query-adaptive hashing, i.e., the
retrieval system has auxiliary information (e.g., associated
tags or labels) of the query image, which is expected to
significantly clarify user’s intention and motivates recent re-
search on hash bit selection [14, 11]. The key idea in these
works is to maintain a large pool of over-complete hash bit-
s and adaptively select a small subset of bits according to
the given auxiliary tags or labels. The other line of work is
shared subspace learning for multi-label data. Early investi-
gation on shared subspace utilized the multi-task learning
framework [2]. The idea is also exploited in other applica-
tions like the boosted multi-class object detector, which is
proposed by Torralba et al [16] to learn the shared feature
across different classes. Moreover, since multi-label data are
abundant in the field of multimedia, researchers also pro-
pose shared subspace learning methods to facilitate multi-
label image classification or annotation. For example, Yan
et al. [19] have proposed a model-shared subspace boosting
methods as an attempt to reduce the information redundan-
cy in the learning process and Ji et al. [10] extract the shared
structure in multiple categories.

Our work is a marriage between these two ideas. It is moti-
vated by the label-aided image retrieval paradigm and signif-
icantly reduces the inter-bit redundancy in the bit-selection
based hashing methods [14, 11] through the idea of shared
subspace learning. As far as we know, this is the first work
that learns the shared hash functions for multi-class data to
make more compact hashing bits.

4. EXPERIMENTS

In this section, we evaluate the performances of our pro-
posed boosted-shared hashing (denoted as BSH hereafter)
on both multi-category (i.e., each image is associated with
only one semantic category) and multi-label image bench-
marks. Specifically, we choose two large-scale image bench-
marks: CIFAR-10° (60K images) for multi-category retrieval,
and the multi-label benchmark NUS-WIDE [4], which is
crawled from Flickr and consists of about 270K images. As
the pre-processing, feature vectors are all centered and unit-
normalized. In all experiments, the parameters of nearest
neighbor number k°, k¢ are set to be 15, 30 respectively
without fine tuning. Following previous work [20], the pa-
rameter k¢ is set twice larger than k° to compensate the
extreme unbalance between the numbers of homogeneous
neighbor pairs and heterogenous neighbor pairs.

It is well-known that when comparing different hashing

3http://www.cs.utoronto.ca,/~kriz/cifar.html
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Figure 4: Performances of three hashing schemes: our proposed BSH, SPLH and SH on CIFAR-10. The sub-figures
in (a) and (b) are the results of using 24 hash bits per query, and sub-figure (c) presents the performances with varying

numbers of hash bits. See text for more detalils.

methods, the performance heavily relies on the number of
hash bits used for a query. Therefore, towards a fair compar-
ison, by default all hashing schemes in the experiments are
contrasted with respect to the same budget of hash bits per
query. Moreover, since there is no hashing scheme specially
designed for multi-label data, we adopt three state-of-the-art
hashing methods, sequential projection learning for hashing
(SPLH) [17], spectral hashing (SH) [18] and random projec-
tion based locality sensitive hashing (LSH) [3] as the baseline
algorithms. All methods are properly tailored before they
are applied to the multi-label data. To reduce the effect of
randomness, we estimate the performance by averaging 10
independent runs.

4.1 Multi-Category Benchmark

CIFAR-10 is a subset of the 80-million tiny image®. Tt is
originally constructed for learning meaningful recognition-
related image filters whose responses resemble the behavior
of human visual cortex. The dataset is comprised of 60,000
32 x 32 color images from 10 semantic categories (e.g., air-
plane, frog, truck etc.). There are 6,000 images for each
category, from which 300 images are kept for training the
hashing functions. We also randomly select in total 1,000
samples as the queries. Regarding the visual features, 387-
D GIST features are extracted from these images.

Generally, the performance of a hashing scheme is gauged

based on various statistics about “good neighbors”. On CIFAR-

10, we define “good neighbor” as those samples from the
same category to the query. Figure 4 shows our experimen-
tal results. In Figure 4(a) and (b), the performance with 24
hash bits for any query are reported, in terms of the num-
ber of “good neighbors” and precision in top 300 returned
samples. Moreover, it is also important to investigate the
tendency of the performance with respect to the number of
hash bits per query. Figure 4(c) summarizes their perfor-
mances using hashing bits ranging from 8 bits to 40 bits.
It is observed that our proposed scheme is consistently su-
perior to others. In all cases, the proposed BSH learns 100
hash bits from the procedure as described in Section 2.1,
from which the bits used for retrieval are selected using the
method in Section 2.3.

Significant performance gaps between the proposed BSH
and other schemes like SPLH are observed in Figure 4. On

“http://groups.csail.mit.edu/vision /TinyImages
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Figure 5: Performance comparison of different sharing
methods.

average, each hash bit learned by BSH is shared by 3.47
active labels. An example of bit-label association matrix
is found in Figure 3, where white blob indicates specific bit
and label are associated. Unlike conventional methods which
learn the hash bits versatile for all labels, the bits by BSH
are intentionally forced to focus on the selected active labels,
which largely enhances the discriminative ability of the hash
bits. The experimental results corroborate the effectiveness
of our proposed scheme.

