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ABSTRACT
This work proposes a graph search based method for human mo-
tion sequence synthesis, complementing the modern generative
model (e.g., variational auto-encoder or Gaussian process) based
solutions that currently dominate this task and showing strong
advantages at several aspects. The cornerstone of our method is a
novel representation which we dub as motion graph. Each motion
graph is scaffolded by a set of realistic human motion sequences
(e.g., all training data in the Human3.6M benchmark). We devise
a scheme that adds transition edges across different motion se-
quences, enabling more longer and diverse routes in the motion
graph. Crucially, the proposed motion graph bridges the problem
of human motion synthesis with graph-oriented combinatorial op-
timization, by naturally treating pre-specified starting or ending
pose in human pose synthesis as end-points of the retrieved graph
path. Based on a jump-sensitive graph path search algorithm pro-
posed in this paper, our model can efficiently solve human motion
completion over the motion graphs. In contrast, existing methods
are mainly effective for human motion prediction and inadequate
to impute missing sequences while jointly satisfying the two con-
straints of pre-specified starting / ending poses. For the case of
only specifying the starting pose (i.e., human motion prediction), a
forward graph walking from the starting node is first performed to
sample a diverse set of ending nodes on the motion graph, each of
which defines a motion completion problem. We conduct compre-
hensive experiments on two large-scale benchmarks (Human3.6M
and HumanEva-I). The proposed method clearly proves to be supe-
rior in terms of several metrics, including the diversity of generated
human motion sequences, affinity to real poses, and cross-scenario
generalization etc.
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Figure 1: Overview of our method. The key idea is constructing
a motion graph from data. The graph includes the adjacent node
edges within the sequence and the transition edges between the se-
quences. We propose a generative model to render transition edges.
Both motion completion and motion prediction can be conducted
on the graph.
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1 INTRODUCTION
The generation of realistic human motion sequences, including
human motion completion and prediction, is an important task
in video games and movies. It can be used to aid human-centric
video generation [10, 47] and has wide applications in 3D character
animations, human robot interaction [27], and human tracking [14]
etc.

Existing works mainly focus on human motion prediction [4, 8,
9, 13, 35, 36], which aim at predicting near-future sequences given
a few seen frames. Mainstream human motion prediction methods
can be divided into two types: data-driven and generative model.
Traditional data-driven approaches for human motion prediction,
such as Hidden Markov Model [7], Gaussian Process latent variable
models [43] and graph-based models [3, 28, 31], have proved effec-
tive for simple periodic motion and acyclic motions, such as walking
and golf swing. With the development of deep learning [11, 21, 23,
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30, 40], deep neural network models [8, 13, 18, 24, 33, 35, 36, 44] are
used to tackle complicated motion sequences generation. Because
of the temporal nature of the signal of interest, Recurrent Neural
Networks (RNNs) methods [13, 18, 24, 36] are found to be effective
for motion generation. However, existing works [18, 33] that often
feed the estimation at specific RNN step as the input to the next
prediction tend to have accumulated errors throughout the gen-
erated sequence, leading to unrealistic prediction at the inference
time. Recently, several works [8, 33, 35] have proposed to adopt
feed-forward networks for motion generation. They can generate
more accurate sequences compared with RNN based methods, but
are limited to short-term motion generation. The performance of
long-term motion generation drops rapidly.

In this paper, we propose a unified method for tackling both
human motion completion and prediction. The core of the pro-
posed method is a novel directed graph based representation that
encodes rich knowledge about human dynamics, which we term
as motion graph. The conceptual pipeline is illustrated in Figure 1.
Given a full set of human motion sequences (such as the training
data in Human3.6M or HumanEva-I), tremendous key frames are
first extracted from the sequences at some regular intervals, which
are treated as the nodes in the motion graph. The temporal or-
der of these frames naturally defines the directed structure of the
graph. To enable the traverse among different sequences, we further
propose to add transitions edges between the sequences, which is
accomplished through transitive node selection (Section 3.1.3) and
the generation of virtual sub-sequences that connect two transitive
nodes (Section 3.2). Based on the constructed motion graph, for the
human motion completion task, we develop a jump-sensitive graph
search algorithm to find and rank multiple feasible paths from a
starting node to an ending node, thereby generating a diverse set
of motion completion results. The task of human motion prediction
only specifies the starting poses, which are insufficient to initiate a
graph-path search. We devise a forward graph walking from the
starting nodes that returns multiple possible destinations. In this
way, the human motion prediction boils down to a series of human
motion completion with different ending nodes.

Our key technical contributions can be summarized in two-folds:
1) We introduce a new data representation called motion graph

and an accompanying graph search scheme for generating diverse
and realistic human motion sequences, either from single-end input
(i.e., human motion prediction) or dual-end input (i.e., human mo-
tion completion). The proposed method is essentially different from
existing generative model based motion-synthesizing methods, and
admits both algorithmic simplicity and generality for various hu-
man motion related tasks;

2) We provide in-depth empirical evaluations on two large-scale
benchmarks (Human3.6M andHumanEva-I). On the rarely-explored
human motion completion task, the proposed method surpasses
other methods by large margins in terms of diversity and reality. For
human motion prediction, our method produces comparable per-
formances under various metrics to current state-of-the-art work
(e.g., DLow [48]). When evaluated under cross-scenario settings
(for example, test a model trained on Human3.6M using the data
from HumanEva-I), our method clearly demonstrates more excel-
lent generalization ability under all metrics, which sheds light on

the development of more robust human motion synthesis methods
using data-driven search.

