
Classification by Retrieval: Binarizing Data and Classifiers

Fumin Shen1, Yadong Mu2, Yang Yang1, Wei Liu3, Li Liu4, Jingkuan Song1, Heng Tao Shen1∗
1Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and

Technology of China 2 Institute of Computer Science and Technology, Peking University
3Tencent AI Lab 4Malong Technologies Co., Ltd

ABSTRACT

This paper proposes a generic formulation that significantly expe-

dites the training and deployment of image classification models,

particularly under the scenarios of many image categories and high

feature dimensions. As the core idea, our method represents both

the images and learned classifiers using binary hash codes, which

are simultaneously learned from the training data. Classifying an

image thereby reduces to retrieving its nearest class codes in the

Hamming space.
Specifically, we formulate multiclass image classification as an

optimization problem over binary variables. The optimization al-

ternatingly proceeds over the binary classifiers and image hash

codes. Profiting from the special property of binary codes, we show

that the sub-problems can be efficiently solved through either a

binary quadratic program (BQP) or a linear program. In particular,

for attacking the BQP problem, we propose a novel bit-flipping

procedure which enjoys high efficacy and a local optimality guar-

antee. Our formulation supports a large family of empirical loss

functions and is, in specific, instantiated by exponential and linear

losses. Comprehensive evaluations are conducted on several repre-

sentative image benchmarks. The experiments consistently exhibit

reduced computational and memory complexities of model training

and deployment, without sacrificing classification accuracy.

CCS CONCEPTS

•Information systems→Similaritymeasures; •Computingmethod-

ologies→Supervised learning by classification;

KEYWORDS

Hashing; binary codes; classification; retrieval

ACM Reference format:

Fumin Shen1, Yadong Mu2, Yang Yang1, Wei Liu3, Li Liu4, Jingkuan Song1,
Heng Tao Shen1∗ . 2017. Classification by Retrieval: Binarizing Data and
Classifiers. In Proceedings of SIGIR’17, August 7–11, 2017, Shinjuku, Tokyo,
Japan, 10 pages.
DOI: http://dx.doi.org/10.1145/3077136.3080767

∗Corresponding author: Heng Tao Shen

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR’17, August 7–11, 2017, Shinjuku, Tokyo, Japan

© 2017 ACM. 978-1-4503-5022-8/17/08. . . $15.00
DOI: http://dx.doi.org/10.1145/3077136.3080767

1 INTRODUCTION

In recent years, large-scale visual recognition problem has attracted

tremendous research enthusiasm from both academia and industry

owing to the explosive increase in data size and feature dimension-

ality [42–44]. Classifying an image into thousands of categories

often entails heavy computations by using a conventional classi-

fier, exemplified by k nearest neighbor (k-NN) and support vector

machines (SVM), on a commodity computer. For the image recogni-

tion problem with many categories, the computational and memory

overhead primarily stems from the large number of classifiers to be

learned. The complexities can be high at the stages of both training

and deploying these classifiers. Considering a classification task

with C different classes and D-dimensional feature representation,

even the simplest linear models are comprised of D ×C parameters.

As an inspiring example to our work in this paper, the ImageNet

dataset [7] contains annotated images from 21,841 classes in total.

When experimenting with some state-of-the-art visual features (e.g.,

4096-dimensional deep neural networks feature), a huge number of

80 million parameters need to be learned and stored, which clearly

indicates slow training and low efficacy at the deployment phase.

Real-world applications (such as industrial image search engine)

often require a near-real-time response. The conventional ways of

training multi-class image classifiers thus have much space to be

improved.
Compact binary hash codes [9] have demonstrated notable em-

pirical success in facilitating large-scale similarity-based image

search, referred to as image hashing in the literature. In a typical

setting of supervised learning, the hash codes are optimized to

ensure smaller Hamming distances between images of the same

semantic kind. In practice, image hashing techniques have been

widely utilized owing to its low memory footprint and guaranteed

scalability to large data.
Though the hashing techniques for image search has been a

well-explored research area, its application on large-scale optimiza-

tion still remains a nascent topic in the fields of machine learning

and computer vision. Intuitively, one can harness the hash codes

for the image classification task through naive methods such as

k-NN voting. Both the training and testing images are indexed with

identical hashing functions. A new image is categorized by the

majority semantic label within the hashing bucket where it is pro-

jected into. However, since the hash codes are initially optimized

for image search purpose, such a naive scheme does not guarantee

high accuracy for image recognition.
The most relevant works to ours are approximately solving non-

linear kernel SVM via hashing-based data representation [19, 20, 27].

These methods first designate a set of hashing functions that trans-

form the original features into binary codes. The original non-linear

kernels (e.g., RBF kernel) are theoretically proved to be approxi-

mated by the inner product between binary hash bits. Prominent

advantages of such a treatment are two-folds: the required hash

bits only weakly hinge on the original feature dimensionality, and

meanwhile the non-linear optimization problem is converted into

a linear alternative. As a major drawback, these works still rely

on the regular real-valued based classifiers upon the binary fea-

tures. Though it enables the direct application of linear solvers, the

potential advantage of binary codes is not fully utilized.
Our work is a non-trivial extension of the aforementioned line of

research. We further elevate the efficacy of classification models by

binarizing both the features and the weights of classifiers. In other

words, our goal is to develop a generic multi-class classification

framework. The classifier weights and image codes are simultane-

ously learned. Importantly, both of them are represented by binary

hash bits. This way the classification problem is transformed to an

equivalent and simpler operation, namely searching the minimal

Hamming distance between the query and the C binary weight

vectors. This can be extremely fast by using the built-in XOR and

POPCOUNT operations in modern CPUs. We implement this idea

by formulating the problem of minimizing the empirical classifi-

cation error with purely binary variables. The overview of the

proposed method is illustrated in Figure 2.
The major technical contributions of this work are summarized

as below:

(1) We define a novel problem by binarizing both classifiers

and image features and simultaneously learning them in a

unified formulation. The prominent goal is to accelerate

large-scale image recognition. Our work represents an

unexplored research direction, namely extending hashing

techniques from fast image search to the new topic of

hashing-accelerated image classification.

