
Tree-Structured Trajectory Encoding for Vision-and-Language Navigation

Xinzhe Zhou1, Yadong Mu1,2*

1Wangxuan Institute of Computer Technology, Peking University, 2Peng Cheng Laboratory
{zhouxinzhe1023, myd}@pku.edu.cn

Abstract

Over the past few years, the research on vision-and-language
navigation (VLN) has made tremendous progress. Many pre-
vious works attempted to improve the performance from dif-
ferent aspects like training strategy, data augmentation, pre-
training, etc. This work focuses on a rarely-explored as-
pect in VLN, namely the trajectory organization and encod-
ing during the navigation. Most of existing state-of-the-art
VLN models adopt a vanilla sequential strategy for encod-
ing the trajectories. Such strategy takes the whole trajectory
as a single sequence to estimate the current state, no mat-
ter whether the agent moved smoothly or perhaps made mis-
takes and backtracked in the past. We show that the sequen-
tial encoding may largely lose this kind of fine-grained struc-
ture in the trajectory, which could hamper the later state es-
timation and decision making. In order to solve this prob-
lem, this work proposes a novel tree-structured trajectory en-
coding strategy. The whole trajectory is organized as a tree
rooted from the starting position, and encoded using our Tree-
Transformer module to fully extract the fine-grained histor-
ical information. Besides, as the spatial topology could be
easily embedded in the trajectory tree, we further design a
tree-based action space to allow the agent making long-range
error-correction in one decision. We implement the holis-
tic agent based on cross-modal transformer and train it with
a newly-proposed Tree-nDTW reward. On the benchmark
dataset R2R, our model achieves a surpassing success rate
(SR) of 68% on val-unseen and 66% on test. We fur-
ther conduct extensive ablation studies and analyses to pro-
vide more insights for the effectiveness our designs.

Introduction
Vision-and-Language Navigation (VLN) is a growing field
that combines vision-and-language learning with embodied
decision process (Anderson et al. 2018b). The task requires
an embodied agent (robot) to move along an expected path
specified by a natural language instruction in some environ-
ment. Generally, the agent should understand the instruction
and perceive its surroundings through a first-person RGB
camera, and then sequentially decides its next move. The
potential applications include domestic service, emergency
rescue, etc.

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a

b

d c

e

1

2 34

5

Sequential
Encoding

ea b c b d

RNN / Transformer

Tree-structured
Encoding

e
a

c

d
b

Tree-Transformer

(a) (c)

(b)

a1

Instruction
…

…

Trajectory

Visual Processing Module

Decision Making Module

Language Processing Module

a2 a3 at
at+1

w1 w2 w3 wL

()

(b)

Figure 1: (a) An illustrative example comparing previous
sequential strategy with our tree-structured strategy for en-
coding trajectory. (b) The structure of a typical VLN agent
today. (c) The results of manually imposing error-and-
corrections of various steps at the beginning for different
models.

Since its proposal, the field of VLN has witnessed contin-
uous progress from different aspects (Anderson et al. 2018b;
Fried et al. 2018; Wang et al. 2019; Hong et al. 2021; Chen
et al. 2021). Fig. 1(b) depicts the structure of a typical VLN
model today. It mainly consists of three parts: the Language
Processing Module processes the instruction, the Visual Pro-
cessing Module encodes the historical and current visual ob-
servations (a.k.a., the trajectory), and the Decision Making
Module aggregates the two modalities for the final deci-
sion (i.e., selecting the next navigable position). Although
the model detail varies in previous works, we notice that
their trajectory encoding strategies have mostly followed a
similar paradigm–to encode the whole trajectory as a sin-
gle sequence using sequential models like LSTM (Hochre-
iter and Schmidhuber 1997) or transformer (Vaswani et al.
2017). Some exceptions like EGP (Deng, Narasimhan, and
Russakovsky 2020) or SSM (Wang et al. 2021) maintain
a graphical representation of the visited environments, but
they still resort to sequentially encoding the trajectory to es-
timate the current state.

The sequential encoding has the merit of keeping the
order of all historical steps, but they may lose the fine-
grained structure in the trajectory. The structure here refers
to the error-and-corrections1 occurred during the naviga-
tion. Fig. 1(a) gives an illustrative example. At the 2-nd
step, the agent went to “c”; then at the 3-rd step, it real-
ized that the last action was incorrect, so it returned back to
“b” and moved to “d” for correction. Such one-step error-
and-correction is the most simplified case, and in more chal-
lenging scenarios, the mistake could last for several steps
before the agent realizes and corrects it. Due to the poten-
tial language and visual ambiguity, this kind of error-and-
correction could happen a lot. For example, for the state-of-
the-art RecBert (Hong et al. 2021) and VLN-HAMT (Chen
et al. 2021), about 10% samples in R2R val-unseen set
involve at least one error-and-correction, despite the paths
only take 4-6 steps. These error-and-corrections represent
the failed attempts that the agents made in the past, so the in-
volved steps should not be mixed with ordinary steps when
encoding the trajectory. On the other hand, it may be sub-
optimal to directly discard the erroneous steps as they could
also be useful for later navigation. For example, they could
help clarify the confusion, broaden the agent view, enrich
the environment topology, etc.

Based on the above analysis, we believe it is important
to reflect the fine-grained structure when encoding the tra-
jectory. However, the vanilla sequential encoding strategy
may lack such ability. To provide an evidence, we manu-
ally control several state-of-the-art VLN agents and ours to
conduct a k-step error-and-correction (move in an erroneous
way for k steps and return back reversely) before letting
them move freely. This introduces 2k error-and-correction
steps in their trajectories, and if their encoding success-
fully identifies such structure, the agents should be aware
of the mistake and the performance should not be down-
graded greatly. However, as shown in Fig. 1(c), all agents
but ours show a huge drop in SR. Besides, as the erroneous
path grows longer, other models perform even worse but
ours could maintain a stably high performance. This indi-
cates that those models may have not correctly interpreted
the error-and-correction steps, which leads to the abnormal
performance.

Therefore, in this work, in order trying to solve the above
problem, we propose a novel tree-structured trajectory en-
coding strategy. The core idea is to organize the whole tra-
jectory as a tree instead of a plain sequence. Our insight is
that we realize the error-and-correction happened at some
step t could be characterized by a branching in the t-th posi-
tion of the trajectory–one branch records the erroneous steps
and the other branch follows later steps after the error is
corrected. The branching structure reflects the characteris-
tics of the erroneous steps, e.g., they represent a failed at-
tempt which is parallel with later attempts. Besides, as error-
correction (backtracking) is to move reversely along the er-
roneous steps, they need not to be recorded explicitly as long
as the erroneous steps are kept in the branch. This ensures

1We define “error-and-correction” to be moving forward and
returning back reversely.

the edges could only go from earlier to later positions, thus
forming a strict tree hierarchy. Fig. 1(a) provides an example
of the tree and the corresponding sequential trajectory.