2 RELATEDWORK
Motivated by their success in sequence-to-sequence prediction [26,
41], RNNs have become the commonly used model for human
motion prediction [13, 24, 36]. For example, Fragkiadaki et al. [13]
firstly proposed an Encoder-Recurrent-Decoder (ERD) model that
incorporates a nonlinear encoder and decoder before and after
recurrent layers. In [24], Jain et al. proposed to further encode
the spatial and temporal structure of the pose prediction problem
via a Structure-RNN model relying on high-level spatio-temporal
graphs.While the two previous methods directly estimated absolute
human poses, Matinez et al. [36] introduced a residual architecture
to predict velocities. Interestingly, it was shown in this work that
a simple zero-velocity baseline, i.e., constantly predicting the last
observed pose, led to better performance than [13, 24]. While [36]
outperformed this baseline, the predictions produced by RNN still
suffer from discontinuities between the observed poses and the
predicted future ones.

Feed-forward networks, such as fully-connected and convolu-
tional ones, were studied as an alternative solution to avoid the dis-
continuities produced by RNNs [8, 33]. In particular, in [8], Butepage
et al. proposed to treat a recent pose history as the input to a fully-
connected network, and introduced different strategies to encode
additional temporal information via convolutions and spatial struc-
ture of the kinematic tree. In [35], Mao et al. proposed to use DCT to
encode temporal information and use GCNs [25] to encode spatial
structure. Their feed-forward network was proven highly effective
for the human motion prediction task. For all these methods, they
can only output one prediction for the same input, and lack the
diversity of predictions. Our method can generate diverse results
at different scales.

For human motion synthesis task, the Generative Adversarial
Networks (GAN) [17] are also widely used in the literature. HP-
CAN [4] combines the Seq2seq model and GAN for motion pre-
diction, where the Seq2seq model is used as the generator and a
fully connected network is used as a discriminator. Cai et al. [9]
proposed a two-stage GAN for skeleton motion generation, where
the first stage learns to generate spatial signals of pose, and the sec-
ond stage generates temporal signals represented as latent vector
sequences. Yan et al. [44] proposed a Convolutional Sequence Gen-
eration Network (CSGN) to generate the entire sequence altogether
by transforming from a sequence of latent vectors sampled from a
Gaussian process and model the structures in temporal and spatial
dimensions. Motion-based graphs or motion-based database meth-
ods for motion synthesis were previously proposed in [3, 28, 31].
However, these methods are limited to generate some very sim-
ple actions, such as human walking and running. Distinguished
from above-mentioned methods, we develop the motion graph with
transition edges, generating more complex and realistic motion
sequences with improved diversity.

3 THE PROPOSED METHOD
As shown in Figure 2, we decompose the proposed method into
three stages:motion graph construction, transition motion generation
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Figure 2: The computational pipeline of our proposed method. See main text for more explanation

and human motion completion (recall that in our proposed frame-
work the human motion prediction tasks boils down to multiple
executions of the motion completion routine). Stage one constructs
a motion graph from the training dataset. This graph is used to en-
code the motion dynamics of various human actors within the same
sequence and the smooth transfer between different sequences. The
graph nodes involved in the inter-sequence transitions are chosen
in this step, and the corresponding virtual routes are determined in
the following step. In specific, we adopt a modified DCT-GCN [35]
to generate virtual motions for the transition edges. Stage three
then uses a graph path search algorithm to find numerous feasi-
ble paths from the starting node to the ending node in the graph,
obtaining diverse results of motion completion. Finally, we use
Gaussian filtering to post-process the motion sequences for taming
some noise-corrupted human poses.

3.1 Motion Graph Construction
3.1.1 Topology of the motion graph. In this section, we define
the topological structure of the motion graph and the procedure
of constructing motion graph from a database of human motion
sequences. A human motion sequence is regarded as a regular
sampling of the character’s parameters, such as the angles or 3D
coordinates of each skeleton joint. Typically, such a sequence is
part of some daily actions, such as walking, talking on the phone,
greeting, etc. Suppose we are given a human motion database
D = {𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑁 } that contains 𝑁 human motion sequences.
Each sequence 𝑆𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3, ..., 𝑥𝑖,𝑇 } consists of𝑇 consecutive
human poses. Let 𝑥𝑖,𝑡 ∈ R𝐾 , where 𝐾 is the number of parameters
describing each pose.

Our goal is to construct a motion graphG fromD.G is a directed
graph where all edges correspond to some sub-sequences of human
motion. For each sequence 𝑆𝑖 , we sample one frame at a temporal

stride of 𝐼 frames1 and assign a node for it in the motion graph.
Importantly, there are two kinds of edges in the motion graph. If
we only create an edge between two adjacent nodes within a same
motion sequence, it leads to about 𝑁 (𝐿/𝐼 ) nodes and 𝑁 (𝐿/𝐼 − 1)
edges where 𝐿 is the average length of all sequences., as shown
in Figure 2(a). Such a graph does not have cross-sequence con-
nections, therefore it is trivial for our interested tasks. In order to
diversity the graph routes across different motion sequences, we
add more transition edges among motion sequences and seek for a
motion graph with enhanced connectivity. The idea is illustrated
in Figure 2(b). More details will be presented in Section 3.1.3.

