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Abstract—Maulti-person 3D motion prediction is an emerging
task that involves predicting the future 3D motion of multi-
ple individuals based on current observations. In contrast to
motion prediction for a single person, this task requires a
strong emphasis on learning the interacting dynamics among
multiple individuals. Broadly speaking, current methods can be
categorized into two groups: The first group involves the straight-
forward adaptation of models originally developed for single-
person scenarios to multi-person scenarios, which is evidently
suboptimal. The second group focuses on utilizing off-the-shelf
tools like graph convolutional networks to model interactions.
While this approach has shown improved results, the interactions
primarily consider entire human identities rather than finer
details. This motivates the introduction of our novel solution
to address this limitation and enhance the task’s performance.
In this work, we strive to craft a novel framework that can
effectively address two key issues ignored in previous works,
namely the multi-granularity interaction and time-varying inter-
person dynamics. In implementation in accord with above aims,
the proposed model has mainly comprised two modules: a person-
level interaction module and a part-level interaction module. The
former is designed to learn the holistic and dynamic interaction
among multiple persons in a coarse-grained sense. Critically,
we would emphasize that a unique trait of the former module
is learning temporal dynamics. For example, it recognizes that
two individuals exhibit a strong correlation during handshaking
but less correlation after parting ways. The latter part-level
interaction module learns the interaction between the body joints
of different persons. This module operates at a more fine-grained
level, distinguishing it from existing approaches. By aggregat-
ing information from both granularities, our model enables
accurate motion prediction. To validate the effectiveness of the
proposed model, we conducted comprehensive experiments on
three benchmark datasets: 3DPW, CMU-Mocap, and MuPoTS-
3D. The results of these evaluations unequivocally demonstrate
the empirical superiority of our model compared to previous
state-of-the-art methods.

Index Terms—Human 3D motion prediction, neural networks,
multi-granularity interaction

I. INTRODUCTION

HE technique of human 3D motion prediction has a

wide range of real-world applications, ranging from 3D
character animations [1]-[3], decision-making systems for
autonomous driving [4]-[6], human-robot interaction [7], [8],
and human-centric video generation [9], [10]. Booted by
the impressive development of deep learning, recent years
have witnessed unprecedented progress toward human motion
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Fig. 1. A comparison of our proposed multi-granularity interaction
with person-level interaction. Person-level interaction only concerns
the interaction scores between people (e.g., the quantities o1 and a2
as in the top panel). In this work, we advocate a multi-granularity
method for learning the interactions. Specifically, the proposed model
considers both fine-grained skeleton joint level interaction (e.g.,
B1, B2 and f3 in the bottom panel) and time-varying person-level
interaction.

predictions. A lot of research efforts have been made on single-
person motion prediction [11]-[22] and human trajectory pre-
diction [23]-[32]. However, the single-person motion predic-
tion task only pays attention to the pose dynamics, ignoring the
global motion of the person. The human trajectory prediction
task regards each person in the scene as a whole, yet does
not predict the pose dynamics of a specific person. [33] first
investigates the problem of multi-person motion prediction
in the literature. This task simultaneously predicts the global
motion of multiple people as well as the pose dynamics of
each individual. In this paper, we mainly focus on the multi-
person 3D motion prediction task.

The common ideas in current multi-person 3D motion pre-
diction methods are mainly derived from single-person motion



prediction and human trajectory prediction. The methods can
be roughly divided into two categories: methods based on
single-person motion modeling [34], [35] and methods based
on multi-person interaction information modeling [33], [36].
With the application of deep neural models to time series
tasks, [11]-[16], [37], [38] have made great progress in single-
person motion sequence prediction tasks. Along these works,
[35] boils it down into multiple sub-problems, each of which
corresponds to motion prediction for a unique individual in
the scene and can be solved via existing single-person motion
prediction. Regarding multi-person interaction modeling, the
work in [33] proposes a TRiIPOD model that uses attention
graphs to model human-to-human and human-to-objects in-
teractions in multi-person sequences. [36] introduces a more
powerful sequence model Transformer [39] into this task, and
proposes a multi-range Transformers model. A global-range
Transformer branch is used to capture the interactions between
multiple persons, and a local-range Transformer branch is
devised for a single person’s motion. Notably, this method
achieves state-of-the-art results on most benchmarks.
Although the above lines of methods have achieved excel-
lent results for many challenging cases, there is still a large
space for further improvement. In a multi-person scene, each
individual’s movement mutually affects one another. For meth-
ods directly borrowing single-person motion prediction [34],
[35], the interaction among persons is completely ignored,
leading to the non-optimal prediction of future motion. For
other works [33], [36] dedicated to multi-person interaction
modeling, they all regard the human body as a whole when
modeling the interaction, ignoring the mutual influence of the
body parts between the two people. An instance appears in
Figure 1, where an action of “handshaking” is happening. We
argue that multi-granularity interactions should be taken into
account for this case. The whole body is seemingly undergoing
a relationship of “slowly approaching”. Meanwhile, on the
level of human skeletons, there are also local interactions such
as “shaking” of the hands. Unfortunately, all of the existing
works [33], [36] only model the global relationship, skipping
exploring the power of learning local part interactions.
Aiming at attacking the above problems, this paper proposes
a multi-granularity interaction-based multi-person motion pre-
diction model. The model can simultaneously model the global
interaction between multiple people and the local interaction
between different people’s body parts, enhancing the quality
of feature representation for each person. Specifically, the
proposed model includes two branches: a branch for global
trajectory prediction and a second branch for local pose
dynamics prediction. The former reads the global coordinates
of the human body joints as its input. Through a global
interaction module (GIM), we predict the interaction scores
between the persons in the sequence, and meanwhile also
predict the motion trajectory of the global joint of the human
body. The latter branch is fed with the local coordinates of
each joint of the human body relative to the global joint
point as the input. It goes through a part attention module
(PAM) to get the attention scores between different joints
of different persons. Afterward, the global interaction score
and part attention score are modulated to get multi-granularity

interactions between different persons. The human-oriented
features after multi-granularity interactive encoding are sent
to an encoder-decoder model based on LSTM or transformer
to obtain the final prediction results.