(2) An efficient solver is proposed for the binary optimization

problem. We decouple two groups of binary variables

(image codes and binary classifier weights) and adopt an

alternating-minimizing style procedure. Particularly, we

show that the sub-problems are in the form of either binary

quadratic program (BQP) or linear program. An efficient

bit-flipping scheme is designed for the BQP sub-problem.

Profiting from the special traits of binary variables, we are

able to specify the local optimality condition of the BQP.

(3) Our formulation supports a large family of empirical loss

functions and is here instantiated by exponential/linear

losses. In our quantitative evaluations, both variants are

compared with key competing algorithms, particularly a

highly-optimized implementation of the SVM algorithm

known as LibLinear [8]. Our proposed method demon-

strates significant superiority in terms of train/test CPU

time and classification accuracy, as briefly depicted by Fig-

ure 1.

We also discuss a sparse binary coding model, which will further

reduce the computational and memory cost of our method when

applied to high-dimensional images.
The rest of this paper is organized as follows. After discussing

the related literature in Section 2, we present the details of our

proposed model in Section 3. Section 4 shows the experimental

results of our method, followed by the conclusions of this work in

Section 5.

Code length
32 64 128 256 512

A
cc

u
ra

cy

0.6

0.65

0.7

0.75

0.8

Linear SVM
Our method

(a) Classification accuracy.

Code length
32 64 128 256 512

T
ra

in
in

g
 t

im
e

(s
)

0

100

200

300

400

Linear SVM
Our method

(b) Training complexity.

Figure 1: Comparison of ourmethodwith the LibLinear implemen-

tation of Linear SVM for classification on the SUNdataset with 108K

images from 397 scene categories. By coding both the image fea-

ture and learned classifiers with a small number of hash bits, our

method achieves better results than Linear SVM, even with much

smaller model training complexity.

2 RELATEDWORK

Let us first review the related works which strongly motivate ours.

They can be roughly cast into two categories:

2.1 Hashing for fast image search and beyond

Learning compact hash codes [41, 46] recently becomes a hot re-

search topic in information retrieval [9, 28] and computer vision

[2, 51]. The proliferation of digital photography has made billion-

scale image collections a reality, and efficiently searching a similar

image to the query is a critical operation in such image collections.
The seminal work of LSH [9] sheds a light on fast image search

with theoretic guarantee. In a typical pipeline of hash code based

image search [40, 48], a set of hashing functions are generated

either in an unsupervised manner or learned by perfectly separat-

ing similar / dissimilar data pairs on the training set. The recent

studies on the former category, unsupervised hashing, are more

focused on the learning based methods. That is, different from the

random LSH algorithm, these methods, a.k.a, learning to hash try

to learn hash functions from the provided training data, which is

shown to achieve promising performance with much more compact

codes. Representative methods in this category include Spectral

Hashing (SH [46]), Iterative Quantization (ITQ [10]), Manhattan

Hashing [16], Anchor Graph Hashing (AGH [26]), Inductive Mani-

fold Hashing (IMH [36, 37]), Discrete Graph Hashing (DGH [24]),

etc..
The latter category is known as supervised hashing since it often

judges the similarity of two samples according to their semantic

labels. For an unseen image, it finds the most similar images in the

database by efficiently comparing the corresponding hash codes.

It can be accomplished in sub-linear time using hash buckets [9].

Representative methods in this line include Binary Reconstructive

Embedding (BRE [18]), Minimal Loss Hashing (MLH [30]), Semi-

supervised Hashing (SSH [40]), LDA hashing [2], Kernel-Based

Supervised Hashing (KSH [25]), CCA based Iterative Quantiza-

tion (CCA-ITQ [10]), FastHash [21], Latent Factor Hashing (LFH

[54]), Supervised Discrete Hashing (SDH [35]), Zero-shot Hash-

ing (ZSH [50]), Discrete Semantic Ranking Hashing (DSeRH [23])

etc.. Recently, Shen et al., [38] present a simple discrete optimiza-

tion method which can substantially improve the performance of

existing hashing methods.

The success of hashing technique is indeed beyond fast image

search. For example, Dean et al. [6] used hash tables to accelerate

the dot-product convolutional kernel operator in large-scale ob-

ject detection, achieving a speed-up of approximately 20,000 times

when evaluating 100,000 deformable-part models. Recently, the

hashing technique was successfully applied to sketch-based image

retrieval [22], action recognition [31, 32], image classification [52].

The hashing technique has been recently applied to collaborative

filtering based recommendation systems [53, 55]. Particularly, the

proposed model in this work can also be potentially applied to the

closely related matrix factorization [3, 14], tag prediction [29, 45]

and collaborative filtering [12, 13] problem.

2.2 Hashing for large-scale optimization

Noting the Hamming distance is capable of faithfully preserve data

similarity, it becomes a natural thought to extend it for approximat-

ing non-linear kernels. Optimizing with non-linear kernels gen-

erally require more space to store the entire kernel matrix, which

prohibits its scalability to large data. Real vectors based explicit

feature mapping [39] partially remedies above issue, approximating

kernel functions by the inner product between real vectors. How-

ever, they typically require high dimension towards an accurate

approximation, and is thus beyond the scope of most practitioners.

A more recent strand of research instead approximates non-linear

kernel with binary bits, of which the prime examples can be found

in [19, 20, 27]. In particular, Mu et al. developed a random subspace

projection which transforms original data into compact hash bits.

The inner product of hash code essentially plays the role of kernel

functions. Consequently, the non-linear kernel SVM as their prob-

lem of interest can be converted into a linear SVM and resorts to

efficient linear solvers like LibLinear [8].
The philosophy underlying all aforementioned works can be

summarized as binarizing the features and harnessing the compact-

ness of binary code. We here argue that the potential of hashing

technique in the context of large-scale classification has not been

fully explored yet. Related research is still in its embryonic stage.

For example, a recent work by Shen et al. [35] proposed a Super-

vised Discrete Hashing (SDH) method under the assumption that

good hash codes were optimal for linear classification. However,

similar to other methods, SDH still classified the learned binary

codes by real-valued weights. Thus the test efficiency for binary

codes is still not improved compared to real-valued features.
The work [45] shared a similar idea with ours, which encoded

both images and tags into binary codes for fast image tagging.

However, [45] aimed to reconstruct the observed tags by the simi-

larity estimated from the binary codes, which was very different

our method which is formulated in binary codes classification. A

related work is [34], which learned two sets of asymmetric binary

codes to reconstructed the similarity by feature inner products.