3.1.2 Calculation of graph-node distance. For an arbitrary graph
node pair < 𝑆𝑖,𝑡 , 𝑆 𝑗,𝑡 ′ >, we combine two considerations as below
(i.e., pose and motion distance) when determining the similarity
between them.

Pose distance. For the node pair < 𝑆𝑖,𝑡 , 𝑆 𝑗,𝑡 ′ >, let 𝑥𝑖,𝑡 and 𝑥 𝑗,𝑡 ′
be their vectorized pose representation, respectively. It is impor-
tant to align two poses before comparing them. To this end, The
Procrustes Analysis2 is firstly used to align 𝑥𝑖,𝑡 and 𝑥 𝑗,𝑡 ′ . Without
loss of generality, let us freeze 𝑥𝑖,𝑡 and transform the other pose.
The pose distance is computed as the Euclidean distance between
the aligned poses, namely

𝑥𝑖,𝑡 , 𝑥
★
𝑗,𝑡 ′ = Procrustes_Analysis(𝑥𝑖,𝑡 , 𝑥 𝑗,𝑡 ′), 𝑑𝑝𝑜𝑠𝑒 =




𝑥𝑖,𝑡 − 𝑥★𝑗,𝑡 ′


2 .
(1)

Motion distance. Visually similar poses shall be distinguished
according to the instantaneous moment-level human motion dy-
namics. To this end, we take 10 frames forward to get the adjacent
sub-sequence of each node. For example, the sub-sequence to 𝑆𝑖,𝑡

1Taking into account the scale of the motion graph and the requirements of
the generative model for the known sequence length, we set 𝐼 to 20.
2https://en.wikipedia.org/wiki/Procrustes_analysis



is {𝑥𝑖,𝑡−9, 𝑥𝑖,𝑡−8, ..., 𝑥𝑖,𝑡 }. We adopt a simple strategy to estimate a
local motion vector as below:

𝑚𝑖,𝑡 = {𝑥𝑖,𝑡−8 − 𝑥𝑖,𝑡−9, 𝑥𝑖,𝑡−7 − 𝑥𝑖,𝑡−8, ..., 𝑥𝑖,𝑡 − 𝑥𝑖,𝑡−1}.
Likewise the motion vector𝑚𝑖,𝑡 ′ for 𝑆𝑖,𝑡 ′ can be also computed. A
Cosine-form distance is adopted to gauge the pair of motion vectors,
namely

𝑑𝑚𝑜𝑡 = 1 −
𝑚𝑇
𝑖,𝑡
𝑚 𝑗,𝑡 ′

∥𝑚𝑖,𝑡 ∥2 · ∥𝑚 𝑗,𝑡 ′ ∥2
(2)

We fuse the above two metrics 𝑑𝑝𝑜𝑠𝑒 and 𝑑𝑚𝑜𝑡 to get the final
distance between nodes 𝑆𝑖,𝑡 and 𝑆 𝑗,𝑡 ′ ,

𝑑 = 𝛼 ∗
𝑑𝑝𝑜𝑠𝑒

𝐷𝑝𝑜𝑠𝑒
+ (1 − 𝛼) ∗ 𝑑𝑚𝑜𝑡

𝐷𝑚𝑜𝑡
, (3)

where 𝐷𝑝𝑜𝑠𝑒 and 𝐷𝑚𝑜𝑡 represent some maximal value of pose dis-
tance and motion distance for normalizing purpose, respectively.
𝛼 is the harmonic parameter and we set it as 0.7 without further
fine-tuning.

3.1.3 Submodular optimization for transition node selection. A tran-
sition node in G is designed to establish a virtual path between two
motion sequences or a skip connection within a motion sequence.
The specific choice of transition nodes crucially affects the quality
of the final motion graph. Insufficiently-sampled transition nodes
lead to low graph connectivity and excessive transitions make the
graph paths fragmented. In addition, to ensure a transition to be
smooth, the cost of linking a selected transition node with other
nodes in the graph should be reasonably small. Formally, given a
fully connected graph G = (V, E), we aim to find a subset A ∈ V
such that the cost of all other nodes in the graph to this subset
is as small as possible. This problem can be efficiently solved via
submodular optimization [29].

Let us treat the graph nodes outside the subsetA as queries, and
formally model these querying nodes with a random process. With
each node 𝑠 ∈ V in the graph and cost 𝑐 ∈ C (C ⊆ R is a discrete or
continuous ordered set of cost), we associate a nonnegative random
variableX𝑠,𝑐 , which is 0 if there is no path from query node to 𝑠 with
a cost 𝑐 , and positive otherwise. Hence, the joint realization xV,C
describes the state of the graph over the entire course of a query. For
each possible realization, we evaluate a penalty function 𝜋 (xV ,A)
which depends on the state of the graph xV,C at all nodes and all
cost, as well as the subsetA. For each possible observation (selected
graph node) 𝑠 ∈ V , we use

𝐶 (𝑥V,C, 𝑠) = min{𝑐 ∈ C : x𝑠,𝑐 > 0} (4)

to denote the cost of query. Hereby, 𝐶 (xV,C, 𝑠) = ∞ if there is no
path from query node to 𝑠 , i.e., x𝑠,𝑐 = 0 for all 𝑐 ∈ C. For a set of
observations 𝐴 ⊆ V , we define

𝐶 (𝑋V,C,A) = min
𝑠∈A

𝐶 (xV,C, 𝑠), (5)

i.e., the minimum cost from query node to any selected node in
A. Furthermore, we define a function 𝜋 (xV,C, 𝑐) = min(𝑐,𝐶max),
where 𝐶max is the maximum cost of the dataset. 𝜋 describing the
penalty incurred if xV,C exists path for query node at cost 𝑐 .