To further illustrate it, we perform another experiment
as illustrated in Figure 5. Recall that we propose a greedy
strategy for active label selection (denoted by “greedy shar-
ing” in Figure 5), greatly accelerating the exhaustive search
which has an exponential complexity O(2%) (L is the la-
bel number). We contrast this strategy with two baseline
strategies, i.e., all labels are selected for each bit (i.e., “all
sharing”) and randomly select a number of labels for each
bit (i.e., “random sharing”). The “all sharing” strategy is
intrinsically to the one used by other conventional hashing
schemes [17, 18] yet differs in the way to learn the hash-
ing functions. The “random sharing” strategy uniformly
samples specific number of labels to be active (we set the
number to be 3, i.e., the rounded averaged number of ac-
tive labels per bit in BSH). The comparison is based on the
number of good neighbors in top-300 retrieved samples for
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Figure 6: Performances of BSH and baseline algorithms on NUS-WIDE image benchmark with two-label queries.

all strategies. To make it comprehensive, the performances
with different hash bits per query (specifically, 8, 12, 16 bits)
are reported. From Figure 5, it is observed that both “ran-
dom sharing” and “greedy sharing” outperform “all sharing”,
which indicates that the idea of sparsifying bit-label associ-
ation is helpful. Moreover, our proposed “greedy sharing” is
shown to be better than “random sharing”.

4.2 Multi-Label Benchmark

We choose the large-scale NUS-WIDE benchmark for the
multi-label image retrieval, where each image is associated
with several tags and the number of tags varies for differ-
ent images. A group of volunteers are solicited to manually
annotate 81 tags (hereafter we use the term “tag” and “la-
bel” interchangeably until otherwise mentioned) across the
entire dataset. In the experiments, we represent each im-
age by concatenating 500-D bag-of-words feature built from
SIFT local descriptors and 225-D block-wise color moment
feature. We further select 25 most-frequent tags, like ‘sky’,
‘clouds’, ‘person’ etc., each of which has at least several t-
housand associated images. We randomly select 5,000 image
to build a training set and keep another query set of 1,000
images. Again the methods of SPLH, SH and LSH are cho-
sen as baselines. In the experiments, it is noticed that the
regularization parameter n in SPLH is critical for its per-
formance. We set it to be 8 x 1072 after fine tuning. The
label matrix S in SPLH is created by summarizing all the
neighbor relationships of different classes.

As above-mentioned, we adopt the retrieval paradigm that
takes “image + labels” as the query. It models the user
intention more accurately and proposes serious challenges
to conventional hashing schemes which fail to take multi-
label information into account. Illustrating examples are
found in Figure 7, where two images associated with three
tags are shown. Assume the users are only interested in
part of the semantic tags associated with the query image
(which is the common case in real-world image retrieval),
conventional hashing schemes tend to fail since they are not
query-adaptive. In Figure 7, for each image we generate
two different queries, e.g., “image visual feature 4+ ‘Ocean’ 4
‘Sky’” or “image visual feature + ‘Ocean’ + ‘Person’ for the
second image. Top-10 returned images obtained by different
hashing schemes are displayed. Our method is able to select
query-adaptive hash bits and therefore gets more reasonable
results.

Furthermore, to make quantitative study, we generate 1,000
random queries from those images associated with at least

two tags. For each image, two tags are randomly selected
from its tags to form a two-label query (we focus on two-
label queries yet the proposed method is trivially extended
to queries with single label or more than two labels). The
ground truth for each query is defined as the set of images
that satisfies two requirements:

e The image should be associated with the two tags in
the query (note that these tag information of database
images are kept unknown during the evaluation. They
are only used to generate the ground truth).

e Moreover, the distance of their visual feature should be
close enough, which is introduced to avoid a large set of
ground truth images. In practice, we set a threshold to
ensure at most 3,000 “good neighbors” for each query.

Figure 6 shows the performances of our proposed method
and three baselines. Similar to Figure 4, the performances in
terms of good neighbor number and precision under 32 hash
bits per query are presented in Figure 6(a) and (b). And
Figure 6(c) plots the mean-average-precision (MAP) values
under varying hash bits per query. Suppose kp, hash bits
are used for each query (ks is from 8 to 48), our proposed
BSH first learns 6k, hash bits °, which serve as the hash
pool for query-adaptive hash bit selection. It is noticed that
the proposed BSH outperforms all other three methods in
all experiments.

5. CONCLUSIONS

In this paper, we propose an efficient multi-label hash-
ing algorithm which exploits the shared subspaces among
related labels in a boosting scheme. This method can au-
tomatically finds the similar label groups, and learns the
shared hash functions for each group in the boosting pro-
cedure. Learning a hashing function for all data with dif-
ferent semantic similarities is very difficult, while the pro-
posed method only focuses on the subset of each label group
to overcome the difficulty and learns a more powerful hash
functions for the label group. Our experimental results on t-
wo standard benchmarks, CIFAR-10 and NUS-WIDE, show
that the proposed method can achieve better performance
than state-of-the-art method when using the same total num-
ber of hash functions.

5This number of hash bits is a tunable parameter which is
intrinsically determined by the sparsity of bit-label associa-
tion matrix.
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