Our key technical contributions can be summarized as:

1) We introduce a new multi-granular interaction-based
multi-person motion prediction framework, in which a global
trajectory prediction branch and a local pose dynamics predic-
tion branch are designated to model the interactions between
trajectories and joints, respectively. The human joint features
are fused according to the interaction information at two
granularities to obtain a better representation of human fea-
tures, thereby obtaining high-quality human motion prediction
results.

2) The method proposed in this paper has strong gen-
eralization performance. We introduce the multi-granularity
interaction modeling framework into the current two state-of-
the-art models DViTA [35] and MRT [36]. Comprehensive
evaluations are conducted on three datasets (3DPW, CMU-
Mocap and MuPoTs-3D). The experimental results faithfully
show that both models achieve consistent improvement after
incorporating our proposed method.

II. RELATED WORK
A. Human Trajectory Prediction

The task of human trajectory prediction regards the human
body as a whole. The goal is to predict a set of 3D coordinates
for each human characterizing its global motion. Datasets in
this task are often collected from dense crowds in traffic scenes
and have a wide range of applications in autonomous driving
tasks. Related work can be mainly divided into regression-
based or generative models. Most of the early work in this task
is based on regression models. [40] propose Gaussian process
dynamical models (GPDMs) for time-series analysis in human
trajectories. With the development of deep learning, time
series models based on Recurrent Neural Networks (RNNs)
have been successfully used in sequence prediction [41], [42],
machine translation [43], [44], image captioning [45]-[49],
video description [50]-[56] and others. RNNs-based methods
[571-[59] have achieved better results than Gaussian process
regression. [57] proposes a model called Social LSTM, which
can simultaneously consider common sense rules and social
conventions when walking, and predict the movement path of
all persons. Recently, generative models have become state-
of-the-art for trajectory prediction due to recent advances in
deep generative models. The previous regression models can
only generate a single trajectory prediction, while the gen-
erative model can generate the distribution of potential future
trajectories, which plays a more important role in the decision-
making system of autonomous driving. Conditional Variational
Autoencoder (CVAE) [23]-[25], [60]-[65] and Generative
Adversarial Network (GAN) [27], [28], [30], [66]-[70] are
two commonly used models in generative methods. [61] is
a representative method based on CVAE, which combines
tools from recurrent sequences and variational deep generative
modeling to produce a distribution of future trajectories for
each agent in a scene. [27] proposes a Multi-Agent Tensor



Fusion (MATF) model, which can encode the historical trajec-
tories of multiple agents and scene context into a Multi-Agent
Tensor, then capture the interactions between agents and use
an adversarial loss to learn stochastic directions.

B. Single-Person Motion Prediction

This task predicts the motion for a period of time in the
future given the historical motion of a single person. In this
task, the local information of the human joint points relative
to a fixed point is often used, rather than the global infor-
mation like in the human trajectory prediction task. Similar
to most sequence-to-sequence tasks, the methods [11]-[13],
[71]-[73] commonly used in this task are also based on
RNN/LSTM models. [11] proposes an Encoder-Recurrent-
Decoder (ERD) framework to model human kinematics and
learn human dynamics representations. [13] proposes to use
an RNN model with residuals architecture to model first-
order motion derivatives, which can generate more smooth and
more accurate short-term prediction results. [19] proposes a
diffusion convolutional recurrent predictor for spatial and tem-
poral movement forecasting. In view of the problem of error
accumulation in long-term prediction based on RNN/LSTM
models, some works [14], [15] have begun to try to replace
RNN/LSTM with fully connected or convolutional networks.
[16] proposes to use Discrete Cosine Transform (DCT) to
encode temporal information and use GCNs [74] to encode
spatial structure, and the model has proven highly effective
for the human motion prediction task. Based on [15], [18]
proposes a Multi-Scale Residual Graph Convolution Network
(MSR-GCN), where GCNs are used to extract features from
fine to coarse scale and then from coarse to fine scale. This
method shows stronger feature expression ability.