Recently, a few work [4, 15, 33] proposed to accelerate deep neural

networks using binary weights and activations.
After surveying related literature, we are motivated to advocate

in this paper the extreme binary learning model, wherein both

image features and classifiers shall be represented by binary bits.

This way the learned models get rid of real-valued weight vectors

and can fully benefit from high-optimized hash bit operators such

as XOR.

3 THE PROPOSED MODEL

Suppose that we have generated a set of binary codes B = {bi }ni=1 ∈{−1, 1}r×n , where bi is the r -bit binary code for original data xi
from the training set X = {xi }ni=1. For simplicity, we assume a

linear hash function

b = sgn(P�x), (1)

where P ∈ Rd×r . In the context of linear classification, the binary

codes b is classified according to the maximum of the score vector

W�b = [w�1b, · · · ,w�Cb]�, (2)

where wc ∈ {−1, 1}r is the binary parameter vector for class

c ∈ [1, · · · ,C]. Taking advantage of the binary nature of both

wc and b, the inner product w�c b can be efficiently computed by

r − 2DH (wc , b), where DH (·, ·) is the Hamming distance. Thereby

the standard classification problem is transformed to searching the

minimum from C Hamming distances (or equivalently the maxi-

mum of binary code inner products).
Following above intuition, this paper proposes a multi-class clas-

sification framework, simultaneously learning the binary feature

codes and classifier. Suppose bi is the binary code of sample xi and

it shall be categorized as class ci . Ideally, it expects the smallest

Hamming distance (or largest inner product) to wci , in comparison

with other classifier wc , c � ci . An intuitive way of achieving this

is through optimizing the inter-class “margin”. Formally, we can

minimize the loss �
(
− (w�ci bi −w�c bi)

)
, ∀c , where �(·) is a generic

loss function. We re-formulate multi-class classification problem

as below:

min
W,B,P

n∑

i=1

C∑

c=1

�
(
− (w�ci bi −w�c bi)

)
(3)

s.t. bi = sgn(P�xi), ∀i, wc ∈ {−1, 1}r , ∀c .
We instantiate �(·) with the exponential loss (Section 3.1) and

linear loss (Section 3.2). In fact, the loss function in Problem (3) can

be broadly defined. Any proper loss function �(·) can be applied as

long as it is monotonically increasing.

3.1 Learning with exponential loss

Using the exponential loss function, we have the following formu-

lation:

min
W,B,P

n∑

i=1

C∑

c=1

exp
[
−(w�ci bi −w�c bi)

]
(4)

s.t. bi = sgn(P�xi), ∀i, (5)

wc ∈ {−1, 1}r , ∀c .
We tackle problem (4) by alternatingly solving the sub-problems

with W, B and P, respectively.

Learning binary classification weights. Assume B is known. We

iteratively update W row by row, i.e., one bit each time for wc , c =
1, · · · ,C , while keep all other r − 1 bits fixed. Let w(k) denote the
k-th entry of w and w(\k) the vector which zeros its k-th element.

We then have

exp(w�b) = exp
[
w(\k)�b

]
· exp [w(k)b(k)] . (6)

plane

Figure 2: Overview of the proposed method. Both training images and classifiers are encoded by compact binary codes, and

classifying a test image is thereby conducted by searching its neareast class codes by Hamming distances.

Denoting u = e
−1+e1
2 and v = e

−1−e1
2 , it can be verified that

exp [w(k)b(k)] = u −v · b(k)w(k). (7)

Equation (7) clearly shows the exponential function of the product

of two binary bits equals to a linear function of the product. By

applying (6) and (7), we write the loss term in (4) as:

exp
[
−(w�ci bi −w�c bi)

]
(8)

=γick · [u −v · bi (k)wc (k))] · [u +v · bi (k)wci (k))
]
,

where the constant γick = exp
[(
wc (\k) −wci (\k)

)�
bi

]
.

After merging terms with the same orders, optimizing prob-

lem (4) with regard to wk = [w1 (k); · · · ;wC (k)] becomes

wk ← argmin
wk

1

2
(wk)�Hkwk + (wk)�gk , (9)

where
Hk = −2v2YΓk ,
gk = uvY(bk � Γ1) − uvΓ�bk . (10)

Here Γk ∈ Rn×C includes its entries γick , b
k is the n-dimension

vector including the kth binary bits of training data. Y ∈ RC×n
is the label matrix whose entry yci at coordinate (c, i) equals to
1 if sample xi belongs to class c and 0 otherwise. � denotes the

element-wise product. 1 is the vector with all ones.
Problem (9) is a binary quadratic program (BQP) and can be

efficiently solved by a sequential bit flipping operation. A local

optimum can be guaranteed. We solve problem (9) by investigating

the local optimality condition. Intuitively, for any local optimum,

flipping any of its hash bits will not decrease the objective value of

problem (9). LetH∗,c ,Hc,∗ denote the column or row vector indexed

by c respectively. g(c) andw(c) represents the cth element of g and

w, respectively. In problem (9), collecting all terms pertaining to

w(c) obtains

f (wk (c)) =
1

2

(
Hk�∗,c + Hk

c,∗
)
wk ·wk (c) + gk (c) ·wk (c).

Algorithm 1 Sequential bit flipping

1: while local optimality condition does not hold do

2: Calculate the bit-flipping gain Δw(c)→−w(c) for c = 1, . . . , C ;

3: Select ĉ = argminc Δw(c)→−w(c) and Δmin = minc Δw(k)→−w(c) ;

4: if Δmin < 0 then

5: Set w(c) ← −w(c);
6: else

7: Exit;

8: end if

9: end while

By flipping w(c), the gain of the objective function of problem

(9) is

Δwk (c)→−wk (c) = f (−wk (c)) − f (wk (c)). (11)

Regarding the local optimality condition of problem (9), we have

the observation below:

Proposition 3.1. (Local optimality condition): Let w∗ be a
solution of problem (9). w∗ is a local optimum when the condition

Δw(c)→−w(c) ≥ 0 holds for c = 1, . . . ,C .