Based on above notations, we can formulate node querying for-
mally as an observation selection problem. Define a quality function

𝑢 (xV,C,A) = 𝜋 (xV,C,∞) − 𝜋 (xV,C,𝐶 (xV,C,A)). (6)

Figure 3: Convergence curve of the penalty reduction.

If we assume a probability distribution 𝑃 (xV,C) over query
nodes, the corresponding expected quality function

𝐹 (A) =
∫

𝑃 (xV,T ) 𝑢 (xV,C,A) 𝑑xV,C, (7)

then models the expected penalty reduction obtained if observing
subset A ⊆ V of the nodes.

Using this notion of quality function, our goal is to solve the
maximization problem:maxA⊆V 𝐹 (A) s.t. |A| ≤ 𝑘 , where 𝑘 is the
selected node number. The penalty reduction function 𝐹 (A) has
several important and intuitive properties: Firstly, 𝐹 (∅) = 0, i.e., we
do not reduce the penalty if not selecting any nodes. Secondly,
𝐹 is non-decreasing, i.e., 𝐹 (A) ≤ 𝐹 (B) for all A ⊆ B ⊆ V .
Hence, adding nodes for A can only decrease the incurred penalty.
Thirdly, and most importantly, it is submodular [29]. For all choice
A ⊆ B ⊆ 𝑉 and nodes 𝑠 ∈ V\B, it holds that 𝐹 (A∪{𝑠})−𝐹 (A) ≤
𝐹 (B ∪ {𝑠}) − 𝐹 (B). Hence, if we add a node to a small set A, we
improve our score as least as much, as if we add it to a larger
set B ⊇ A. In [29], it proved that the greedy algorithm applied to
penalty reduction objective 𝐹 (A) is guaranteed to obtain a solution
of the maximization problem which achieves at least a constant
fraction of (1 − 1/𝑒) of the value obtained by the optimal solution.
The pseudo code of the algorithm is in the supplementary materials.

The convergence curve of F (A) is shown as Figure 3. As the
number of the selected nodes increases, the penalty reduction grad-
ually stabilizes. We finally select 4000 nodes to form the setA as the
transition nodes. Then, we use 𝑘-nearest neighbors to select nodes
with the smallest distances for each transition node to establish
edges. In experiments 5-NN is adopted.

3.2 Transition Motion Generation
The poses of two connected transition nodes can be subtly dif-
ferent and perceptible for human. The generation of transition
sub-sequences aims to fill in this gap. It can be regarded as a tiny
human motion completion problem: the sub-sequences of two tran-
sition nodes are known, which can be conceptually used as starting
/ ending poses. Transition sequence generation reads the known
two sub-sequences and imputes the “missing" ones in-between.

Inspired by [35], we tackle transition motion generation by
jointly encoding temporal information, via the use of the Discrete
Cosine Transform (DCT), and spatial structure, via Graph Con-
volutional Networks (GCNs) with learnable connectivity. Let us
denote by 𝑥𝑘 = {𝑥𝑘,1, 𝑥𝑘,2, 𝑥𝑘,3, ..., 𝑥𝑘,𝑇 } the trajectory for the 𝑘𝑡ℎ

joint across 𝑇 frames. Given a trajectory 𝑥𝑘 , the corresponding 𝑙𝑡ℎ
DCT coefficient can be computed as

𝐶𝑘,𝑙 =

√
2
𝑇

𝑇∑
𝑡=1

𝑥𝑘,𝑡
1√

1 + 𝛿𝑙1
cos( 𝜋

2𝑇
(2𝑡 − 1) (𝑙 − 1)), (8)



where 𝛿𝑖 𝑗 denotes the 𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 delta function with 𝛿𝑖 𝑗 = 1 if 𝑖 is
equal to 𝑗 , otherwise 0.

In practice, 𝑙 ∈ {1, 2, ..,𝑇 }. In short, DCT encoding allows us to
model the temporal information of each joint using DCT coeffi-
cients. Given such coefficients, the original human pose represen-
tation can be obtained via the Inverse Discrete Cosine Transform
(IDCT) as

𝑥𝑘,𝑡 =

√
2
𝑇

𝑇∑
𝑙=1

𝐶𝑘,𝑙
1

1 + 𝛿𝑙1
cos( 𝜋

2𝑇
(2𝑡 − 1) (𝑙 − 1)), (9)

where 𝑡 ∈ {1, 2, 3, ...,𝑇 }.
After getting the DCT encoding of the sequence, we use GCN to

encode the spatial structure of human pose. Let us assume that the
human body is modeled as a fully-connected graph with 𝐾 nodes.
The strength of the edges in this graph can then be represented by a
weighted adjacency matrixA ∈ R𝐾×𝐾 . A graph convolutional layer
𝑝 then takes as input a matrix H(𝑝) ∈ R𝐾×𝐹 , with 𝐹 the number of
features output by the previous layer. Given this information and a
set of trainable weights W(𝑝) ∈ R𝐹×𝐹 , a graph convolutional layer
outputs a matrix of the form H𝑝+1 = 𝜎 (A(𝑝)H(𝑝)W(𝑝) ), where
A(𝑝) is the trainable weighted adjacency matrix for layer 𝑝 and
𝜎 (·) is an activation function.