C. Multi-Person Motion Prediction

As the prediction of human motion becomes increasingly
important in real-world applications, recent works are no
longer limited to the study of human trajectory prediction or
single-person motion. [33] first proposed a multi-person mo-
tion prediction task. Currently, common methods in this task
can be divided into two categories: traditional methods [34],
[35] based on single-person motion prediction and more recent
methods [33], [36] based on multi-person information interac-
tion modeling. The former simplifies the multi-person motion
prediction task into a single-person motion prediction task,
divides a multi-person sequence into multiple single-person
sequences, and then uses the single-person motion prediction
methods introduced in Section II-B to model each single-
person sequence and predict the results, and finally merge
the results of each single-person sequences. For example, a
VAE-based method is proposed in [34], in which the encoder
and decoder composed of LSTM are used to complete the
encoding of the observed sequence and the prediction of the
unknown sequence in the single-person sequence, respectively.
The latter no longer regards each person in the sequence as an
independent individual and considers the interaction between
multiple persons in the sequence and the interaction between
person and scene in the modeling process to obtain a better

feature representation of each person, and then complete the
prediction of the unknown sequence. [33] proposes a TRiPOD
framework that uses two attention graphs to model the human-
to-human and human-to-object information interactions. With
the application of Transformer in computer vision, [36]
proposed a multi-range Transformer method, which uses a
local-range Transformer to encode the motion of a single
person in the sequence, and uses the global-range Transformer
to encode the motion of multiple persons, and then send both
to a Transformer-based decoder to predict the future motion.
The above two methods take the human body as a whole when
modeling the interaction between persons, ignoring the mutual
influence between the body parts of different persons. The
multi-granularity interaction method proposed in this paper
considers two scales of the whole body and body parts at the
same time, and can better model the interaction information.

D. Skeleton-based Action Recognition

Skeleton-based action recognition aims to identify human
actions based on the 2D or 3D positions of body joints, which
are often represented as skeletal structures. With the devel-
opment of graph convolutional network, [75] introduced the
Spatial Temporal Graph Convolutional Network (ST-GCN),
which employs graph convolutional network to model the
spatial and temporal information in skeletal data. [76] proposes
the Actional-Structural Graph Convolutional Network (AS-
GCN), which combines actional and structural links into a
generalized skeleton graph, utilizing actional-structural graph
convolution and temporal convolution as building blocks for
learning spatial and temporal features, enhancing the model’s
ability to capture detailed action patterns. [77] proposes a
novel Shift Graph Convolutional Network (Shift-GCN), which
addresses the limitations of the traditional ST-GCN by incor-
porating a shift operation for better temporal modeling. The
aforementioned GCN-based methods have proposed promising
approaches for spatiotemporal modeling of human motion
and have been applied in human motion sequence prediction
tasks, such as the work [38]. However, these methods focus
primarily on single-person temporal modeling and do not
consider the multi-granularity information interaction between
persons in multi-person sequences. Recently, the work most
closely related to multi-person motion prediction is the group
activity recognition task proposed by [78]. This work estimates
multi-person skeletons from existing real-world video datasets
(i.e., Kinetics and Volleyball-Activity) and releases two new
group activity recognition benchmarks. The proposed Zoom
Transformer model in this work is mainly to extract high-
level group activity patterns and pay more attention to the
overall context in the group, which is different from the goal
of focusing on the modeling and prediction of each person’s
motion details in multi-person motion prediction.

III. THE PROPOSED METHOD

In general human activities have social attributes. When
humans are in a multi-person scene, both the global trajectories
of individuals, as well as local movements of the limbs, will be
affected by the surrounding people. Based on this observation,
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Fig. 2. Representation of person n at frame ¢ in the sequence. Let g;* be the
“mid hip* joint in the world coordinate system, and I;"* is the local coordinate
of joint 4 relative to g;*. The method in this paper consists of two branches
to predict g and [}, respectively. The rightmost shows the correspondence
between the joint id and the joint name.

we design a multi-granular interaction-based multi-person
motion prediction method, as shown in Figure 3. For the two
branches in the model, the global trajectory prediction branch
inspects the global motion of multiple people and renders
the global trajectory prediction of the center point of each
human body. The core of this branch is a global interaction
module. A second local pose dynamics predicting branch takes
the local motion relative to the center of the human body as
the input and predicts human pose dynamics. This branch
mainly includes a part attention module for predicting the
attention scores between human joints and a multi-granularity
interaction fusion Module. The details of each branch are
described below.

A. Problem Definition

Given a sequence with the historical motion of N per-
sons, our goal is to predict their future 3D motion. For-
mally, given the part motion of a person n as Xy, =
{ot, 28, . xf, .., 2k }, where n € {1,2,..,N}, t is the
time step, and 7, is the length of the observation frames. The
model is desired to predict future motions X% .., where T
represents the end of the sequence. 2} € R3/ (J is the total
count of human skeleton joints) represents the pose of person
n at the time step ¢. Let z;"* be the state of the joint i. We
split the joint z;"* into two parts, including global g;* and local
I _ ‘

ot =g+ (1)
where gi* is the spatial location of the center of person n
in the world coordinate. ;" is the local coordinate of the
joint 7 relative to gi’, as shown in Figure 2. The trajectory
g1+ represents the global movements of person n in the
world coordinate and /7., indicates the local movements of all

person’s joints. The two branches in the proposed method are
primarily used to predict g7 ,,.p and I .7, respectively.
Following previous common practice, we adopt velocities
instead of raw coordinates as the input to the model. The
velocity of the pose at time ¢ is v;"”" = ;"' — 2"}, and the
corresponding global and local velocities are vyr and Uiy
respectively.

B. Global Trajectory Prediction

As stated before, this branch is mainly used for global inter-
actions prediction and human center trajectory forecasting. As
shown in Figure 3, this branch consists of two parts: person-
level feature projection and global interaction module. Each
part is described in detail below.