Proof. The conclusion holds by a simple application of proof

of contradiction. Recall that w is a binary vector. Flipping any

bit of w will incur a specific change of the objective function as

described by Δw(i)→−w(i) . When the changes incurred by all these

flipping operations are all non-negative,w∗ is supposed to be locally
optimal. Otherwise, we can flip the bit with negative Δw(i)→−w(i)
to further optimize the objective function. �

With the above analysis, we summarize our algorithm for updat-

ing the C-bit wk as in Algorithm 1.

Binary code learning. WithW fixed, we have the following prob-

lem

min
B,P

n∑

i=1

C∑

c=1

exp
[
−(w�ci bi −w�c bi)

]
(12)

s.t. bi = sgn(P�xi), ∀i, wc ∈ {−1, 1}r , ∀c .
Technically, we could reformulate this constrained problem into a

joint learning problem regularized by the fidelity between binary

codes and hash function outputs, as in [35]. However, in practice,

we find this solution does not improve the performance than the

two-step method: first learning binary codes followed by learning

the hash prediction matrix. In this work, we adopt the two-step

method.
Similar to the optimization procedure for W, we solve for B

by a coordinate descent scheme. In particular, at each iteration,

all the rest r − 1 hash bits are fixed except for the k-th hash bit

bk = [b1 (k); · · · ; bn (k)]. Let bi (\k) denote the vector which zeros

its k-th element bi (k). We rewrite equation (8) w.r.t bi (k) as

exp
[
−(w�ci bi −w�c bi)

]
(13)

=zick · exp
[
(wc (k) −wci (k))bi (k)

]

where zick = exp
[
(wc −wci)

�bi (\k)
]
.

Denote u ′ = e
−2+e2
2 , v ′ = e

−2−e2
2 . Similar as (7), we have

exp
[
(wc (k) −wci (k))bi (k)

]

=

⎧⎪⎪⎨⎪⎪⎩
0, wci (k) = wc (k)

u ′ +v ′ · bi (k), wci (k) = 1,wc (k) = −1
u ′ −v ′ · bi (k), wci (k) = −1,wc (k) = 1.

We can see that, the non-linear exponential loss term becomes

either a constant or linear function with regard to bi (k).
Let matrix Zk ∈ Rn×C include its entry at the coordinate (i, c)

as zick if wci (k) = 1,wc (k) = −1 and 0 otherwise; similarly let

matrix Z̄k ∈ Rn×C include its entry at the coordinate (i, c) as zick
if wci (k) = −1,wc (k) = 1 and 0 otherwise. Then the loss in (4) can

be written as w.r.t bk

n∑

i=1

C∑

c=1

exp
[
−(w�ci bi −w�c bi)

]
(14)

=

n∑

i=1

C∑

c=1

Zk (i, c) · (u ′ +v ′bi (k)) + Z̄k (i, c) · (u ′ −v ′bi (k))

=

n∑

i=1

zk (i) · (u ′ +v ′bi (k)) + z̄k (i) · (u ′ −v ′bi (k)),

where zk (i) =
∑
C

c=1 Z
k (i, c) and z̄k (i) =

∑
C

c=1 Z̄
k (i, c).

Then we have the following optimization problem

min
bk

v ′(zk − z̄k)�bk , s.t. bk ∈ {−1, 1}r , (15)

which has a optimal solution

bk = −sgn(v ′(zk − z̄k)). (16)

Figure 3 shows the objective value as a function of the bit up-

dating iteration number. As can be seen, with the proposed coor-

dinate descent optimizing procedure for bothW and B, the object

value consistently decreases as updating the hash bits in each sub-

problem. The optimization for the original problem (4) typically

Bit updating iteration
20 40 60 80 100 120

O
bj

ec
t v

al
ue

×107

4.05

4.1

4.15

4.2

4.25

4.3

(a) UpdatingW.

Bit updating iteration
20 40 60 80 100 120

O
bj

ec
t v

al
ue

×107

1

2

3

4

5

(b) Updating B.

Figure 3: Object value as a function of bit updating iteration

k in optimizingW and B on the dataset of SUN397.

converges in less than 3 iterations of alternatively optimizing W

and B.

3.2 Learning with the linear loss

In this section, we instantiate our model with the simple linear loss:

min
W,B,P

n∑

i=1

C∑

c=1

(w�c bi −w�ci bi) (17)

s.t. bi = sgn(P�xi), ∀i, wc ∈ {−1, 1}r , ∀c .
Similar as with the exponential loss, we tackle problem (17) by

alternatively solving the sub-problems regarding to W, B and P,

respectively. We write problem (17) as w.r.t. W,

min
W

n∑

i=1

C∑

c=1

(w�c bi −w�ci bi) (18)

s.t. wc ∈ {−1, 1}r ,∀c .
Collecting all terms with wc , ∀c , problem (18) writes

min
W

w�c
(n∑

i=1

bi −C
n∑

i=1,ci=c

bi
)

(19)

s.t. wc ∈ {−1, 1}r ,
which has optimal solution

wc = sgn
(
C

n∑

i=1,ci=c

bi −
n∑

i=1

bi
)
. (20)

For the sub-problem regarding to B, we first let matrix Wo of

size r ×n include its ith column aswo

i
=
∑
C

c=1wc −Cwci . Problem

(18) writes w.r.t. B as

min
B

trace(Wo�B), s.t. B ∈ {−1, 1}r×n .
B can be efficiently computed by −sgn(Wo). It is clear that, both of

the two sub-problems associated with B andW have closed-form

solutions, which significantly reduces the computation overhead

of classifier training and code learning.