3.3 Jump-Sensitive Graph Path Search for
Human Motion Completion

3.3.1 Pose search. For the human motion completion or prediction
problems, the computation initiates from finding a few nodes in the
motion graph G that are similar to a given starting or ending pose.
We call this process Pose Search. Pose search are accomplished by
two operations: pose alignment (i.e., find a geometric transform
that optimally matches two poses) and pose distance calculation.

The motion graph G is often comprised of tremendous vertices
owing to the dense sampling over motion sequences. As stated
before, it is important to precisely align two human poses before
calculating their similarity. A naive linear scan scheme that sepa-
rately aligns each human pose in G with respect to the querying
poses will trigger intolerably high complexity. To expedite the pose
search process, this work adopts a divide-and-conquer strategy
for pre-indexing all information in the motion graph G. The key
insight is that human poses tend to be locally clustered with each
other in some feature space. Finding the most similar poses for a
query can thus be approximately conducted only within the cluster
where the query resides.

Given a motion graph G with a total of 𝑁 nodes, we calculate
the Euclidean distance after each two nodes are aligned to obtain
a distance matrix 𝐷 . In 𝐷 , 0 means identical elements, and high
values mean very dissimilar elements. It can be transformed in a
similarity matrix by applying the Gaussian kernel,

𝑆 = exp(−𝐷2/(2 ∗ 𝛿2), (10)

where 𝛿 is a free parameter representing the width of the Gaussian
kernel and can be empirically estimated from the training data.
Next, we perform the spectral clustering algorithm on the similarity
matrix 𝑆 , getting 𝐶 clusters. For each cluster, a center pose 𝑥𝑖 of

cluster 𝑖 is computed by

𝑥𝑖 = argmin𝑥𝑖 ∈C𝑖
∑
𝑥 ∈C𝑖

𝑑𝑝𝑜𝑠𝑒 (𝑥𝑖 , 𝑥), (11)

where C𝑖 is the set of all poses of cluster 𝑖 . 𝑑𝑝𝑜𝑠𝑒 (·) is defined in
Equation 1. After choosing 𝑥𝑖 , we align all poses in the cluster 𝑖
with respect to 𝑥𝑖 .

To further speed up the pose search process, we conduct vector-
based hashing separately in each cluster. We follow the ITQ al-
gorithm [15] to perform binary quantization. For specific clus-
ter, assume there are 𝑛 poses {𝑥1, 𝑥2, ..., 𝑥𝑛}, 𝑥𝑖 ∈ R𝑑 , forming a
data matrix 𝑋 ∈ R𝑛×𝑑 . Our goal is to learn a binary code matrix
𝐵 ∈ {0, 1}𝑛×ℎ , where ℎ denotes the binary code length. For the first
step, PCA (principal component analysis) is adopted to project the
pose data 𝑋 to some𝑉 ∈ R𝑛×𝑐 . Following [15, 16], the binary hash-
ing code matrix 𝐵 can be estimated by optimizing the quantization
loss:

Q(𝐵, 𝑅) = ∥𝐵 −𝑉𝑅∥2𝐹 , (12)

where ∥ · ∥𝐹 denotes the Frobenius norm and 𝑅 is an orthogonal 𝑐×𝑐
matrix. After an optimal 𝑅∗ is pursued, the binary code matrix 𝐵 =

sgn(𝑉𝑅∗), where 𝑠𝑛𝑔(·) is a binary encoding function. sgn(𝑣) = 1
if 𝑣 ≥ 0 and 0 otherwise.

For𝐶 clusters, we get𝐶 binary code matrix {𝐵1, 𝐵2, ..., 𝐵𝐶 }. Each
node in the motion graph G now has a uniuqe cluster index and a
corresponding compact hash code. For a given query pose 𝑝 , we
first calculate the distance between the query pose and the center
of each cluster, which identifies the closest cluster. Afterwards, the
query’s hash code within the closest cluster is calculated. Using the
code, it is able to quickly retrieve the most similar poses from the
cluster based on Hamming distance (i.e., the number of discrepancy
in two binary codes) ranking.

3.3.2 Graph search. A human motion completion instance is de-
fined by a starting (or source) pose 𝑥𝑠 and an ending (or target)
pose 𝑥𝑡 . The goal is to faithfully guess the intermediate motion
between 𝑥𝑠 and 𝑥𝑡 . Using the aforementioned pose search, we can
find a corresponding node set S in the motion graph for 𝑥𝑠 , and
T for 𝑥𝑡 respectively. The motion completion task can be divided
into two part: first, we search the possible graph paths from all
source-target pair (𝑠, 𝑡) ∈ S × T , and then restore the missing
intermediate motion from 𝑥𝑠 to 𝑥𝑡 according to the paths.

The transition nodes, despite enhancing the graph connectivity,
have the side effect of rendering non-smooth sub-sequences.We use
the term jump to refer to the transition from onemotion sequence to
another. Fewer jumps on a graph path tends to correspond to more
realistic human motion sequences, yet have limited diversity. It is
easy to know that for a directed acyclic graph, the time complexity
of finding all paths from source node to target node isO(2𝑁 ), where
𝑁 is the nodes number in the graph. And for the path search with
the specific number of jumps, the time complexity is O(𝑁 𝐽 ), 𝐽 is
the number of jumps. The search for all 𝑠-𝑡 paths in the graph is
an NP-Hard problem, which can not be solved in polynomial time.
Since we do not need to find all possible paths in most practical
applications, we propose a heuristic approximate search algorithm,
which has polynomial time complexity while ensuring the search
effect.