Person-level feature projection. Intuitively, to judge
whether there is an interaction between two people in the
scene, we can observe their distance and their respective
moving speeds. Therefore, the input of each person in this
branch can be represented as

pi =z v, 2

where z7' is the original world coordinate of person 7 at time
t, vy is the velocity relative to the previous frame, and &
represents the concatenation operation. p € RS/, All persons
in the sequence can be represented as P € RToxN*x67 Tn this
branch, we treat each person as a whole, where 6.J is the di-
mension of all parameters that describe each person. We use a
fully connected sub-network to project each person’s feature to
dg4-dimensional to obtain person-level feature representations,
namely

P’ = PROJ(P; WEps), 3)

where P’ € RTe*Nxds “pROJ” represents the feature projec-
tion network, here is a fully connected sub-network, WIG; RG
encapsulates all the parameters of the projection network.
P’ is sent to the global interaction module to calculate the
interaction scores.

Global interaction module. We propose a straightforward
scheme for predicting the interaction between any two persons.
For person n and person m, let their projected features be p;"
and p}™ at time step t¢. Since the relative distance and relative
motion between two persons are more concerned, we subtract
the two features and send it to a multi-layered fully connected
sub-network for rendering an interaction score:

GIM(p}™ — p}"s WinrER), €]

softmax({a]™!, a™2, ..., a1, ®)

mn
t =

m —
Oét =

where ;""" is the interaction score between person m and n
on frame ¢. af" is the global interaction score of person m
with everyone except himself, and W&y, » represents the
parameters of global interaction module. After going through
the softmax function, the sum of each person’s interaction
score with other people in the sequence is 1. The interaction
scores A will be used by the multi-granularity interaction
fusion module as in Section III-C.

Global feature fusion. Next, we use the calculated inter-
action score to perform a weighted summation of the features
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Fig. 3. The computational pipeline of our proposed method. See the main text for more explanations.

of other people in the scene and fuse it as the context infor-
mation with each person’s original feature. The calculation is
performed as follows:

N
/m

p™ =ap" A+ (L =m) ) o x g, (6)
n=1

where 7 is the harmonic parameter and we set it as 0.7 without
further empirical fine-tuning, p}™ is obtained after fusing the
features of other people in the sequence according to the
global interaction information. The fused features are fed into
an encoder-decoder network based on LSTM or Transformer.
Finally, the prediction results of the global trajectory gr, 1.7
of the human body are received as the output.

C. Local Pose Dynamics Prediction

In the process of human-to-human communication, in addi-
tion to the influence of the overall trajectory, there is also the
interaction between the joints of different bodies. For example,
when two people shake hands, they will stretch out their
right hands at the same time. Obviously, these two right-hand
joints exhibit instantaneous strong interaction. To model such
local joint interactions, we propose the local pose dynamics
prediction branch, which consists of three parts (keypoint-level
feature projection, part attention module, and multi-granularity
interaction fusion module) as shown in Figure 3.

Keypoint-level feature projection. In this branch, we take
the velocity {vl?vvllu”llzvvlla} of the human joints at
the current frame and the previous three frames as the input.
As stated above, vi» denotes the velocity of all joints of
person n at time step t. All persons in the sequences can be
represented as V. € RToxNJ*12 Unplike the case of person-

level modeling, the central features here are defined for human

joints. A fully connected sub-network is adapted to project the
feature dimension of each joint to d;, namely

V' =PROJ(V; W), (7

where V' € RTexNJxdi and WL, . are the parameters of
the joint projection network.

Part attention module. It is curated to obtain the interaction
between each joint and all the joints of others. A method
similar to self attention [39] is adopted. Let v;™" denote i-
th joint of person n at time step ¢, and vgN\" denote all other
joints after removing person n. The notations v, € R*®%
and vgN\" € RW-1Jxdi The attention between vgn’i and

vN\" is defined as follows:
fo = FOx (o W), ®)
fo = FC, (v W), ©

(10)

’ softmax ,
' ( NV

where W,,,, WE,,, € R%*? represent the parame-
ters of the corresponding fully connected networks. 3;”" €
RI*(N=1)J are the attention scores. For all joints in the
sequence, we can get attention B € RTexNJx(N=1)J,
Multi-granularity interaction fusion module. In a multi-
person scene, only two people interacting on the global tra-
jectory will have this mutual influence between their joints, so
we need a multi-granularity interaction fusion module to fuse
the interactions at these two granularities. From the global
interaction module and part attention module, we can get
both person-level and part-level interaction information, A and
B, respectively. The calculation of the multi-granularity score
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between person n and the others in the sequences is defined
as follows:
oy = repeat(ay, J),
N, __ an,t /
Pr = Py "

A7 = softmax(]),

(1)

where the repeat operation is to duplicate the person-level
interaction score J times to get o)" € RIX(V=1J  The
purpose is to align with 8;"", ;""" is an intermediate variable
in the calculation of ", 4f" € R™(N=1J g the new
interaction score between the ¢th joint and all other joints in the
sequence that fuses the two granular interaction information.

Then we fuse the joint features according to ;' ot

ni _ L1 1,2 1,J
¢’ = Concat(v,”,v,'", ..., v;

myio % \%4
¢ =FCy(ci", Wpan),

Myt Ingi n,j In,
vy "t =" 4+ MatMul(y;7, &),

,...,viv"]),

12)

where c?’i € RIW-1)Jxdi represents the intermediate vari-
able obtained by concatenating the joint features of all per-
sons except n, “Concat” represents concatenation operator,
“MatMul” represents the matrix multiplication operator, and
vy™" € R s obtained after fusing the features of other
joint points by using multi-granularity interaction information.

The specific calculation flow of the part attention module
and multi-granularity interaction fusion module is shown in
Figure 4. The fused features are sent to an encoder-decoder
network as detailed in Section III-D, which predicts local pose
dynamics I, .7.