Based on the tree-structured trajectory, we further pro-
pose three improvements to better fit the VLN task. First,
as the tree is structurally different from the sequence, we
design a novel Tree-Transformer module to encode our tra-
jectory trees. Different from works in natural language pro-
cessing that hierarchically encode the (syntax) trees us-
ing constituent attention (Wang, Lee, and Chen 2019) or
tree-convolution (Harer, Reale, and Chin 2019; Sun et al.
2020), we propose novel depth-embedding and tree atten-
tion to adapt vanilla transformer (Vaswani et al. 2017) to fit
tree structures. Second, we extend the conventional one-step
action space to a new tree-based action space by embed-
ding the spatial topology into the trajectory tree, in which
the step-by-step backtracking actions are replaced with for-
ward moves from post-backtracking positions so that the
agent could achieve long-range error-correction in one de-
cision. Besides, the tree also facilitates us to keep track of
the current pursuing path in separation with all error-and-
corrections, which better represents the current attempt to-
wards completing the instruction compared with the full tra-
jectory that includes all erroneous steps. This inspires us to
propose a new Tree-nDTW reward for training the agent that
encourages it to focus on improving the current attempt dur-
ing the navigation.

The main contributions of this work are summarized as
follows:

• We analyzed the problem in current sequential trajectory
encoding methods, and proposed a novel tree-structured
encoding strategy. Based on the trajectory tree, we de-
signed a Tree-Transformer module to encode the tree
structure. We further proposed to extend the one-step ac-
tion space to a tree-based action space, and a new Tree-
nDTW reward for better training the agent.

• We implemented our agent based on the cross-modal
transformer. In the benchmark dataset, R2R, the agent
achieved a surpassing SR of 68% on val-unseen and
66% on test. We also conducted extensive ablation
studies and analyses to further provide more insights for
the effectiveness of the proposed designs.

Related Work
Vision-and-Language Navigation
Vision-and-language navigation has been developed for sev-
eral years since (Anderson et al. 2018b). In (Anderson
et al. 2018b), Anderson et al. collected the first benchmark
dataset, Room-to-Room (R2R), based on the photo-realistic
Matterport3D environment (Chang et al. 2017). After it,
many efforts had been devoted to promote the model per-
formance. Wang et al. (Wang et al. 2018) proposed to com-
bine the model-free and model-based Reinforcement Learn-
ing (RL) policy. Fried et al. (Fried et al. 2018) designed
a speaker model to generate augmented data for training
the navigation model. Ma et al. (Ma et al. 2019a) showed
that training on auxiliary task / loss together with the nav-
igation could help regularize the model. Later works like

(Zhu et al. 2020a; Wang et al. 2020b; Wang, Wu, and Shen
2020; Liang et al. 2022) further developed better regular-
ization signals. The model structure had also been evolv-
ing continuously. RCM (Wang et al. 2019) introduced cross-
modal attention into the model which helped align the two
modalities. Anderson et al. (Anderson et al. 2019) utilized
Bayes filter (Thrun, Burgard, and Fox 2005) to reformu-
late the VLN task into a Bayesian state tracking problem.
Another group of works tried to design heuristic mecha-
nisms into the navigator like regret (Ma et al. 2019b), active
exploration (Wang et al. 2020a), curriculum learning (Zhu
et al. 2020b; Zhang et al. 2021), dual optimization (Dou and
Peng 2022; Wang et al. 2022) etc. Some other attempts in-
clude utilizing fine-grained features (Qi et al. 2020; Hong
et al. 2020), graphical planning (Deng, Narasimhan, and
Russakovsky 2020; Wang et al. 2021; Chen et al. 2022), data
augmentation (Tan, Yu, and Bansal 2019; Fu et al. 2020; Par-
vaneh et al. 2020; Li, Tan, and Bansal 2022), etc.

Recently, the success of cross-modal transformer and pre-
training in other vision-and-language tasks (Sun et al. 2019;
Lu et al. 2019; Li et al. 2019a, 2020a; Tan and Bansal 2019;
Su et al. 2020; Chen et al. 2020; Lu et al. 2020; Li et al.
2020b) raised a new trend to apply similar ideas in VLN.
Huang et al. (Huang et al. 2019) designed two pretraining
tasks based on the VLN data and used them to warm-start
the RCM model. Li et al. (Li et al. 2019b) proposed to
replace the original GloVe (Pennington, Socher, and Man-
ning 2014) word-embedding with pretrained Bert (Devlin
et al. 2019) or GPT (Radford et al. 2018) embeddings and
showed consistent improvement. Hao et al. (Hao et al. 2020)
used cross-modal transformer to pretrain the visual and lan-
guage representations which could be transferred to down-
stream navigators. VLN-Bert (Majumdar et al. 2020) was
one of the earliest works to apply transformer directly to
VLN, however in a post hoc manner to re-rank candidate
routes. Later RecBert (Hong et al. 2021) and ORIST (Qi
et al. 2021) introduced recurrence into transformer and op-
erated online. Airbert (Guhur et al. 2021) collected a large
in-domain dataset, BnB, to pretrain the transformer-based
models. VLN-HAMT (Chen et al. 2021) showed that a hi-
erarchical transformer-based model could achieve surpris-
ingly effective results after proper pretraining. HOP (Qiao
et al. 2022) designed history-and-order aware proxy tasks to
better pretrain VLN models.

Transformer for Tree-structured Data
There are only a few works in other fields involving trans-
formers for tree-structured data (Wang, Lee, and Chen 2019;
Harer, Reale, and Chin 2019; Sun et al. 2020). The work
of (Harer, Reale, and Chin 2019) and (Sun et al. 2020) in-
sert the Tree-Convolution operation into plain transformer
for processing tree structures, while we make modifications
directly to the transformer components and introduce less
extra parameters. (Wang, Lee, and Chen 2019) propose the
Constituent Attention mechanism to hierarchically merge
natural language sequence to eventually form a tree, while
our tree is formed manually and our tree transformer is for
structurally encoding it, which renders their method not ap-
plicable.

Methods
Unless otherwise specified, we all assume that the agent
is operated under the panoramic action space proposed by
(Fried et al. 2018), i.e., the agent moves by choosing a neigh-
boring position provided by the discrete topology graph.

Tree-Structured Trajectory
In Fig. 1(a), we showed an example of the tree-structured
trajectory. Here we provide a formal description about how
to generate it. Initially, the agent is spawned at the starting
position, denoted as P0. We initialize the tree with a root
node (depth = 0) termed N0, and record the information
about P0 in N0, like the visual features. As every node in the
tree records a position in the environment, we could define
a mapping f from an arbitrary node N to its correspond-
ing position P , i.e., f(N) = P . We additionally maintain
a pointer to track the node that represents the agent current
position.

Then, at every subsequent step t, assume the agent is situ-
ated at the position Pst with the current node Nst(f(Nst) =
Pst). We first find the neighbors of Nst in the tree and group
them as Ntree(Nst), which consists of the parent and chil-
dren nodes of Nst . With a little abuse of notation, we could
define another set Ntree(Pst) = {f(N)|N ∈ Ntree(Nst)}
to represent all neighboring positions of Pst that are already
recorded in the neighborhood of Ntree(Nst) in the tree. The
agent would then make an action to decide its next move.
Based on Ntree(Pst), we divide all possible actions into
three groups.