3.3 Binary code prediction

With the binary codes B for training data X obtained, the hash

function h(x) = sgn(P�x) is obtained by solving a simple linear

regression system

P = (X�X)−1X�B. (21)

Then for a new sample x, the classification is conducted by searching

the minimum of C Hamming distances:

c∗ = argmin
c
{DH
(
wc ,h(x)

)
}, c = 1, · · · ,C . (22)

The binary coding step occupies the main computation in the

testing stage, which isO (dr) in time complexity. In some cases, the

image feature dimensions d can be very large or the code length r
need to be long for satisfying performance. Then the computational

cost of binary code prediction and storage cost of the projection P

should not be neglected. This motivates us to devise a sparse model,

where most entries of the hash projection matrix P are zeros. That

is, we solve the following �0 problem:

min
P
| |P�X − B| |2

s.t. | |P| |0 ≤ s, (23)

where | | · | |0 denotes the �0 norm and t is the number of nonzero

entries of P. Problem (23) has been well known as the sparse repre-

sentation problem, and exactly solving it can be NP-hard due to the

involvement of nonconvex and nonsmooth �0 norm. The typical

solution can be attained by relaxing the �0 norm to the convex �1,

which is much easier to slove while still admitting the sparsity of

resultant model [47]. In this work, however, we choose to solve the

�0 problem since the nonzero number (and thus the computation

and memory costs) can be exactly controlled.
Inspired by the recent advance of the proximal optimization

method [1], we solve problem (23) by the following iterative proce-

dure. First let us introduce the sparse projection operator:

Ts (U) = argmin
V

{
| |U − V| |2 : | |V| |0 ≤ s

}
. (24)

It can be easily observed that the sparse projection operator selects

exactly the first s largest elements (in absolute value) of U and set

all other elements zeros. For convenience, let us denote the loss in

(23) by L (P). According to [1], problem (23) can be solved by the

proximal alternating linearization minimization (PALM) algorithm,

that is, at the t th iteration, P is updated by

P(t) = Ts
(
P(t−1) − 1

γt
∇L (P)

)
, (25)

where ∇L (P) = XX�P − XB�. The sequence of parameters γt
is chosen such that γt is greater than the Lipschitz modulis of

the loss function L, which is | |XX�||fro here. With this updating

procedure, the generated sequence of P will globally converge to

a critical point [1]. The reader is referred to [1] for the details

of the PALM algorithm. The work [48] also proposed a sparse

projection model for binary coding, which was however derived

very differently. Another difference is the work [48] focuses on

image retrieval while our method focuses on the classification task.

3.4 Discussion

As mentioned above, the proposed method classifies a new sample

x by first computing its binary codes (sgn(P�x)) and retrieving its

nearest neighbor from {wc }Cc=1. Taking advantage of extremely fast

bit operations (XOR and POPCOUNT), the computation consumed

by the second step can be mostly ignored. In fact, the computational

burden of our proposed method in the testing phase mainly comes

from projecting a feature vector onto the matrix P, which costs

O (dr) in time. With the sparse model, the time complexity can be

reduced to O (D) with D << dr the number of nonzero elements

in P. For conventional linear classifiers (e.g., linear SVM), the time

complexity for classifying a test sample is O (dC).
It is clear that the proposed method is not always relatively more

efficient, especially when the number of classes is small. However,

we note that ourmethod is more suitable for accelerating large-scale

classification problems with a large number of classes. The time

complexity does not change much with different numbers of classes.

In this sense, our proposed method can be more reasonably treated

as a classification method with nearly constant time complexity

at test time, insensitive to the number of classes. In addition, we

will show in the experiments that the proposed method has lower

training complexity even with a small number of classes, as justified

in Table 1.
Another advantage of our method is it significantly reduce the

storage cost by converting high-dimensional real-valued features

and classification models to compact binary codes. Differently,

previous hashing algorithms fail to take advantage of the binary

nature of obtained hash codes (still treated as real-valued features)

when applied for classification.

4 EXPERIMENTS

In this section, we conduct comprehensive evaluations to validate

the efficacy of our proposed method in terms of both classification

accuracy and computational efficiency.

4.1 Datasets

Three large-scale datasets: SUN397 [49], ImageNet [7] and Caltech-

2562 are used in our experiments.
SUN397 [49] contains about 108K images from 397 scene cat-

egories, where each image is represented by a 1,600-dimensional

feature vector extracted by PCA from 12,288-dimensional Deep

Convolutional Activation Features [11]. We use a subset of this

dataset including 42 categories with each containing more than 500

images; 100 images are sampled uniformly randomly from each cat-

egory to form a test set of 4,200 images. As a subset of ImageNet

[7], the large dataset ILSVRC 2012 contains over 1.2 million images

of totally 1,000 categories. We form the evaluation database by the

100 largest classes with total 128K images from the training set, and

50,000 images from the validation set as the test set. We use the

4096-dimensional features extracted by the convolution neural net-

works (CNN) model [17]. The Caltech-256 dataset contains 256

object categories including over 30K images. Similarly, we extract

the 4096-dimensional CNN features by the model in [17]. For this

dataset, we use half of the images in each category as training data

and the other half as the test set.

4.2 Compared methods and evaluation metrics

The proposed method with both exponential loss (denoted by Ours-

Exponential) and linear loss (denoted by Ours-Linear) are evaluated.

The binary code prediction is conducted with (21) by default. We

will evaluate the sparse model (23) in Section 4.5. The proposed

methods are compared with two popular linear classifiers: one-

vs-all linear SVM (OVA-SVM) and multi-class SVM (Multi-SVM

[5]), both of which are implemented using the LibLinear software

2http://www.vision.caltech.edu/Image Datasets/Caltech256/.

Table 1: Comparative results in terms of test accuracy (%), training and testing time (seconds). Experiments are conducted

on a standard PC with a quad-core Intel CPU and 32GB RAM. For LSH, CCA-ITQ, SDH and our methods, 128 bits are used.

OVA-SVM and Multi-SVM is performed with LibLinear, where the best accuracies are reported with parameter c chosen from

{1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3}.

Method
SUN397 ImageNet Caltech-256

acc (%) train time test time acc (%) train time test time acc (%) train time test time

OVA-SVM 77.39 818.87 1.55e-5 79.84 151.02 1.15e-5 73.31 47.37 2.70e-4

Multi-SVM 75.28 380.94 1.01e-5 79.48 93.12 1.21e-5 73.25 38.54 2.58e-4

LSH 54.11 417.42 7.75e-6 58.16 107.41 1.32e-5 51.07 15.16 2.78e-5

CCA-ITQ 69.33 452.34 8.78e-6 76.30 142.95 1.25e-5 65.14 15.12 2.86e-5

KSH 59.67 2805.50 5.19e-5 74.38 11217.71 4.96e-5 57.85 2854.31 7.39e-5

FastHash 48.17 3144.80 1.20e-3 72.66 371.65 7.75e-4 55.51 522.71 6.58e-4

SDH 72.56 2522.33 7.43e-6 76.64 1102.21 1.43e-5 66.90 132.56 2.83e-5

Ours-Exponential 75.44 772.11 3.67e-6 79.04 245.14 6.54e-6 65.52 69.31 1.31e-5

Ours-Linear 76.56 16.45 3.86e-6 77.88 35.16 6.86e-6 65.48 11.94 1.35e-5

package [8]. For these two methods, we tune the parameter c from
the range [1e-3, 1e3] and the best results are reported. Note that

during classification, both the features and classifiers are continuous

for the SVM algorithms, which is different from our methods. We

also compare our methods against several state-of-the-art binary

code learning methods including Locality Sensitive Hashing (LSH)

implemented by signed random projections, CCA-ITQ [10], KSH

[25], FastHash [21] and SDH [35]. Due to the expensive training

of KSH and FastHash, we randomly select 5K and 10K samples,

respectively, from training data for learning these two models. All

available training data are used for learning for other methods.