D. Encoder-Decoder Framework

After obtaining the global and the local pose feature, we
send them into the global and local encoder-decoder frame-
works, respectively. Regarding the encoder-decoder frame-
work, there are two commonly used models recently, either
based on RNN/LSTM or based on Transformer. The repre-
sentative works are DViTA [35] and MRT [36] respectively.
Since our method is essentially precoding human features, it
can be easily combined with both of these two methods. In
the experimental section, we will verify in detail the effect of
the proposed GIM and PAM modules when bridged with these
two base methods. Below, let us take LSTM as an example to
introduce the structure of the encoder-decoder part.

The encoder LSTM conveys the part history of each per-
son’s global or local features. Taking the global feature p}™
of person n at time ¢ for instance,

ht — LSTM(htfl,pim; ngobal)’

enc

13)

where W9°%%! are parameters of the global feature encoder.
After encoding the input, the decoder LSTM takes the last
observed frame g7 and the last hidden state hr, of the

encoder, and outputs the predicted hidden state:

hr, 4141 = LSTM (hTo+t,g:7ﬁo+t; nge(():bal) ’

lel“o+t+1 = ¢ (hr,4i115 W¢>) )

(14)

where ¢ is a fully connected layer. Following this step, we
can iteratively generate global trajectory prediction results
g7 .p- In the local pose dynamics prediction branch, we use a
similar decoder-decoder structure for generating human pose
dynamics I 7.

E. Loss Function

Following the majority of previous works [33], [35], [36],
we adopt Mean Square Error (MSE) loss as the optimization
objective to supervise the training process of the model. On
the predicted frame k, z}' and z;" are the groundtruth and
predicted motion of person n, respectively. The MSE loss can
be calculated as

1 N
_ n m||2
£ = 5y 2 lat =il

=1

15)

For the sequence prediction problem, the human poses on
the long-term frame are more difficult to be precisely predicted
compared with the short-term ones. Therefore, we adopt the
cumulative learning strategy to gradually increase the learning
difficulty of the model. An additional frame is incrementally
added to the loss computation after every E training epoch.



IV. EXPERIMENTS
A. Dataset Description

We adopt three multi-person motion prediction benchmarks
in the experiments: 3DPW [79], CMU-Mocap [80], and
MuPoTs-3D [81]. Details of the three datasets are presented
below.

3DPW [79]. The samples are videos taken from a moving
phone camera. It contains 60 videos and about 68k frames
covering multiple scenarios and actions, with the annotated
3D positions of 24 keypoints. It is first used as a benchmark
for human 3D pose estimation tasks in wild scenes. The work
in [33] first re-purposes it for the multi-person 3D motion
prediction task. Here we follow the setting of [33]. The 3DPW
dataset consists of three parts: training, validation, and testing,
including 221, 36, and 85 sequences, respectively. The length
of each sequence is 30 frames, of which 16 are assumed to
be observed and 14 are to be predicted by the model.

CMU-Mocap [80]. It is a human 3D pose video dataset
collected by multi-view cameras and markers in a laboratory
scene. A total of 112 subjects are included, most of which have
only one person’s movements, and a small number of scenes
contain two persons’ movements and interactions. The work
of [36] samples and mixes two parts including one person and
two persons, constructing a dataset that includes 3 persons in
the sequence. The dataset consists of training and testing splits,
with 6,000 and 800 sequences respectively. Each sequence has
a length of 120 frames, 30 of which are known, and the rest are
left for prediction. We fully follow the setting of [36] and use
the benchmark constructed by them to validate our proposed
method.

MuPoTS-3D [81]. It is a human 3D pose dataset collected
by a multi-view mark-less motion-capture system, including 5
indoor and 15 outdoor scenes, a total of 20 sequences, and 8
subjects. There are typical 2 ~ 3 persons in each sequence.
Following [36], we use this dataset to verify the generalization
performance of the model trained on the CMU-Mocap dataset.

Mix1 & Mix2. In order to evaluate the performance of
our proposed model in scenarios involving a larger number of
individuals, we adopt the methodology presented in the MRT
paper. We sample and combine data from the CMU-Mocap
and Panoptic [82] datasets to generate a mixed training set.
This training set contains approximately 3,000 samples, each
featuring 9 to 15 people in the scene. Regarding the test set,
it is divided into two parts: Mix1, which combines CMU-
Mocap and Panoptic data, and Mix2, which blends CMU-
Mocap, MuPoTS-3D, and 3DPW data. Mix1 is composed
of 800 samples and includes scenes with 9 to 15 people,
while Mix2 consistently features 11 persons in each of its
400 samples.

B. Evaluation Protocol

Following common practice, we use the metric of mean per
joint position error (MPJPE) in the evaluation. The MPJPE
calculates the mean error between the predicted joint positions
and the groundtruth. For 3DPW dataset, following [33], we
calculate the MPJPE on the predicted frame at 5 moments in

the future 100, 240, 500, 640, and 900 milliseconds. For CMU-
Mocap and MuPoTS-3D datasets, we simultaneously report
the results on short-term 1 second and long-term 3 seconds.
All units in the experiments are in millimeters.

C. Base Models

In order to verify the effectiveness of the multi-granularity
interaction-based model proposed in this paper, we select two
state-of-the-art models DViTA [35] and MRT [36] for the
experiments.