First, the agent moves to a neighboring position Pst+1 that
is not included in Ntree(Pst) (Pst+1 /∈ Ntree(Pst)), which
means the next position corresponds to a new neighbor of
Nst . In this case, we create a new node Nst+1

in the tree and
associate Pst+1

with it. As the agent steps from Pst to Pst+1
,

Nst+1
is set to be a child of Nst to reflect the order. Its depth

is therefore Nst .depth + 1. Besides, the pointer is changed
from Nst to Nst+1

to track the agent movement.
Another type of action is when Pst+1 ∈ Ntree(Pst). This

means the agent moves to a visited neighbor that is already
recorded in the tree. Without loss of generality, we still name
the corresponding node Nst+1

. As Nst+1
already exists, we

need not create any new node. Therefore, the only change in
the tree is to update the pointer to Nst+1

.
The last type of action is stop, where the whole navi-

gation terminates and we simply mark Pst as the predicted
target position. If we also care about the full trajectory, we
could associate each node with a list to record all timestamps
that the agent visits it. Then the full trajectory could be re-
covered afterwards.

Discussion. As stated before, the motive to design the
tree-structured trajectory is to better characterize the error-
and-correction information. After introducing the tree gen-
eration process, we now explain how to achieve this.

If the agent always moves forward (never stepping back),
then all the actions belong to the first group above. The tree
would only have one branch, which degenerates to a plain
sequence. If once the agent decides to step back (backtrack)
to correct the erroneous step(s), then according to the second

Transformer

a
b
c
d
e

a b c d e
(x,y) = /
means x can /
cannot attend
to y

a c edb

Depth
Embedding + + + + +Viewpoint

Feature

Tree-attention
Maska c edb

+ + + + +
Position

Embedding
Viewpoint

Feature

Transformer

Self-attention

Feed-forward ×

Figure 2: Comparison of the vanilla transformer for encod-
ing sequences (left) and our Tree-Transformer to encode the
tree structures (right).

rule, stepping back would not introduce any new node but
only update the pointer from Ncur to the parent node Npar.
Afterwards, the agent may move to another new neighbor
of Npar to continue the navigation, which would drive the
tree to grow a new branch from Npar and leave Ncur as a

deprecated branch2. This is the case when one-step error-
and-correction happens. In general, the agent could succes-
sively move back for k steps before continuing the naviga-
tion, which would result in a longer deprecated branch with
k nodes.

Such deprecated branches are exactly how does the tree
represent all the error-and-corrections. As a comparison,
previous sequential trajectory would always append each
step at last, no matter whether the agent is moving for-
ward or backward. So in order to differentiate error-and-
correction steps with ordinary steps, the agent is required
to exhaustively compare every pair of adjacent steps to de-
termine whether they are reverse with each other. The situa-
tion could get more complex if there are multi-step or nested
error-and-corrections in the trajectory, which needs more so-
phisticated processing. The difficulty in differentiating the
error-and-corrections in the sequential encoding may ham-
per the state estimation and decision making, e.g., the agent
may erroneously interpret error-and-correction steps as or-
dinary steps to mis-estimate the current progress.

Tree-Transformer
After forming the trajectory tree, we need to encode it so as
to estimate the agent state at each step. Previous models like
LSTM (Hochreiter and Schmidhuber 1997) or vanilla trans-
former (Vaswani et al. 2017) are not applicable as they are
primarily designed for sequential data. Therefore, consider-
ing the effectiveness of transformer in encoding sequences
and its flexibility, we propose two adaptations to the vanilla
transformer to adapt it to be our Tree-Transformer module
that fits tree structures.

Vanilla Transformer. As first proposed by (Vaswani
et al. 2017) and depicted in Fig. 2(left), the vanilla trans-
former module is mainly composed of interleaved self-
attention and feed-forward layers. To process sequential
data, each element (feature vector) in the input sequence
would often be added with a position embedding to repre-

2A deprecated branch could be re-activated if the agent re-
enters the associated nodes.

sent the order. Then during the processing, every element
would densely attend to all the elements in the sequence re-
peatedly to produce the final output.

Position Embedding → Depth Embedding. The main
characteristic of the tree, compared to the sequence, is that it
is a hierarchical structure. So it is important to represent the
hierarchy in the encoding. The depth of each node is a natu-
ral choice to characterize the hierarchy. This is conceptually
different from previous position embedding that orders all
steps chronologically as we think the order within each at-
tempt / branch is important while different attempts should
be parallel with each other during the encoding. Therefore,
as shown in Fig. 2(right), we replace the original position
embedding with a new depth embedding. It is implemented
by several learnable embedding vectors with each depth d
associated with one specific vector.

Dense Attention → Tree-based Attention. The depth
embedding encodes the hierarchy information in the tree, but
it could not represent the detailed connection structure, e.g.,
which node is the parent of a node at depth d+1 if there are
multiple nodes at depth d. In order to remedy this, we fur-
ther adapt the original dense attention into a tree-based at-
tention operation. Specifically, as shown in Fig. 2(right), we
introduce a mask in each self-attention layer to control the
information flow. For every node, the mask only allows it to
attend to all its ancestors and descendants in the tree, which
is totally decided by the connection pattern. This guarantees
that nodes in different branches could be explicitly differ-
entiated during the encoding. Besides, as every node would
share at least one common ancestor (the root) with any other
node, it could still perceive and integrate the global informa-
tion after stacked attention operations, which helps to pro-
duce a globally consistent encoding for decision making.

Tree-based Action Space
As stated before, in the tree-structured encoding, all back-
tracking steps need not to be recorded as the corresponding
erroneous steps are already kept in the deprecated branches.
In this section, we step further and propose a new action
space that directly omits backtracking actions in the deci-
sion process.

Previous One-Step Action Space. In most previous
methods, the agent decides its next action by choosing from
all of its neighboring positions and moves one step, as shown
in Fig. 3. This is reasonable if the agent is always mov-
ing forward following the instruction. However, if once the
agent moves in a wrong way and could not continue for-
ward, it needs to step back to recover from the mistake. The
one-step action space may complicate the error-correction
process as the agent needs to figure out the exact reverse
move of its last action. The situation gets even worse if the
error lasts for several steps, which requires the agent to learn
to reverse earlier actions.