For the path search problem, one of the most widely-used al-
gorithms is breadth-first search (BFS). However, its search space
expands exponentially as the number of jumps increases. Here we
propose a heuristic-guided strategy to filter out unreasonable nodes
in the search space. The Floyd-Warshall algorithm is first performed
to calculate a minimum-jump matrix 𝐷 between all nodes. Suppose
the goal is to find the paths with a given number of jumps 𝑗∗ from
some graph node 𝑠 ∈ S to another node 𝑡 ∈ T . Assume we have
already obtained a path 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑜 } and its jump number
is 𝑗𝑐𝑢𝑟 . Let us try to determine whether the successor node 𝑝 of 𝑝𝑜
can be added to the search space. Denote the number of jumps from
𝑝𝑜 to 𝑝 as 𝑗𝑝 , and the minimum number of jumps from 𝑝 to 𝑡 is
pre-stored in𝐷𝑝,𝑡 . If 𝑗𝑐𝑢𝑟 + 𝑗𝑝 +𝐷𝑝,𝑡 > 𝑗∗, then 𝑝 is an unreasonable
node and will not be added to the search space. Since we do not
need all possible 𝑠 − 𝑡 paths, we keep only 𝑄 paths in the current
search space for each additional jump, so that the search space be
reduced from the exponential level to the polynomial level. The
time complexity of using the Floyd-Warshall algorithm to calculate
the jump matrix𝐷 is O(𝑁 3), but this time cost is one-time and does
not need to be calculated for every query. And the time complexity
of each query of our heuristic graph search algorithm is O(𝐽𝑄𝑁 ).
So the overall time complexity of the algorithm is polynomial. In
experiments 𝑄 is set to 1000. The pseudo code of the algorithm is
shown in supplementary materials.

After getting the graph paths from the nodes S to T , we restore
the corresponding motion sequences for the paths. For edges in
an original human motion sequence in the database, we directly
take out its corresponding motion sub-sequence from the original
sequence. For transition edges between sequences, we use a gener-
ative model to generate the corresponding motion sequences. This
way returns the completion result from the start pose to the end
pose.

3.4 Extension to Human Motion Prediction
For human motion prediction, we only know the starting pose 𝑥𝑠 .
The goal is to forecast human motions in the future. Using pose
search, we can find a corresponding node set S in the motion graph
for 𝑥𝑠 . Then we implement motion prediction in two steps. Firstly,
we conduct a jump-sensitive forward propagation in the motion
graph for each node 𝑠 ∈ S. Jump-sensitive forward propagation
walks forward from the node 𝑠 to get the candidate paths of the
specified number of jumps 𝐽 . We can generate paths of different
lengths by controlling 𝐽 and rank them according to the cost on the
graph path. Top-ranked graph paths are kept as the final results.
Secondly, we can restore the predicted motion based on the paths.
In this way, human motion prediction boils down to multiple runs
of our proposed human motion completion routines.

After getting the synthesized sequences of human motion com-
pletion or prediction, we use Gaussian filtering as a post-processing
to remove noises. The diffusion parameter 𝜎 of the filter is set to 2
and the size of the sliding window is 10.

4 EXPERIMENTS
4.1 Dataset Description
Human3.6M. Human3.6M [38] is a large-scale dataset with 11
subjects (7 with ground truth) and 3.6 million video frames in

total. Each subject performs 15 actions (walking, eating, discussion,
sitting, and phoning etc.) and the human motion is recorded at 50
HZ. Following previous work [34, 36, 37, 48], we adopt a 17-joint
skeleton, train the model on five subjects (S1, S5, S6, S7, S8) and
test it on two rest subjects (S9 and S11).
HumanEva-I [39]. HumanEva-I contains three subjects recorded
at 60 HZ. We adopt a 15-joint skeleton [37] and use the same train
/ test split provided by the dataset organizer.

4.2 Evaluation Protocol
4.2.1 Human motion completion. We conduct human motion com-
pletion experiments on Human3.6M dataset. Following [44], we use
Inception Score (IS) [6] and Fréchet Inception Distance (FID) [22] to
evaluate our proposed method. These two metrics are widely used
in the image generation task. Inception Score feeds generated sam-
ples to a classification model and analyzes their output probabilities
over all classes. Fréchet Inception Distance measures the distance
between the statistics of real and synthesized data in some feature
space. We choose ST-GCN [45] as the action classifier for calculat-
ing IS and FID. The dataset of Human3.6M contains only limited
number of actions and subjects, the trained models are thus easy to
overfit. The top-1 and top-5 classification accuracies of ST-GCN are
50.8% and 88.6%, respectively. Following [44], we use an extension
of IS and FID. In order to calculate them, we generate 𝑁 = 1000
sequences for each sequence length 𝑇 , and cut each sequence into
𝑀 short snippets of length 50. The overlap of two adjacent short
snippets is 25 frames.