The classification results of these hashing methods are obtained by

performing the multi-class linear SVM over the predicted binary

codes by the corresponding hash functions. We use the public codes

and suggested parameters of these methods from the authors.
We extensively evaluate these compared methods in terms of

classification accuracy, computation efficiency (training time and

testing time) and storage memory overhead.

4.3 Accuracy and computational efficiency

In this part, we extensively evaluate the proposed twomethods with

the compared algorithms in classification accuracy and computation

time. We set the code length to 128 for our method and the hashing

algorithms LSH, CCA-ITQ, KSH, FastHash and SDH.
The main results on SUN397, ImageNet and Caltech-256 are

reported in Table 1. Between the algorithms with different loss

functions of our proposed model, we can see that the method with

the exponential loss performs slightly better than that with the

linear loss, while the latter one benefits from a much more effi-

cient training. This is not surprising because Ours-Linear solves

two alternating sub-problems both with closed-form solutions. In

the following experiments, we use the linear method for its high

efficiency.
Compared to other methods, the results in Table 1 clearly show

that, our methods achieve very competitive classification accuracies

with the full-precision linear SVMs on SUN397 and ImageNet. For

example, our method obtains 76.56% accuracy on SUN397 which

is better Multi-SVM by 1.28%. While OVA-SVM achieves slightly

better results than our method, the training and testing time cost

are much higher. On the Caltech-256 dataset, our methods with

128 bits (together with other hashing algorithms) do not perform

as well as SVM, which may be because the code length is too short

to encode enough information. Figure 5 depicts the impacts of code

lengths on the performance of our algorithm.
In the meanwhile, even being constrained to learning binary

classification weights, our methods obtain noticeably better results

than the state-of-the-art hashing algorithms. Specifically, Ours-

Exponential outperforms the best results obtained the hashing

algorithms by 2.88%, 2.4% on SUN397 and ImageNet , respectively.

On Caltech-256, our two algorithms attain very competitive accu-

racies with CCA-ITQ and SDH which are much higher than those

by LSH, KSH and FastHash.
In terms of training time, we can see that our method with

the linear loss runs way faster than all other methods on all the

evaluated three datasets. In particular, on SUN397, Ours-Linear is

50× and 23× faster than the LibLinear implementations of one-vs-all

SVM and multi-class SVM. Compared with the hashing algorithm,

our method runs over 28× faster than the fastest LSH followed

by Liblinear. For the testing time, the benefit of binary dimension

reduction for our methods and other three hashing algorithms

is clearly shown on the SUN397 dataset with a large number of

categories. Our methods require less testing time than the hashing

based classification methods, due to the extremely fast classification

implemented by searching in the Hamming space.
We also evaluate the compared methods with different code

lengths, where the detailed results on SUN397, ImageNet andCaltech-

256 are shown in Figure 4. From Figure 4, it is clear that with a

relatively small number of bits (e.g., 256 bits), our method can

achieve close classification performance to or even better than the

real-valued linear SVM with real-valued features. We can also

observe that our method consistently outperforms other hashing

algorithms by noticeable gaps at all code lengths on SUN397. On the

ImageNet dataset, our method achieves marginally better results

than SDH and CCA-ITQ, while better than KSH and the random

Code length
32 64 128 256 512

A
cc

u
ca

ry

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Our method
LSH
CCA-ITQ
KSH
FastHash
SDH
Linear SVM

(a) SUN397

Code length
32 64 128 256 512

A
cc

u
ca

ry

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Our method
LSH
CCA-ITQ
KSH
FastHash
SDH
Linear SVM

(b) ImageNet

Code length
32 64 128 256 512

A
cc

u
ca

ry

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Our method
LSH
CCA-ITQ
KSH
FastHash
SDH
Linear SVM

(c) Caltech-256

Figure 4: Comparative results of different methods in classification accuracy on SUN397 and ImageNet with code length from

32 to 512.

Code length

32 64 128 256 512

T
ra

in
in

g
 t

im
e

(s
)

0

100

200

300

400

Our method
Linear SVM

(a) SUN397

Code length

32 64 128 256 512

T
ra

in
in

g
 t

im
e

(s
)

30

40

50

60

70

80

90

100

Linear SVM
Our method

(b) ImageNet

Figure 5: Comparative results of ourmethod and linear SVM

in training time on SUN397 and ImageNet with code length

from 32 to 512.

Table 2: Memory overhead (MB) to store the image features

and classification model using Linear SVM and our method

(128-bit). Note that, for our method, the trained model in-

cludes the real-valued hashing matrix (P) and the binary

classification weight matrixW.

Dataset
Image features Classification model

Real-valued Binary Linear SVM Ours

ImageNet 3943.91 24.37 30.86 9.92

SUN397 1283.83 2.01 4.79 1.54

Caltech-256 157.04 0.97 7.89 3.95

LSH algorithm. For the Caltech-256 dataset, our method outper-

forms all of the compared hashing algorithms with less than 128 bits

while CCA-ITQ achieves slightly better accuracies with long code

lengths. However, we note that the results by ITQ are obtained by

additionally learning a full-precision SVM on ITQ codes while our

method classifies the generated binary codes by binary weights.
Figure 5 demonstrates the consumed training time by ourmethod

and Linear SVM by the Liblinear solver on two large-scale datasets.

The computation efficiency advantage of our method is clearly

shown. Our method has a nearly linear training time complexity

with the code length, which can facilitate its potential applications

in high-dimensional binary vector learning.