Tree-based Action Space. Based on the tree-structured
trajectory above, we notice that the spatial topology could
be naturally embedded in the tree, e.g., upon adding a new
node, we could record its relative position with the parent
node in the tree. This facilities the agent to transfer be-
tween any pair of nodes in the tree without needing to de-

g

e
f

h

a

b c d1
2 3

One-Step Action Space

ce f d

Tree-based Action Space
cced fd dd hc

bbhb aaga

Filtered Action Space (k=2)

cced fd dd hc

Figure 3: Example showing the difference of one-step action
space, tree-based action space and its filtered version to keep
only the recent 2 steps / nodes. Symbols with underline (e.g.,
d) mean to stop at the corresponding nodes. Symbols with
subscript (e.g., ed) mean to backtrack to the subscript node
(d) and then step to the node associated with the symbol (e).

cide each intermediate move, which could easily accomplish
long-range backtracking. Moreover, we realize that the rea-
son why the agent backtracks is to exit the erroneous attempt
in order to re-choose a way to move forward to. This inspires
us to replace the previous one-step action space with the
newly-proposed tree-based action space. The core idea is to
replace the backtracking action at current node with forward
moves from all post-backtracking nodes, i.e., all nodes that
the agent could reach through successive backtracking steps.
In another word, we skip the backtracking process in the de-
cision, and let the agent directly decide whether to continue
the current attempt or re-start an alternative attempt.

Fig. 3 shows an illustrative example. The agent is cur-
rently situated at node d through the path a−b−c−d. In the
one-step action space, all actions that the agent could choose
are e, f, c, d, among which c is the backtracking step and d
means to stop here. However in the tree-based action space,
the backtracking step c is replaced with forward moves from
a, b, and c, which are the post-backtracking nodes. For ex-
ample, hb means the agent would backtrack to b and step to
h. Note we exclude all executed actions from the candidates
like cb as they would lead to other post-backtracking nodes
which is redundant. As can be seen, under the tree-based ac-
tion space, the agent needs not to learn to conduct the back-
tracking itself. It only needs to determine the most promising
forward move towards completing the instruction among all
post-backtracking nodes and the current node. If xy is cho-
sen, the agent could be smoothly transferred to y along the
recorded path, and then move to x. The tree-based action
space is conceptually similar to the global action space pro-
posed by (Deng, Narasimhan, and Russakovsky 2020; Wang
et al. 2021). However, as we base the actions on the tree in-
stead of the topological graph as in (Deng, Narasimhan, and
Russakovsky 2020; Wang et al. 2021), each action in our
model corresponds to exactly one attempt starting from the
root node, while there could be multiple paths leading to the
same action in the topology graph, which may confuse the
agent.

Dynamic Filtering. Although the tree-based action space
relieves the agent from learning to backtrack step-by-step,
its drawback is also obvious–the candidate actions would
continuously increase as the agent moves, which may hin-
der the efficiency and may introduce noise during decision

making. In order trying to alleviate these problems, we fur-
ther propose a dynamic filtering scheme. The insight comes
from the observation that in most cases of backtracking, the
agent would backtrack to nodes that it has recently visited.
Put it another way, it is not likely the agent would backtrack
to a far earlier node that it has not visited for a long time.
For example, by adopting the full tree-based action space on
R2R (Anderson et al. 2018b) val-unseen set, we observe
that about 80% backtrackings are targeted at the nodes that
have been visited in recent 5 steps. We also calculate the
ratio for another backtracking-enhanced model SSM (Wang
et al. 2021) and the result is also over 70%. We posit that this
is because in most cases, the agent could realize its mistake
timely, so that when backtracking, it only needs to backtrack
to a recent node to correct it. Inspired by this, we propose to
filter the original large action space to keep only the top-k
recently visited nodes as candidate post-backtracking nodes.
Fig. 3 shows an example of the case when k = 2. For im-
plementation, we use a first-in-first-out queue of length k
to conduct the filtering online. Throughout our experiments,
we set k = 5 empirically. Later in experiments, we will show
the detailed effect of varying the ks.

Tree-nDTW Reward
In addition to the above, another merit of the tree-structured
trajectory is that it facilitates us to separate the current pur-
suing path from all previous error-and-corrections. Based on
the tree, the current pursuing path is exactly the tree path
from the root to the current node, and all previous error-
and-corrections are deprecated branches grown alongside
it. Compared with the full trajectory that is often used in
previous models, this path better represents the current at-
tempt towards completing the instruction. For example, if
we use the conventional normalized Dynamic Time Warp-
ing (nDTW) (Ilharco et al. 2019) metric to evaluate the
consistency with the ground truth path, the full trajectory
would take all previous error-and-correction steps into ac-
count, which may affect or even dominate the result. Dif-
ferently, the current pursuing path is separated with those
abandoned attempts, so the result could purely reflect the
quality of current attempt. This inspires us to improve the
previous reward function that evaluates the full trajectory to
a new reward evaluating the current pursuing path, so that
the agent is encouraged to focus on improving its current at-
tempt at each step. Besides, combined with the tree-based
action space above, such reward also encourages the agent
to compare the current pursuing path with other alternative
paths after backtracking to determine whether it should pro-
ceed or backtrack, which better matches the target of the
tree-based action space.

For implementation, we base our reward R on the pop-
ular nDTW (Ilharco et al. 2019) metric. To distinguish our
reward with those that evaluate the nDTW of the full tra-
jectory (Ilharco et al. 2019), we name ours the Tree-nDTW
reward. The detailed equations are as Eqn. 1, where the pcur

t
means the current pursuing path at step t, nDTW(·) is the
function to compute the nDTW, I{condition} is the indica-
tor function that returns 1 if the condition is true, 0 other-
wise. Following the convention, the agent is considered to

succeed if it stops within 3 meters of the goal (Anderson
et al. 2018b).

R(t) =

{
nDTW(pcur

t)− nDTW(pcur
t−1), if not stop,

I{the agent succeeds}+ nDTW(pcur
t), if stop.

(1)

The Holistic Agent
After elaborating the core components, we now describe the
structure of the holistic agent. We adopt cross-modal trans-
former (e.g., Lxmert (Tan and Bansal 2019)) as the main
framework following recent practice (Majumdar et al. 2020;
Hong et al. 2021; Qi et al. 2021; Chen et al. 2021). At
every step t, the input consists of the instruction and the
tree-structured trajectory. To integrate the tree-based action
space, we append all the candidate views (representing the
actions) to the corresponding nodes in the tree. As stated be-
fore, the backtracking action and the executed actions are
excluded from the candidates. For processing, the candidate
views at each node are added to the tree as virtual nodes as if
these actions are already executed, e.g., they are connected
to the corresponding node as virtual leaf nodes. Intuitively,
this helps the agent to encode each action in the context
of the history. During processing, they are transformed to-
gether with the tree. The cross-modal transformer is mainly
composed of interleaved intra-modality self-attention and
inter-modality cross-attention layers. The Tree-Transformer
is used to replace the self-attention layers for the visual
modality. After the processing, we fuse the language repre-
sentation (the CLS token) with each candidate view feature,
and use a simple two-layer fully-connected network to pre-
dict a scalar score for this action. The decision is then made
based on these scores. For more details, please refer to the
supplementary material.

Experiments
Evaluation Metrics
Following previous conventions (Anderson et al. 2018b,a;
Ilharco et al. 2019), we use several metrics to quantita-
tively evaluate the model performance: Success Rate (SR),
Navigation Error (NE), Trajectory Length (TL), Success
weighted by the normalized inverse of the Path Length
(SPL), normalized Dynamic Time Warping (nDTW).