DViTA!: This method simplifies multi-person motion pre-
diction into multiple single-person motion prediction sub-
tasks, and adopts a simple LSTM-based encoder-decoder
structure. It reported excellent results on 3DPW dataset. We
incorporate the method proposed in this paper into the original
DViTA model (i.e., first get the features of each person that
integrates multi-granularity interactive information, and then
send it to the original DViTA model).

MRT?: MRT is a method based on multi-person inter-
action modeling. The core of this method is a multi-range
transformer. Specifically, it uses a local-range transformer to
encode single-person motion sequences, and another global-
range transformer to encode the motion of multiple people.
This method treats the person as a whole and does not model
the interactions between joints. Similar to the processing of the
DViTA model, we first use the method proposed in this paper
to pre-code multi-person motion sequences and then feed them
into the MRT model.

D. Implementation Details

In this paper, the proposed method is mainly experimentally
validated on two different models, DViTA and MRT, with
varying implementation details for each model. For the DViTA
model, we use a given 15-frame historical motion sequence
as input to predict the next 14 frames. This model is based
on LSTM with a hidden state dimension of 64. We add the
GIM and PAM modules proposed in this paper before the
LSTM to pre-encode the input motion sequence with multi-
granularity interaction, and then feed this feature into the
LSTM of the DViTA model. The entire GIM, PAM modules,
and the original DViTA model are jointly trained from scratch.
The model is implemented using PyTorch and trained using
the Adam optimizer. The initial learning rate is 0.004, and the
ReduceLROnPlateau strategy is used for adaptive updating.
During the training process, the mean squared error loss
function introduced in Section III-E adopted, with £ = 4 in
the cumulative learning strategy, meaning that a new frame is
added to the loss function calculation every four epochs. The
model is trained for a total of 100 epochs.

For the MRT model, it is capable of handling both long-
term predictions of 3 seconds and short-term predictions of
1 second. For the 3-second long-term prediction, we mainly
adhere to the settings in the original paper, using a 1-second
historical motion as input to recursively predict the motion for

Uhttps://github.com/vita-epfl/decoupled-pose-prediction
Zhttps://github.com/jiashunwang/MRT
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TABLE I
MPIJPE ON PREDICTING 1, 2, AND 3 SECONDS MOTION ON CMU-MOCAP
AND MUPOTS-3D TEST SET. WE VERIFY THE IMPACT OF OUR PROPOSED
MODULES GIM AND PAM ON THE BASELINE MODEL MRT.

CMU-Mocap MuPoTS-3D
Method 1s 2s 3s Is 2s 3s
MRT [36] 1658 2753 3732 | 109.6 2004 302.6
MRT + GIM 164.1 2694 361.3 | 1082 1963 2918
MRT + PAM 159.5 2627 3514 | 1043 1927 286.3
MRT + GIM + PAM | 1572 2575 344.6 | 102.1 1829 265.8
TABLE 11

MPJPE ON PREDICTING 1, 2, AND 3 SECONDS MOTION ON MiX1 AND
MIX2 DATASET.

Mix1 Mix2
Method (9~15 persons) (11 persons)
1s 2s 3s Is 2s 3s
MRT [36] 189.1  279.9 3425 | 210.6 357.7 4773
MRT + GIM 179.5 2728 329.8 | 202.8 3492 4723
MRT + PAM 180.9 2740 332.0 | 203.9 3529 4684
MRT + GIM + PAM | 178.2 269.1 3249 | 201.8 346.7 460.7

the upcoming 3 seconds. During training, the learning rates
for the predictor and discriminator are set at 3e-4 and Se-4,
respectively, and the model undergoes 200 epochs of training.
For experiments with 2~3 people, the batch size is set to
32, and for experiments with 9~15 people, the batch size is
set to 8. For the 1-second short-term prediction, we employ a
cumulative learning strategy, training the model for 200 epochs
with a value of E set to 10. The learning rates for the predictor
and discriminator are le-4 and 3e-4, respectively.

E. Experimental Results and Analysis

As introduced in Section III, the proposed method mainly
includes two modules, the global interaction module (GIM)
and part attention module (PAM), which model the interaction
between human bodies from the global trajectory and local
joint granularities, respectively. First, we verify the impact
of these two modules on the base models DVITA and MRT.
Critically, DVITA and MRT models differ in their ability to
predict unknown sequence lengths. The original model of
DViTA can only predict human motion in the next 14 frames,
and MRT can predict motion in the next 3 seconds. The MRT-
related verification in the following experiments is performed
on all three datasets and 3DPW and CMU-Mocap for DViTA-
related. The experimental setting of DViTA is to predict the
future 14 frames.

The experimental results of MRT on CMU-Mocap and
MuPoTS-3D are shown in Table I. The models are trained
on the training set of CMU-Mocap and tested on the test set
of CMU-Mocap and MuPoTS-3D. The purpose is to simulta-
neously verify the accuracy of the model on CMU-Mocap and
the generalization performance on MuPoTS-3D. Experimental
results show that both our proposed GIM and PAM modules
bring effective improvements to the original MRT model.
Among them, the improvement brought by the PAM module is
more significant than that of the GIM module (373.2 — 361.3
v.s. 373.2 — 351.4 in 3s motion prediction), because the MRT
model itself has modeled the global interaction of the human
body, but it lacks the modeling of the interaction between the

TABLE 111
MPJPE ON CMU-MOCAP VALIDATION DATASET. WE VERIFY THE IMPACT
OF GIM AND PAM MODULES ON THE BASELINE MODEL DVITA.