Mean time FID/IS scores characterize the generation quality
within each generated sequence. It first obtains the time FID/IS
scores for each generated sequence by computing the basic metrics
on all snippets within each sequence and then averages the scores
across all sequences. Take the mean time FID (denoted as FID𝑡 ) as
an example,

FID𝑡 =
1
𝑁

∑
𝑛

FID({F𝑚𝑛}𝑚=1,...,𝑀 ) . (13)

To evaluate the effect of our method on generating sequences
of different lengths, we set 𝑇 to five different lengths of 1, 5, 10, 20,
and 30 seconds.

4.2.2 Human motion prediction. We conduct human motion pre-
diction experiments on both Human3.6M and HumanEva-I datasets.
For Human3.6M, we predict future motion for 2 seconds based on
observedmotion of 0.5 seconds. For HumanEva-I, we forecast future
motion for 1 second given observed motion of 0.25 seconds.

Following [48], we use the following metrics to measure both
sample diversity and accuracy.

Average Pairwise Distance (APD): average 𝐿2 distance be-
tween all pairs of motion samples to measure diversity within
samples, which is computed as

𝐴𝑃𝐷 =
1

𝑁 (𝑁 − 1)

𝑁∑
𝑖=1

𝑁∑
𝑗≠𝑖

∥𝑥𝑖 − 𝑥 𝑗 ∥, (14)

where 𝑥 is the generated sequences, 𝑁 is the sequences numbers.
Average Displacement Error (ADE): average 𝐿2 distance over

all time steps between the ground truth motion 𝑥 and the closest



Method IS𝑡 ↑ FID𝑡 ↓
1s 5s 10s 20s 30s 1s 5s 10s 20s 30s

Linear Interpolation 6.75 1.82 1.84 1.89 1.89 21.2 176.0 174.1 172.1 172.8
DCT-GCN [35] 6.82 1.87 1.87 1.88 1.96 19.7 174.2 173.8 174.4 169.3

Ours 8.00 1.45 1.88 2.46 3.25 18.2 188.8 157.0 130.3 107.4
Ours★ 8.35 1.51 1.84 2.54 3.28 16.4 191.7 150.3 124.3 104.4

Table 1: Experimental results for human motion completion on Human3.6M. See main text for more explanation.

Human3.6M [38] HumanEva-I [39]

Method APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓
ERD [13] 0 0.722 0.969 0.776 0.995 0 0.382 0.461 0.521 0.595
acLSTM [50] 0 0.789 1.126 0.849 1.139 0 0.429 0.541 0.530 0.608
Pose-Knows [42] 6.723 0.461 0.560 0.522 0.569 2.308 0.269 0.296 0.384 0.375
MT-VAE [46] 0.403 0.457 0.595 0.716 0.883 0.021 0.345 0.403 0.518 0.577
HP-GAN [4] 7.214 0.858 0.867 0.847 0.858 1.139 0.772 0.749 0.776 0.769
Best-of-Many [5] 6.265 0.448 0.533 0.514 0.544 2.846 0.271 0.279 0.373 0.351
GMVAE [12] 6.769 0.461 0.555 0.524 0.566 2.443 0.305 0.345 0.408 0.410
DeLiGAN [20] 6.509 0.483 0.534 0.520 0.545 2.177 0.306 0.322 0.385 0.371
DSF [49] 9.330 0.493 0.592 0.550 0.599 4.538 0.273 0.290 0.364 0.340
DLow [48] 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339
Ours 8.006 0.476 0.582 0.540 0.590 3.822 0.282 0.285 0.368 0.334

HumanEva-I → Human3.6M Human3.6M→ HumanEva-I
DLow [48] 5.929 0.848 0.907 0.870 0.913 7.031 0.563 0.623 0.614 0.643
Ours 6.127 0.611 0.831 0.665 0.849 7.206 0.540 0.571 0.591 0.596

Table 2: Quantitative results on Human3.6M and HumanEva-I.

sample, which is computed as

𝐴𝐷𝐸 =
1
𝑇
min𝑥 ∈X ∥𝑥 − 𝑥 ∥, (15)

where X is the set of generated sequences.
Fianl Displacement Error (FDE): 𝐿2 distance between the fi-

nal ground truth pose 𝑥𝑇 and the closest sample’s final pose, which
is computed as

𝐹𝐷𝐸 = min𝑥 ∈𝑋 ∥𝑥𝑇 − 𝑥𝑇 ∥ . (16)

Multi-Modal ADE (MMADE): the multi-modal version of ADE
that obtains multi-modal ground truth future motions by grouping
similar past motions.

Multi-Modal FDE (MMFDE): the multi-modal version of FDE.
Among these metrics, APD has been used to measure sample

diversity [2]. ADE and FDE are common metrics for evaluating sam-
ple accuracy in trajectory forecasting literature [1, 19, 32]. MMADE
and MMFDE [49] are metrics used to measure a method’s ability to
produce multi-modal predictions.

4.3 Experimental Results and Analysis
We compare the performances of our proposed method and other
baseline models on Human3.6M and HumanEva-I datasets on the
two tasks of human motion completion and prediction. The experi-
mental results and analysis are as follows.

Human motion completion. To the best of our knowledge,
there is currently no published model that can directly solve the
problem of human motion completion. To verify the effectiveness
of our model, we construct two baseline model Linear Interpola-
tion and DCT-GCN for human motion completion. For the linear
interpolation method, we interpolate the starting and end poses to
complete the motion sequence of the specified length in between.

As mentioned earlier, the DCT-GCNmethod was originally used for
human motion prediction. In Section 3.2, we modify the DCT-GCN
model and use it for short-term transition sequence generation.
Here we extend the model used in section 3.2 to make it possible to
generate motion completion results of varying lengths.