Results on R2R (Anderson et al. 2018b)
Tab. 1 shows the results on the R2R (Anderson et al. 2018b)
dataset. As can be seen, our model achieves the best SR on
the two unseen sets, especially test that is used by the on-
line leaderboard3, which demonstrates the effectiveness of
our designs. The SR on val-seen is a bit lower than VLN-
HAMT (Chen et al. 2021), however, as the environments in
val-seen are fully perceived during training, the results
could be inflated due to overfitting, e.g., even earlier mod-
els like Speaker-Follower (Fried et al. 2018) could achieve
nearly 70% SR. The less performance drop from seen to

3https://eval.ai/web/challenges/challenge-page/97/leaderboard/
270

unseen environments in turn shows that our model is more
overfitting-free and generalizes better.

Besides, we notice that the TL of our agent is higher
than models like VLN-HAMT (Chen et al. 2021), although
smaller than several others. The higher TL also causes lower
SPL. There are mainly two reasons behind this. First, the
tree-based action space allows the agent to conduct long-
range transfer, which often involves many steps and in-
creases the TL greatly. For reference, SSM (Wang et al.
2021) adopts a similar global action space and its TL is even
longer than ours. Second, the Tree-nDTW reward encour-
ages the agent to choose a more promising partial path (from
root to leaf) with no penalty for the transfer between differ-
ent partial paths, which helps the agent better follow the in-
struction but imposes less restriction on the TL. As compar-
ison, the conventional reward functions evaluate either the
distance to the goal or the nDTW of the whole trajectory,
both of which would implicitly penalize the agent for mov-
ing too long. Although having reduced TL, one drawback of
previous methods is that the agent may not be able to back-
track from errors and would try to approach the goal from
wrong paths, which are greatly improved by our method as
shown by later quantitative analyses and the qualitative ex-
amples.

Ablation Studies
Incremental Effect of Each Component. In order to illus-
trate the respective effect of each proposed component, we
incrementally add each one of them to a base model. The
results are shown in Tab. 2(top). Note as the tree-based ac-
tion space and the Tree-nDTW reward are all based on the
tree-structured encoding, they are both added after the tree-
structured encoding. It can be seen that every component
could indeed bring improvement, and with all the three com-
bined, the model achieves the best result.

The Effect of the Tree-Transformer. We separately re-
move the depth-embedding, tree-based attention, and both
of them in the Tree-Transformer module to see their impact
for the tree-structured encoding. The tree-based action space
and the Tree-nDTW reward are kept unchanged through-
out the experiments. As shown in Tab. 2(down), both the
depth-embedding and tree-based attention are indispensable
for the Tree-Transformer encoding as removing either of
them would harm the performance. If both of them are re-
moved, the Tree-Transformer then degenerates to the vanilla
transformer (Vaswani et al. 2017), where the performance
shows a larger gap, demonstrating that it is not suitable to
encode the tree structure. Besides, we also notice that the
TL increases after both components are removed. We posit
that this is because the vanilla transformer may confuse the
agent about the trajectory structure, e.g., the agent may mis-
takenly take a node as the parent of another node, which
causes the agent to make erroneous backtracking decisions
and increase the TL.

Effect of the Tree-based Action Space. As stated before,
we use a queue of length k to dynamically filter the tree-
based action space during decision making, and we empir-
ically set k = 5 in the main experiments. Here we provide
a list of results by varying the k from 1 to unlimited (all).

Table 1: Results of different methods on the R2R (Anderson et al. 2018b) dataset. ‘-’ means that the results are unavailable.

Models

R2R

val-seen val-unseen test

SR↑ NE↓ TL SPL↑ SR↑ NE↓ TL SPL↑ SR↑ NE↓ TL SPL↑
Speaker-Follower (Fried et al. 2018) 0.66 3.36 - - 0.36 6.62 - - 0.35 6.62 14.8 0.28

RCM (Wang et al. 2019) 0.67 3.53 10.7 - 0.43 6.09 11.5 - 0.43 6.12 12.0 0.38

EnvDrop (Tan, Yu, and Bansal 2019) 0.62 3.99 11.0 0.59 0.52 5.22 10.7 0.48 0.51 5.23 11.7 0.47

AuxRN (Zhu et al. 2020a) 0.70 3.33 - 0.67 0.55 5.28 - 0.50 0.55 5.15 - 0.51

Active Perception (Wang et al. 2020a) 0.70 3.20 19.7 0.52 0.58 4.36 20.6 0.40 0.60 4.33 21.6 0.41

SSM (Wang et al. 2021) 0.71 3.10 14.7 0.62 0.62 4.32 20.7 0.45 0.61 4.57 20.4 0.46

RecBert (Hong et al. 2021) 0.72 2.90 11.13 0.68 0.63 3.93 12.01 0.57 0.63 4.09 12.35 0.57

VLN-HAMT (Chen et al. 2021) 0.76 2.51 11.15 0.72 0.66 2.29 11.46 0.61 0.65 3.93 12.27 0.60
Ours 0.75 2.86 14.07 0.68 0.68 3.49 17.31 0.57 0.66 3.85 19.62 0.55

Table 2: (top) Incrementally add each component to the base
model. (down) Ablation study of the depth-embedding and
tree-based attention in the Tree-Transformer module.

Models

R2R

val-unseen

SR↑ NE↓ TL SPL↑
Baseline 0.59 4.43 13.97 0.53

+tree 0.61 4.07 13.02 0.54

+tree+action 0.63 4.06 14.90 0.54

+tree+reward 0.62 4.00 13.06 0.56

+tree+action+reward 0.68 3.49 17.31 0.57

Models

R2R

val-unseen

SR↑ NE↓ TL SPL↑
Ours 0.68 3.49 17.31 0.57

w/o depth-embedding 0.66 3.85 17.55 0.54

w/o tree-based attention 0.66 3.71 17.07 0.56

w/o both 0.63 4.07 20.21 0.54

Table 3: Ablation study of the reward.

Rewards

R2R

val-unseen

SR↑ TL #BT

Tree-nDTW (Ours) 0.68 17.31 0.99

nDTW (Ilharco et al. 2019) 0.63 15.12 0.65

Dist-to-goal (Wang et al. 2021) 0.63 14.96 0.52

Both combined (Hong et al. 2021; Chen et al. 2021) 0.63 14.90 0.54

Table 4: The nDTW of the model-identified path and the
average ΔnDTW before and after each error-correction.

Models

R2R

val-unseen

Iden. nDTW↑ ΔnDTW↑
RecBert (Hong et al. 2021) 0.67 0.047

VLN-HAMT (Chen et al. 2021) 0.70 0.040

Ours 0.74 0.066

Fig. 4 depicts the change of SR and TL with k. It could be
seen that as the k grows, the SR first increases then decreases
while the TL keeps increasing. This is because at first, when
k is small, increasing k could provide more candidates for
backtracking and helps the agent to correct its errors. How-
ever, as k grows large, the newly added candidates are less

12
13
14
15
16
17
18
19

58

60

62

64

66

68

70

1 2 3 4 5 all

TL
 (m

)

SR
 (%

)

Filter Size k

R2R Val Unseen

SR
TL

Figure 4: The impact of the k
in dynamic filtering of the tree-
based action space.