CMU-Mocap
Method prediction time in milliseconds
Avg. 100 240 500 640 900
DVITA [35] 77.58 2282 4593 8515 10197 132.06
DViTA + GIM 76.54 2480 4725 8379  99.08 127.78
DViTA + PAM 76.69 25.17 4741 8353  99.12 128.20
DViTA+GIM+PAM | 7597 23.84 46.08 8339 98.84 127.72
TABLE IV

MPJPE ON MOPUTS-3D DATASET. WE VERIFY THE IMPACT OF GIM AND
PAM MODULES ON THE BASELINE MODEL DVITA.

MoPuTS-3D

Method prediction time in milliseconds

Avg. 100 240 500 640 900
DVITA [35] 51.48 1601 3042 5670 67.88 86.41
DViTA + GIM 49.24 1659 30.03 53.66 63.86 82.04
DViTA + PAM 49.06 1635 29.85 53.65 63.82 81.62
DViTA+GIM+PAM | 47.74 1505 27.65 51.78 62.64 81.58

TABLE V

MPJPE ON 3DPW VALIDATION DATASET. WE VERIFY THE IMPACT OF
THE PAM MODULE ON THE TWO BASELINES DVITA AND MRT.

3DPW-Validation
Method prediction time in milliseconds
Avg. 100 240 500 640 900
DVITA [35] 56.74 13.87 30.84 6280 7556 100.64
DViTA + PAM | 5421 1590 32.10 59.71 70.78  92.58
MRT [36] 53.06 17.16 31.68 57.82 69.04  89.56
MRT + PAM 5261 16.76  30.87 5731 68.31 89.78

body joints. The experimental results are consistent with our
intuition. After integrating the interaction of GIM and PAM
at two granularities, the model can achieve the best results
(373.2 — 344.6).

As shown in Table II, the performance of the proposed
GIM and PAM modules on the Mix1 and Mix2 test sets is
presented. As mentioned earlier, the Mix1 and Mix2 datasets
contain scenes with a larger number of people, ranging from
9 to 15 individuals. The experimental results demonstrate that
both GIM and PAM exhibit positive effects, with the GIM
module showing a more significant improvement compared to
the PAM module. This suggests that in scenes with a higher
number of people, the scale of keypoints considered by the
PAM module expands, and its performance may be affected by
noise. Therefore, it requires cooperation with the GIM module
to achieve better results.

Similarly, we also verified the effects of GIM and PAM
on the DViTA method on the CMU-Mocap and MuPoTS-3D
datasets, and the experimental results are shown in Table III
and Table IV. We can see that GIM and PAM modules can
consistently improve the DViTA model. Since the original
DVIiTA model is based on a single-person sequence prediction
method and does not model interactions between multiple
persons, the improvement brought by the GIM module is more
significant.

The experimental results of the two models, DViTA and
MRT, on the 3DPW validation set are shown in Table V.
Since there are only two people in the sequence of the 3DPW
dataset, the global interaction score between the two people



TABLE VI
MPJPE ON 3DPW TEST DATASET.
3DPW-Test
Method prediction time in milliseconds
Avg. 100 240 500 640 900

PF-RNN [13]
+ ST-GAT [83] 15779  67.12 11653  164.61 189.82  250.88
Mo-Att [84]
+ ST-GAT [83] 149.63  62.41 94.59 15324 188.02 24991
SC-MPF [85] 12323 4544 7373 129.23  159.47  208.31
TRiPOD [33] 84.21 31.04  50.80 84.74 104.05  150.41
LSTMV_LAST [34] 8296  25.89  47.57 86.39 106.65 148.28
DVITA [35] 65.67 19.53  36.89 68.29 85.45 118.21
DViTA + PAM 64.71 20.18  37.25 66.79 84.10 115.24
MRT [36] 65.57  21.80  37.09 68.33 84.58 116.07
MRT + PAM 6424  21.16 3590 67.00 83.37 113.77

TABLE VII

MPJPE ON 3DPW VALIDATION DATASET. WE VERIFY THE EFFECT OF
CUMULATIVE LEARNING ON THE METHOD PROPOSED IN THIS PAPER.
“CL” CL IS AN ACRONYM FOR CUMULATIVE LEARNING.

3DPW-Validation
Method prediction time in milliseconds
Avg. 100 240 500 640 900

DViTA [35] 56.74 13.87 30.84 62.80 75.56 100.64
Ours (no CL) 55.01 1420 31.50 61.32 7378 9425
Ours (CL, E=2) | 54.63 15.14 3197 60.59 72.16  93.29
Ours (CL, E=4) | 5421 1590 32.10 59.71 70.78  92.58
Ours (CL, E=6) | 5436 1652 34.04 5930 69.93  92.05

obtained by our GIM module is always 1, and the effect
of the GIM module cannot be reflected. Therefore, we only
verify the impact of the PAM module. It can be seen from
the experimental results that the PAM module brings positive
improvements to both models. The improvement brought by
PAM is larger for the relatively weak DViTA model than MRT
(56.74 — 54.21 v.s. 53.06 — 52.61). In order to compare with
other methods more thoroughly, we select the MRT model
to conduct experiments on the 3DPW test set, as shown in
Table VI. Experimental results show that our method can still
bring significant improvements to DViTA and MRT.