The experimental results of above methods are shown in Ta-
ble 1. Larger IS scores or smaller FID are better. For the human
motion completion task, we mainly focus on the quality and diver-
sity within the generated sequences, namely IS𝑡 and FID𝑡 . Since
the input snippet length of our human action classification model is
fixed to 1 second, when the sequence length is 1 second, the values
of FID𝑡 and IS𝑡 can not be calculated.

As shown in Table 1, the simplest linear interpolation method
has the worst performance, and the DCT-GCN method is slightly
better. As the length of the generated sequence increases, more
stronger advantage of our method over the two baselines can be
observed. This is because our data-driven method directly finds
the appropriate motion from the database for sequence generation.
As the sequence length increases, the proportion of the transition
sequence in the entire generated sequence is smaller, therefore
the generation result is more real. Our proposed approach is more
effective in long sequence completion.

Human motion prediction. We summarize the quantitative
results on Human3.6M and HumanEva-I in Table 2. The metrics
are computed with a sample set size of 50. On both datasets, our
method outstrips all other previous methods, except for two re-
cent variational modeling based methods DSF [49] and DLow [48].
We attribute the slight inferiority to the lack of fine-grained pose-
processing (only standard Gaussian smoothing is used in our cur-
rent implementation) after obtaining the synthesized motion se-
quences, unlike [48, 49].
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Short-duration 1s0s
Start Generated Direction Generated End

Figure 4: Some examples for human motion completion.

Bits Length 12 24 48 72 96
mAP 5.14 16.10 29.40 37.48 41.59

Precision@5 20.84 39.84 54.80 63.20 65.20
Precision@10 20.62 38.09 52.45 59.52 62.35

QPS 387.1 306.3 179.2 134.8 104.5
Table 3: Experimental results for global alignment.

Cluster Numbers 20 40 60 80 100
mAP 27.33 28.23 27.67 28.99 26.63

Precision@5 53.68 53.98 54.10 56.28 55.50
Precision@10 50.65 51.16 50.69 52.61 52.32

QPS 1126.5 867.6 596.5 540.6 465.4
Table 4: Experimental results for group alignment.

In order to evaluate the generalization performance of different
methods, we also conduct cross-scenario experiments. As shown
in Table 2, HumanEva-I→ Human3.6M refers to building a motion
graph or training model on the training set of the HumanEva-I
dataset, and testing on the test set of the Human3.6M dataset. The
experimental results show that the performances of our method on
all metrics are consistently more robust than the state-of-the-art
model DLow [48]. The difference of generalization performances
suggests that current generative models, exemplified by DLow [48],
suffers from more severe over-fitting issue than data-driven meth-
ods like ours in this paper.

Effectiveness of post-processing. We conducted several ab-
lation studies to verify the effectiveness of our post-processing
module. In Table 1, Ours represents the method before using the
generated network for post-processing, and Ours★ represents our
complete method after post-processing. As shown in the above
tables, our post-processing module can play a positive role in most
cases.

Pose search. In this part, we conduct experiments to study the
impact of pose hashing on pose search performance. In the experi-
ment, we randomly select 1000 query poses from the testing dataset
and calculate the pose distance between them and all poses in the
training set. If the distance is less than the threshold, it is set as
positive, otherwise it is negative, which is the groundtruth used
in the evaluation later. We use mAP, Precision@5, Precision@10
and QPS (Queries Per Second) to evaluate the performance of the
methods. Precision@5 refers to the proportion of positive samples

among the 5 samples given by the model. If we do not do pose
hashing, that is, we search according to the method of calculating
groundtruth, the query speed is 5.8 QPS. Table 3 shows the retrieval
effect after we align all the data in the training set with the same
pose, and then perform hashing. It can be seen that the retrieval
speed is significantly improved compared to 5.8 QPS. Based on the
consideration of speed and accuracy, we choose 48 bits for group
alignment experiment. Table 4 shows the effect of the number of
clusters of spectral clustering on the retrieval performance. Nor-
mally, the more the number of clusters, the faster the retrieval speed,
but because our database is relatively small, the time to find a suit-
able cluster takes up a higher proportion, so the search speed slows
down as the cluster increases. According to the above experimental
results, we choose 80 clusters and 48 bits length as the final pose
search module parameters.

Some examples. In Figure 4, we illustrate the results of human
motion completion at three different scales (1s, 10s„ and 30s). In
order to better show the composition of the generated sequence, the
pose here is not sampled at equal intervals. More video examples
can be seen in the supplementary materials.

5 CONCLUSIONS
In this paper, we introduce a framework for generating human
diversity motion sequences by data-driven and generative models.
The whole pipeline can be decomposed into three stages: Motion
Graph Construction, TransitionMotion Generation and HumanMo-
tion Sequences Generation. In the first stage, we construct a motion
graph on the training set. This graph can represent the change of
motion within the same sequence and the transfer between different
sequences. In the second stage, a modified DCT-GCN model is used
to generate transition sequences for the transition edges. In the last
stage, we apply graph path search algorithm and graph walks to
handle humanmotion completion and prediction tasks, respectively.
The experimental results on dataset Human3.6M and HumanEva-I
demonstrate the effectiveness of our proposed method.
Acknowledgement: This work is supported by National Natural
Science Foundation of China (61772037) and Beijing Natural Science
Foundation (Z190001).
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