30
35
40
45
50
55
60
65
70

0 1 2 3

Su
cc

es
s

ra
te

 (%
)

Manual erroneous steps

R2R Val Unseen

Ours
RecBert
VLN-HAMT

Figure 5: The detailed re-
sults of manually imposing er-
roneous steps at the beginning
of different models.

likely to be the proper node to backtrack to as they are ear-
lier nodes that are not recently visited. The inclusion of these
nodes instead brings more noise to the decision process, i.e.,
there are more negative candidates which lower the agent
confidence in making the correct decision. Differently, the
TL keeps increasing as adding more earlier nodes would in-
crease the average backtracking length.

Effect of the Tree-nDTW Reward. The Tree-nDTW re-
ward enables the agent to focus on the current pursuing path
which we believe is more suitable for training our model.
In Tab. 3, we compare it with several other rewards that
were adopted in previous works. The nDTW reward (Ilharco
et al. 2019) evaluates the nDTW of the full trajectory. The
dist-to-goal (Wang et al. 2021) rewards the agent for get-
ting closer to the goal. And a combined reward (Hong et al.
2021; Chen et al. 2021) takes both metrics into considera-
tion. It is clear that all the other rewards perform worse than
our Tree-nDTW reward. Besides, the TLs of those rewards
are consistently smaller than ours as they are all designed to
improve the full trajectory, which however may hamper the
agent to backtrack from erroneous steps. To illustrate this,
we additionally count the average number of backtrackings
(#BT) the agent has conducted in Tab. 3. It can be seen that
Tree-nDTW indeed brings more backtrackings that helps the
agent better correct its errors and achieve the best SR.

Further Analyses
To further provide more insights about the proposed designs,
we conduct additional analyses here.

Identifying the Expected Path. A major merit of our
model compared with previous agents is that it does better

Table 5: Results of different methods on the RxR (Ku et al. 2020) dataset. SR, SPL, nDTW, and SDTW are shown in percentage
(%). ’-’ means numbers unavailable.

Models

RxR

val-unseen test

SR↑ SPL↑ nDTW↑ SDTW↑ Iden. nDTW↑ SR↑ SPL↑ nDTW↑ SDTW↑
Monolingual baseline (Ku et al. 2020) 28.5 - 44.5 23.1 - 25.9 - 41.5 21.0

Multilingual baseline (Ku et al. 2020) 22.8 - 38.9 18.2 - 21.3 - 37.2 17.1

CLEAR-ResNet - - - - - 34.7 31.6 50.5 29.6

CLIP-ViL - - - - - 38.3 35.2 51.1 32.4

CLEAR-CLIP - - - - - 40.3 36.6 53.7 34.9

VLN-HAMT(Multi) (Chen et al. 2021) 56.5 49.5 63.3 48.4 64.7 53.1 46.6 59.9 45.2
Ours(Multi) 58.7 47.0 58.9 46.2 67.3 54.1 44.3 55.0 42.9

in identifying the expected path described by the instruc-
tion. As the instruction in VLN has provided fine-grained
steps to reach the goal, we believe it is equally important for
the agent to identify the expected path as to reach the goal.
To evaluate this ability, for the two state-of-the-art models,
RecBert (Hong et al. 2021) and VLN-HAMT (Chen et al.
2021), and ours, we first remove all the error-and-correction
steps from their final trajectories. The remaining path ex-
cludes all failed attempts and keeps only the most promis-
ing route towards completing the instruction, which could
be seen as the final model-identified path corresponding to
the instruction. We then compute the nDTW scores for these
identified paths to see how well the model identifies the ex-
pected path. The results are shown in Tab. 4. As can be seen,
our model shows a surpassing nDTW, indicating that it does
better in identifying the correct path. We believe the supe-
riority comes from both the tree-structured encoding that
helps the agent to better distinguish the current pursuing path
and the Tree-nDTW reward that encourages it to improve the
current pursuing path towards completing the instruction.

Improved Error-Correction. Another merit of our
model is that it is more effective in correcting its interme-
diate errors. To illustrate this, we dive deeper to see how
much improvement each error-correction brings to the three
models. Specifically, we compute the average ΔnDTW af-
ter each error-correction for each model. The results are also
shown in Tab. 4. As can be seen, the average nDTW im-
provement of our model is also the largest, which shows that
it does more effective error-correction thanks to the tree-
based action space that relieves the agent from learning to
backtrack step-by-step and the Tree-nDTW reward that al-
lows the agent to better compare different attempts.

Besides, we also conduct a control experiment similar
to Fig. 1(c) to test the agents’ ability to correct the errors.
Specifically, before letting the agents decide their actions,
we manually control all three agents to move in an erroneous
way for k steps but do not return them back, and see the im-
pact of the erroneous steps on the final performance. The
results are shown in Fig. 5. It could be seen that when faced
with manual erroneous steps, our model again shows clear
advantage, which further illustrates that it has better error-
correction ability.

Results on RxR (Ku et al. 2020)
Besides R2R, We also tested our model on the more chal-
lenging RxR (Ku et al. 2020) dataset. The results on
val-unseen and test4 are shown in Tab. 5. As can be
seen, our model still achieves the best SR on both sets, which
is consistent with R2R (Anderson et al. 2018b). The SPL and
nDTW are a bit lower than (Chen et al. 2021), due to the
tree-based action space and the Tree-nDTW reward. How-
ever, the improved error-correction could help better iden-
tify the ground-truth path. To illustrate this, similar to above,
we also compare the nDTW of the model-identified path on
val-unseen. The annotations of test are unknown so
could not be used for comparison. It can be seen that our
model achieves better nDTW for identified path than VLN-
HAMT (Chen et al. 2021), showing its better effectiveness
in completing the instructions.

Qualitative Results
Besides the quantitative results, we also show in Fig. 6 sev-
eral representative qualitative examples to illustrate the dif-
ference of our agent with VLN-HAMT (Chen et al. 2021).

In the first example, both VLN-HAMT and our model
made an erroneous action in the 3-rd step. Then, VLN-
HAMT did not realize the error and still tried to accom-
plish the “take a left...take a right...” command in the in-
struction, which caused it to totally deviate from the ground
truth path. Differently, our agent successfully realized that
at the 3-rd position, it was hard to make the left turn, mean-
ing that the last action could be erroneous. So based on the
tree-based action space, it chose to backtrack to the 2-nd
position and re-choose the correct action this time. Another
error occurred later at the 6-th step, where the agent again
detected and fixed it. The agent eventually identified the ex-
act ground truth path through these two intermediate error-
and-corrections.