F. Ablation Study and Efficiency Analysis

In order to verify the impact of cumulative learning men-
tioned in Section III-E on the model performance, we designed
an ablation study on the 3DPW validation set using DViTA
as the baseline model. The experimental results are shown
in Table VII. In the table, the “Ours” method represents
the DViTA method with our added PAM module. From the
results, we can see that even without cumulative learning, our
method can still bring improvements to the baseline model,
reducing the average error from 56.74 to 55.01. At the same
time, we also conducted an ablation study on the selection of
the hyperparameter E in cumulative learning, and it can be
observed that when E is set to 4, the model can achieve a
relatively balanced performance in short-term (100 ms) and
long-term (900 ms) frame predictions, with the minimum
prediction error.

To investigate the impact of the proposed method in this
paper on the running efficiency of the original baseline model,
especially when the number of persons in the scene increases
and whether the running time of the model becomes unaccept-
able, we conducted a comparison experiment on the model’s
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Fig. 5. The change in the model’s computational complexity (GFLOPS) as
the number of persons in the test set Mix1 varies.

computational complexity using the test set Mix1. First, we
calculated the parameter sizes of the MRT model and the
model proposed in this paper, which are 6.6 million and 6.9
million, respectively. The parameter size of the model does
not change with the increase in the number of characters in
the scene. Next, we calculated the computational complexity
GFLOPS (Giga Floating-point Operations Per Second) of the
models when there are 9 to 15 people in the scene, as
shown in Figure 5. From the figure, it can be seen that
the computational complexity of both the proposed model
and the MRT model basically maintains linear growth as
the number of persons in the scene increases. Due to the
additional introduction of GIM and PAM modules in our
model, the computational complexity is relatively higher, but
such a relative increase is acceptable in scenes with up to 15
persons.

G. Qualitative Analysis

To investigate whether the effects of GIM and PAM modules
are consistent with our intuition, we visualize the person-level
interaction scores and part-level attention on several examples,
as shown in Figure 6 and Figure 7.

Person-level interaction. There are three examples in Fig-
ure 6. For each example, we visualize each person’s interaction
scores with others over time. In the first example, Person 1
is gradually approaching person 3. It can be seen that the
interaction scores “P3—P1” and “P1—P3” tend to increase
significantly. In the second example, person 2 and person 3
are far away from person 1, and their influence on person 1
is relatively close, thus the interaction scores “P2 — P1” and
“P3 — P1” are both around 0.5. For person 2 and person 3, the
distance between them is closer and there is a stronger mutual
influence, so the values of “P3 — P2” and “P2 — P3” are
both significantly higher. The situation for the third example
is similar to the second. The results of the three examples
above collectively show that the person-level interaction scores
modeled by our GIM module are consistent with our intuition.

Part-level attention. Figure 7 show the effect of the part
attention module. In the scene in Figure 7 (a), Person 2 and
Person 3 are approaching each other, Person 2 is moving his
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Fig. 6. Visualization of person-level interactions. The figure includes three examples. For each instance, the leftmost represents the dynamics of the persons in
the sequences, and the three images on the right represent the changes in the person-level interaction scores between different persons over time, for example,
P2 — P1, P3 — P1 represent the influence of person 2 and person 3 on person 1, respectively. Better viewing in color mode.
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Fig. 7. Visualization of part-level attention. The figure includes three examples. For each instance, the upper image shows the dynamics of the three persons
in the sequence, and the lower image shows the attention map between the 15 joints of person 3 and the other two persons’ joints. Better viewing in color
mode. The correspondence between joint id and joint name in the attention map is shown in Figure 2.

right hand, and Person 3 is moving his left arm. From the
attention map, we can see that the response values between
the left arm (Joint ID 9~11) of Person 3 and the right hand
(Joint ID 14) of Person 2 are higher (in gray circle). In Figure 7

(b), the left arms of Person 2 and Person 3 are waving, and the
other parts of the body are basically still, thus the parts with
higher response values in the attention map are concentrated
in the joints 10 and 11 of Person 2 and Person 3. In Figure 7



—
1

sample 2

{41
71

sample 3

|

i

short-term future

<?

long-term future

bl b
bt o
R
TEIRITE I
L
R R
—
ok

Fig. 8. Visualization of the prediction results of Multi-Range Transformer (MRT), our proposed method, and ground-truth human poses. Left poses are fed
as the known sequence and poses on the right panel are inferred by the models.

(c), Person 2 and Person 3 are doing squats, so the response
values of their legs is relatively high.

Visualization. Figure 8 shows the visualization results after
incorporating our proposed method into MRT. It can be
seen from the figure that the original MRT model tends to
have abnormal deformation of human scale and unreasonable
distance between multiple people in the later stage of sequence
prediction. With our method, the above situation is notably
alleviated. This is also consistent with the previous conclusion
in Table I that MRT+PAM+GIM performs better in long-term
sequence prediction.

V. CONCLUSIONS

In this paper, we propose a multi-granularity-based multi-
person 3D motion prediction framework. The framework
mainly includes two modules, Global Interaction Module
(GIM) and the Part Attention Module (PAM). The GIM
module uses the global position and motion of multiple people
to model the person-level interactions, and the PAM module
uses the motion of the human joints to model the joint-level
interactions. Finally, the person-level and part-level interac-
tions are fused to obtain a multi-granularity interaction score.
This framework makes up for the problem of only modeling
global person-level interactions but ignoring the interaction
between joints in previous methods. On the three datasets of



CMU-Mocap, MuPoTS-3D, and 3DPW, our proposed method
brings significant improvement to the baseline models DViTA
and MRT.
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