4.4 Storage cost

In this subsection, we analyze the storage cost of the image fea-

tures (real-valued and binary codes) and also the running memory

overhead of storing the classification model. For our method, the

trained model includes the real-valued hash function matrix (P) and

the binary classification weight matrix. The results are reported

in Table 2. It is clearly shown that our approach requires much

less memory than Linear SVM for storing both the image features

and classification models. Taking the ImageNet for example, Linear

SVM needs over 150 times more space than our method for the

dataset and over 3 times more space for the classification models.

4.5 Evaluation of the sparse model

As discussed above, the image features or the target binary codes

dimensionality can be very large, which will make the hash code

prediction be expensive in both computation and storage of the

hash model. To alleviate this problem, we develop a sparse model

in Section 3.3. In this subsection, we evaluate the impact of the

sparsity of the hash model P on the classification performance.

Figure 6 demonstrates the accuracy vs. non-sparsity (the number

of nonzeros in P over dr) of our method with various code lengths

on SUN397, ImageNet and Caltech-256.
We can observe from Figure 6 that the accuracies are consistently

improved with the increasing ratio of nonzeros in the hash model.

However, the performance becomes stable when the non-sparsity is

larger than 0.1 or 0.2 with a long code length being used on all these

three datasets. This may provide a way for the trade-off between

the performance and computation/memory cost.

5 CONCLUSIONS

This work proposed a novel classification framework, by which

classification is equivalently transformed to searching the nearest

binary weight code in the Hamming space. Different from previous

methods, both the feature and classifier weight vectors are simul-

taneously learned with binary hash codes. Our framework can

accommodate a large family of empirical loss functions, and we

especially studied the representative exponential and linear losses.

For the two sub-problems regarding the binary classifier and image

hash codes, a binary quadratic program (BQP) and a linear program

are formulated, respectively. In particular, for the BQP problem, a

Non-sparsity
0.001 0.01 0.1 0.2 0.4 0.6 0.8

A
cc

u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

128-bit
256-bit
512-bit
1024-bit
2048-bit
4096-bit
8192-bit

(a) SUN397

Non-sparsity
0.001 0.01 0.1 0.2 0.4 0.6 0.8

A
cc

u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

128-bit
256-bit
512-bit
1024-bit
2048-bit
4096-bit
8192-bit

(b) ImageNet

Non-sparsity
0.001 0.01 0.1 0.2 0.4 0.6 0.8

A
cc

u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

128-bit
256-bit
512-bit
1024-bit
2048-bit
4096-bit
8192-bit

(c) Caltech-256

Figure 6: Classification accuracy vs. non-sparity of P of the proposed sparse model on SUN397, ImageNet and Caltech-256

with various code lengths.

novel bit-flipping procedure which enjoys high efficacy and the lo-

cal optimality guarantee was developed. A significant computation

overhead reduction in model training and deployment is obtained

by our method, while without sacrificing the classification accuracy.

We also discussed a sparse binary coding model, which provides

a practical way to further reduce the computational and memory

costs.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science

Foundation of China under Project 61502081, Project 61572108,

Project 61673299 and Project 61632007, in part by the Fundamental

Research Funds for the Central Universities under Project ZYGX2014Z007.

REFERENCES
[1] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. 2014. Proximal alternating

linearized minimization for nonconvex and nonsmooth problems. Mathematical
Programming 146, 1-2 (2014), 459–494.

[2] M. M. Bronstein and P. Fua. 2012. LDAHash: Improved Matching with Smaller
Descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1 (2012), 66–78.

[3] Da Cao, Liqiang Nie, Xiangnan He, Xiaochi Wei, Shunzhi Zhu, Shunxiang Wu,
and Tat-Seng Chua. 2017. Embedding Factorization Models for Jointly Recom-
mending User Generated Lists and Their Contained Items. In Proc. SIGIR.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Proc. NIPS. 3123–3131.

[5] Koby Crammer and Yoram Singer. 2002. On the algorithmic implementation of
multiclass kernel-based vector machines. J. Mach. Learn. Res. 2 (2002), 265–292.

[6] Thomas Dean, Mark A. Ruzon, Mark Segal, Jonathon Shlens, Sudheendra Vijaya-
narasimhan, and Jay Yagnik. 2013. Fast, Accurate Detection of 100,000 Object
Classes on a Single Machine. In Proc. CVPR. 1814–1821.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Proc. CVPR. 248–255.

[8] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. 2008. LIBLINEAR: A
library for large linear classification. J. Mach. Learn. Res. 9 (2008), 1871–1874.

[9] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity search in
high dimensions via hashing. In Proc. VLDB. 518–529.

[10] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2013.
Iterative quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35, 12 (2013),
2916–2929.

[11] Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik. 2014. Multi-
scale orderless pooling of deep convolutional activation features. In Proc. ECCV.
Springer, 392–407.

[12] Xiangnan He, Ming Gao, Min-Yen Kan, Yiqun Liu, and Kazunari Sugiyama. 2014.
Predicting the popularity of web 2.0 items based on user comments. In Proc.
SIGIR. 233–242.

[13] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proc. WWW.

[14] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In Proc.

SIGIR. 549–558.
[15] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. 2016. Binarized neural networks. In Proc. NIPS. 4107–4115.
[16] Weihao Kong, Wu-Jun Li, and Minyi Guo. 2012. Manhattan Hashing for Large-

scale Image Retrieval. In Proc. SIGIR. 45–54.
[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. In Proc. NIPS. 1097–1105.
[18] B. Kulis and T. Darrell. 2009. Learning to hash with binary reconstructive

embeddings. In Proc. NIPS. 1042–1050.
[19] Ping Li, Gennady Samorodnitsk, and John Hopcroft. 2013. Sign Cauchy projec-

tions and Chi-square kernel. In Proc. NIPS. 2571–2579.
[20] Ping Li, Anshumali Shrivastava, Joshua L Moore, and Arnd C König. 2011. Hash-

ing algorithms for large-scale learning. In Proc. NIPS. 2672–2680.
[21] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, and David

Suter. 2014. Fast supervised hashing with decision trees for high-dimensional
data. In Proc. CVPR. 1971–1978.

[22] Li Liu, Fumin Shen, Yuming Shen, Xianglong Liu, and Ling Shao. 2017. Deep
Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval. In Proc. CVPR.