The second example showed a more challenging scenario
where both VLN-HAMT and our agent made two successive
erroneous actions (the 3-rd and 4-th action). VLN-HAMT
failed to recover from the error and continued to step for-
ward. However, our agent conducted proper error-correction
again and backtracked to the correct path, showing the ef-
fectiveness of our proposed designs.

4https://ai.google.com/research/rxr/competition

1 2

3 4

5

1 2
3

4
5

1 2
3

54 6

7

(a) Ground Truth (b) VLN-HAMT (c) Ours

Instruction: Exit the bathroom and enter the hall. Take a left in the hall and then enter another hall. Take a right at this hall,
then take a left to enter another bathroom.

correct step
erroneous step
backtrack step

3

4

5

6

1

2

1

34

5

2

1

34
2

6

7

5

(a) Ground Truth (b) VLN-HAMT (c) Ours

Instruction: Go up the stairs, and walk past the cabinet to the other bedroom. Stop on the carpet at the
foot of the first bed.

correct step
erroneous step
backtrack step

8

Figure 6: Qualitative examples comparing VLN-HAMT (Chen et al. 2021) with our agent.

Conclusion
In this work, we proposed a novel tree-structured encoding
strategy to replace the previous sequential strategy. Based
on it, we designed a Tree-Transformer module to encode
the tree structure and further proposed to extend the one-
step action space to a tree-based action space, and a new
Tree-nDTW reward for better training the agent. Our agent

shows surpassing results on the benchmark datasets. We also
conducted extensive ablation studies and analyses to further
demonstrate the effectiveness of our designs.

Acknowledgments
The research is supported by Science and Technology In-
novation 2030 - New Generation Artificial Intelligence

(2020AAA0104401), Beijing Natural Science Foundation
(Z190001), and Peng Cheng Laboratory Key Research
Project No.PCL2021A07.

References
Anderson, P.; Chang, A. X.; Chaplot, D. S.; Dosovitskiy, A.;
Gupta, S.; Koltun, V.; Kosecka, J.; Malik, J.; Mottaghi, R.;
Savva, M.; and Zamir, A. R. 2018a. On Evaluation of Em-
bodied Navigation Agents. CoRR, abs/1807.06757.

Anderson, P.; Shrivastava, A.; Parikh, D.; Batra, D.; and Lee,
S. 2019. Chasing Ghosts: Instruction Following as Bayesian
State Tracking. In NeurIPS, 369–379.

Anderson, P.; Wu, Q.; Teney, D.; Bruce, J.; Johnson, M.;
Sünderhauf, N.; Reid, I. D.; Gould, S.; and van den Hen-
gel, A. 2018b. Vision-and-Language Navigation: Interpret-
ing Visually-Grounded Navigation Instructions in Real En-
vironments. In CVPR, 3674–3683.

Chang, A. X.; Dai, A.; Funkhouser, T. A.; Halber, M.;
Nießner, M.; Savva, M.; Song, S.; Zeng, A.; and Zhang, Y.
2017. Matterport3D: Learning from RGB-D Data in Indoor
Environments. In 3DV, 667–676.

Chen, S.; Guhur, P.; Schmid, C.; and Laptev, I. 2021. History
Aware Multimodal Transformer for Vision-and-Language
Navigation. CoRR, abs/2110.13309.

Chen, S.; Guhur, P.; Tapaswi, M.; Schmid, C.; and Laptev,
I. 2022. Think Global, Act Local: Dual-scale Graph Trans-
former for Vision-and-Language Navigation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022,
16516–16526.

Chen, Y.; Li, L.; Yu, L.; Kholy, A. E.; Ahmed, F.; Gan, Z.;
Cheng, Y.; and Liu, J. 2020. UNITER: UNiversal Image-
TExt Representation Learning. In ECCV, 104–120.

Deng, Z.; Narasimhan, K.; and Russakovsky, O. 2020.
Evolving Graphical Planner: Contextual Global Planning for
Vision-and-Language Navigation. In NeurIPS.

Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL-HLT, 4171–4186.

Dou, Z.; and Peng, N. 2022. FOAM: A Follower-aware
Speaker Model For Vision-and-Language Navigation. In
NAACL, 4332–4340.

Fried, D.; Hu, R.; Cirik, V.; Rohrbach, A.; Andreas, J.;
Morency, L.; Berg-Kirkpatrick, T.; Saenko, K.; Klein, D.;
and Darrell, T. 2018. Speaker-Follower Models for Vision-
and-Language Navigation. In NeurIPS, 3318–3329.

Fu, T.; Wang, X. E.; Peterson, M. F.; Grafton, S. T.; Eck-
stein, M. P.; and Wang, W. Y. 2020. Counterfactual Vision-
and-Language Navigation via Adversarial Path Sampler. In
ECCV, 71–86.

Guhur, P.-L.; Tapaswi, M.; Chen, S.; Laptev, I.; and Schmid,
C. 2021. Airbert: In-Domain Pretraining for Vision-and-
Language Navigation. In ICCV, 1634–1643.

Hao, W.; Li, C.; Li, X.; Carin, L.; and Gao, J. 2020. To-
wards Learning a Generic Agent for Vision-and-Language
Navigation via Pre-Training. In CVPR, 13134–13143.

Harer, J.; Reale, C. P.; and Chin, P. 2019. Tree-Transformer:
A Transformer-Based Method for Correction of Tree-
Structured Data. CoRR, abs/1908.00449.

Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Comput., 9(8): 1735–1780.

Hong, Y.; Opazo, C. R.; Qi, Y.; Wu, Q.; and Gould, S. 2020.
Language and Visual Entity Relationship Graph for Agent
Navigation. In NeurIPS.

Hong, Y.; Wu, Q.; Qi, Y.; Opazo, C. R.; and Gould, S. 2021.
VLN BERT: A Recurrent Vision-and-Language BERT for
Navigation. In CVPR, 1643–1653.

Huang, H.; Jain, V.; Mehta, H.; Ku, A.; Magalhães, G.;
Baldridge, J.; and Ie, E. 2019. Transferable Representa-
tion Learning in Vision-and-Language Navigation. In ICCV,
7403–7412.

Ilharco, G.; Jain, V.; Ku, A.; Ie, E.; and Baldridge, J. 2019.
General Evaluation for Instruction Conditioned Navigation
using Dynamic Time Warping. In NeurIPS Workshop.

Ku, A.; Anderson, P.; Patel, R.; Ie, E.; and Baldridge,
J. 2020. Room-Across-Room: Multilingual Vision-and-
Language Navigation with Dense Spatiotemporal Ground-
ing. In EMNLP, 4392–4412.

Li, G.; Duan, N.; Fang, Y.; Gong, M.; and Jiang, D. 2020a.
Unicoder-VL: A Universal Encoder for Vision and Lan-
guage by Cross-Modal Pre-Training. In AAAI, 11336–
11344.

Li, J.; Tan, H.; and Bansal, M. 2022. Envedit: Environment
Editing for Vision-and-Language Navigation. In CVPR,
15386–15396.

Li, L. H.; Yatskar, M.; Yin, D.; Hsieh, C.; and Chang, K.
2019a. VisualBERT: A Simple and Performant Baseline for
Vision and Language. CoRR, abs/1908.03557.

Li, X.; Li, C.; Xia, Q.; Bisk, Y.; Celikyilmaz, A.; Gao, J.;
Smith, N. A.; and Choi, Y. 2019b. Robust Navigation with
Language Pretraining and Stochastic Sampling. In EMNLP-
IJCNLP, 1494–1499.

Li, X.; Yin, X.; Li, C.; Zhang, P.; Hu, X.; Zhang, L.; Wang,
L.; Hu, H.; Dong, L.; Wei, F.; Choi, Y.; and Gao, J. 2020b.
Oscar: Object-Semantics Aligned Pre-training for Vision-
Language Tasks. In ECCV, 121–137.

Liang, X.; Zhu, F.; Zhu, Y.; Lin, B.; Wang, B.; and Liang,
X. 2022. Contrastive Instruction-Trajectory Learning for
Vision-Language Navigation. In AAAI, 1592–1600.

Lu, J.; Batra, D.; Parikh, D.; and Lee, S. 2019. ViLBERT:
Pretraining Task-Agnostic Visiolinguistic Representations
for Vision-and-Language Tasks. In NeurIPS, 13–23.

Lu, J.; Goswami, V.; Rohrbach, M.; Parikh, D.; and Lee, S.
2020. 12-in-1: Multi-Task Vision and Language Represen-
tation Learning. In CVPR, 10434–10443.

Ma, C.; Lu, J.; Wu, Z.; AlRegib, G.; Kira, Z.; Socher, R.;
and Xiong, C. 2019a. Self-Monitoring Navigation Agent
via Auxiliary Progress Estimation. In ICLR.

Ma, C.; Wu, Z.; AlRegib, G.; Xiong, C.; and Kira, Z. 2019b.
The Regretful Agent: Heuristic-Aided Navigation Through
Progress Estimation. In CVPR, 6732–6740.

Majumdar, A.; Shrivastava, A.; Lee, S.; Anderson, P.;
Parikh, D.; and Batra, D. 2020. Improving Vision-and-
Language Navigation with Image-Text Pairs from the Web.
In ECCV, 259–274.

Parvaneh, A.; Abbasnejad, E.; Teney, D.; Shi, Q.; and
van den Hengel, A. 2020. Counterfactual Vision-and-
Language Navigation: Unravelling the Unseen. In NeurIPS.

Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global Vectors for Word Representation. In EMNLP, 1532–
1543.

Qi, Y.; Pan, Z.; Hong, Y.; Yang, M.-H.; van den Hengel, A.;
and Wu, Q. 2021. The Road To Know-Where: An Object-
and-Room Informed Sequential BERT for Indoor Vision-
Language Navigation. In ICCV, 1655–1664.

Qi, Y.; Pan, Z.; Zhang, S.; van den Hengel, A.; and Wu, Q.
2020. Object-and-Action Aware Model for Visual Language
Navigation. In ECCV, 303–317.

Qiao, Y.; Qi, Y.; Hong, Y.; Yu, Z.; Wang, P.; and Wu,
Q. 2022. HOP: History-and-Order Aware Pre-training for
Vision-and-Language Navigation. CoRR, abs/2203.11591.

Radford, A.; Narasimhan, K.; Salimans, T.; and Sutskever,
I. 2018. Improving language understanding by generative
pre-training.

Su, W.; Zhu, X.; Cao, Y.; Li, B.; Lu, L.; Wei, F.; and Dai, J.
2020. VL-BERT: Pre-training of Generic Visual-Linguistic
Representations. In ICLR.

Sun, C.; Myers, A.; Vondrick, C.; Murphy, K.; and Schmid,
C. 2019. VideoBERT: A Joint Model for Video and Lan-
guage Representation Learning. In ICCV, 7463–7472.

Sun, Z.; Zhu, Q.; Xiong, Y.; Sun, Y.; Mou, L.; and Zhang, L.
2020. TreeGen: A Tree-Based Transformer Architecture for
Code Generation. In AAAI, 8984–8991.

Tan, H.; and Bansal, M. 2019. LXMERT: Learning Cross-
Modality Encoder Representations from Transformers. In
EMNLP-IJCNLP, 5099–5110.

Tan, H.; Yu, L.; and Bansal, M. 2019. Learning to Navigate
Unseen Environments: Back Translation with Environmen-
tal Dropout. In NAACL-HLT, 2610–2621.

Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
robotics. Intelligent robotics and autonomous agents. MIT
Press.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In NeurIPS, 5998–6008.

Wang, H.; Liang, W.; Shen, J.; Gool, L. V.; and Wang,
W. 2022. Counterfactual Cycle-Consistent Learning for
Instruction Following and Generation in Vision-Language
Navigation. In CVPR, 15450–15460.

Wang, H.; Wang, W.; Liang, W.; Xiong, C.; and Shen, J.
2021. Structured Scene Memory for Vision-Language Nav-
igation. CoRR, abs/2103.03454.

Wang, H.; Wang, W.; Shu, T.; Liang, W.; and Shen, J. 2020a.
Active Visual Information Gathering for Vision-Language
Navigation. In ECCV, 307–322.

Wang, H.; Wu, Q.; and Shen, C. 2020. Soft Expert Reward
Learning for Vision-and-Language Navigation. In ECCV,
126–141.

Wang, X.; Huang, Q.; Celikyilmaz, A.; Gao, J.; Shen,
D.; Wang, Y.; Wang, W. Y.; and Zhang, L. 2019. Rein-
forced Cross-Modal Matching and Self-Supervised Imita-
tion Learning for Vision-Language Navigation. In CVPR,
6629–6638.

Wang, X.; Xiong, W.; Wang, H.; and Wang, W. Y. 2018.
Look Before You Leap: Bridging Model-Free and Model-
Based Reinforcement Learning for Planned-Ahead Vision-
and-Language Navigation. In ECCV, 38–55.

Wang, X. E.; Jain, V.; Ie, E.; Wang, W. Y.; Kozareva, Z.; and
Ravi, S. 2020b. Environment-Agnostic Multitask Learning
for Natural Language Grounded Navigation. In ECCV, 413–
430.

Wang, Y.; Lee, H.; and Chen, Y. 2019. Tree Transformer:
Integrating Tree Structures into Self-Attention. In EMNLP-
IJCNLP, 1061–1070.

Zhang, J.; Wei, Z.; Fan, J.; and Peng, J. 2021. Curricu-
lum Learning for Vision-and-Language Navigation. CoRR,
abs/2111.07228.

Zhu, F.; Zhu, Y.; Chang, X.; and Liang, X. 2020a. Vision-
Language Navigation With Self-Supervised Auxiliary Rea-
soning Tasks. In CVPR, 10009–10019.

Zhu, W.; Hu, H.; Chen, J.; Deng, Z.; Jain, V.; Ie, E.; and
Sha, F. 2020b. BabyWalk: Going Farther in Vision-and-
Language Navigation by Taking Baby Steps. In ACL, 2539–
2556.