[23] Li Liu, Mengyang Yu, Fumin Shen, and Ling Shao. 2017. Discretely Coding
Semantic Rank Orders for Image Hashing. In Proc. CVPR.

[24] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. 2014. Discrete Graph
Hashing. In Proc. NIPS. 3419–3427.

[25] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. 2012.
Supervised hashing with kernels. In Proc. CVPR. 2074–2081.

[26] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. 2011. Hashing with
Graphs. In Proc. ICML. 1–8.

[27] Yadong Mu, Gang Hua, Wei Fan, and Shih-Fu Chang. 2014. Hash-SVM: Scalable
Kernel Machines for Large-Scale Visual Classification. In Proc. CVPR. 979–986.

[28] Liqiang Nie, Meng Wang, Zheng-Jun Zha, and Tat-Seng Chua. 2012. Oracle in
image search: A content-based approach to performance prediction. ACM Trans.
Inf. Syst. 30, 2 (2012), 13.

[29] Liqiang Nie, Yi-Liang Zhao, XiangyuWang, Jialie Shen, and Tat-Seng Chua. 2014.
Learning to recommend descriptive tags for questions in social forums. ACM
Trans. Inf. Syst. 32, 1 (2014), 5.

[30] Mohammad Norouzi and David M Blei. 2011. Minimal loss hashing for compact
binary codes. In Proc. ICML. 353–360.

[31] Jie Qin, Li Liu, Ling Shao, Bingbing Ni, Chen Chen, Fumin Shen, and Yunhong
Wang. 2017. Binary Coding for Partial Action Analysis with Limited Observation
Ratios. In Proc. CVPR.

[32] Jie Qin, Li Liu, Ling Shao, Fumin Shen, Bingbing Ni, Jiaxin Chen, and Yunhong
Wang. 2017. Zero-Shot Action Recognition with Error-Correcting Output Codes.
In Proc. CVPR.

[33] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In Proc. ECCV. Springer, 525–542.

[34] Fumin Shen, Wei Liu, Shaoting Zhang, Yang Yang, and Heng Tao Shen. 2015.
Learning Binary Codes for Maximum Inner Product Search. In Proc. ICCV. 4148–
4156.

[35] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. 2015. Supervised
Discrete Hashing. In Proc. CVPR. 37–45.

[36] Fumin Shen, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, and Zhenmin
Tang. 2013. Inductive Hashing on Manifolds. In Proc. CVPR. 1562–1569.

[37] Fumin Shen, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, Zhenmin Tang,
and Heng Tao Shen. 2015. Hashing on Nonlinear Manifolds. IEEE Trans. Image
Proc. 24, 6 (2015), 1839–1851.

[38] Fumin Shen, Xiang Zhou, Yang Yang, Jingkuan Song, Heng Tao Shen, and
Dacheng Tao. 2016. A Fast Optimization Method for General Binary Code
Learning. IEEE Transactions on Image Processing 25, 12 (2016), 5610–5621.

[39] Andrea Vedaldi and Andrew Zisserman. 2012. Efficient additive kernels via
explicit feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 34, 3 (2012), 480–
492.

[40] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. 2012. Semi-Supervised Hashing
for Large Scale Search. IEEE Trans. Pattern Anal. Mach. Intell. 34, 12 (2012),
2393–2406.

[41] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng Tao Shen.
2017. A survey on learning to hash. IEEE Trans. Pattern Anal. Mach. Intell. PP
(2017).

[42] M. Wang, W. Fu, S. Hao, H. Liu, and X. Wu. 2017. Learning on Big Graph: Label
Inference and Regularization with Anchor Hierarchy. IEEE Trans. Know. Data
Engin. 29, 5 (2017), 1101–1114.

[43] MengWang, Weijie Fu, Shijie Hao, Dacheng Tao, and XindongWu. 2016. Scalable
semi-supervised learning by efficient anchor graph regularization. IEEE Trans.
Know. Data Engin. 28, 7 (2016), 1864–1877.

[44] Meng Wang, Xueliang Liu, and Xindong Wu. 2015. Visual Classification by �1-
Hypergraph Modeling. IEEE Trans. Know. Data Engin. 27, 9 (2015), 2564–2574.

[45] Qifan Wang, Bin Shen, Shumiao Wang, Liang Li, and Luo Si. 2014. Binary codes
embedding for fast image tagging with incomplete labels. In Proc. ECCV. Springer,
425–439.

[46] Yair Weiss, Antonio Torralba, and Robert Fergus. 2008. Spectral Hashing. In Proc.
NIPS. 1753–fi?!1760.

[47] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, and Yi Ma. 2009.
Robust face recognition via sparse representation. IEEE Trans. Pattern Anal.
Mach. Intell. 31, 2 (2009), 210–227.

[48] Yan Xia, Kaiming He, Pushmeet Kohli, and Jian Sun. 2015. Sparse Projections
for High-Dimensional Binary Codes. In Proc. CVPR. 3332–3339.

[49] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba.
2010. Sun database: Large-scale scene recognition from abbey to zoo. In Proc.
CVPR. 3485–3492.

[50] Yang Yang, Yadan Luo, Weilun Chen, Fumin Shen, Jie Shao, and Heng Tao
Shen. 2016. Zero-Shot Hashing via Transferring Supervised Knowledge. In ACM
Multimedia. 1286–1295.

[51] Yang Yang, Fumin Shen, Heng Tao Shen, Hanxi Li, and Xuelong Li. 2015. Robust
discrete spectral hashing for large-scale image semantic indexing. IEEE Trans.
Big Data 1, 4 (2015), 162–171.

[52] Yang Yang, Hanwang Zhang, Mingxing Zhang, Fumin Shen, and Xuelong Li.
2015. Visual coding in a semantic hierarchy. In ACM Multimedia. 59–68.

[53] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-
Seng Chua. 2016. Discrete Collaborative Filtering. In Proc. SIGIR. 325–334.

[54] Peichao Zhang, Wei Zhang, Wu-Jun Li, andMinyi Guo. 2014. Supervised Hashing
with Latent Factor Models. In Proc. SIGIR. 173–182.

[55] Ke Zhou and Hongyuan Zha. 2012. Learning Binary Codes for Collaborative
Filtering. In Proc. KDD. 498–506.

