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ABSTRACT
The task of lifelong person re-identi�cation aims to match a person
across multiple cameras given continuous data streams. Similar to
other lifelong learning tasks, it severely su�ers from the so-called
catastrophic forgetting problem, which refers to the notable per-
formance degradation on previously-seen data after adapting the
model to some newly incoming data. To alleviate it, a few existing
methods have utilized knowledge distillation to enforce consistency
between the original and adapted models. However, the e�ective-
ness of such a strategy can be largely reduced facing the data dis-
tribution discrepancy between seen and new data. The hallmark
of our work is using adaptively-chosen patches (rather than whole
images as in other works) to pilot the forgetting-resistant distilla-
tion. Speci�cally, the technical contributions of our patch-based
new solution are two-fold: �rst, a novel patch sampler is proposed.
It is fully di�erentiable and trained to select a diverse set of im-
age patches that stay crucial and discriminative under streaming
data. Secondly, with those patches we curate a novel knowledge
distillation framework. Valuable patch-level knowledge within in-
dividual patch features and mutual relations is well preserved by
the two newly introduced distillation modules, further mitigating
catastrophic forgetting. Extensive experiments on twelve person re-
identi�cation datasets clearly validate the superiority of our method
over state-of-the-art competitors by large performance margins.
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Figure 1: Illustration of the distribution gap between di�er-
ent person re-identi�cation samples. As shown in this �gure,
our main observation in this work is: the distribution gap
between images from old data and new incoming data partly
stems from some image-level factors (for example di�erent
background clutters or camera viewing angle). It can be hope-
fully mitigated when the model operates in the level of most
related and discriminative patches across the data streams.

1 INTRODUCTION
Person re-identi�cation (ReID) aims to match pedestrian images
captured from non-overlapping cameras. It has made remarkable
progress in recent years thanks to the development of deep learning
models and large-scale datasets [9, 18, 32, 57]. However, most of
ReID methods assume that the training data can be accessed all at
once, which limits their application to real-world streaming data,
e.g., millions of images produced every day by surveillance video
systems. To investigate e�cient and scalable learning algorithms
for continuously incoming ReID data, the task of lifelong person
ReID has recently been proposed [46, 56, 63, 69]. It requires the
ReID model to simultaneously incorporate new information while
preserving already learned knowledge.

Like other lifelong learning tasks [7, 47, 54, 62], lifelong person
ReID faces a key challenge of catastrophic forgetting, i.e., perfor-
mance degradation on old datasets after updating the model on
new ones. A straightforward solution is to keep records of old data
and re-train the model periodically, but it is not always feasible
due to storage limits and privacy concerns. In order to alleviate
catastrophic forgetting without accessing old data, most lifelong
ReID methods [46, 56, 69] have adopted a knowledge distillation
strategy. At each stage, the current model distills knowledge from
the old one by mimicking its behavior on new data. However, this
method relies heavily on the relatedness between the old data and
the new data, and may not perform well under dramatic distri-
bution shift [2, 34]. Such distribution shift is common in lifelong
person ReID due to large distribution gap caused by camera views,
background variations etc. This issue was still inadequately stud-
ied in previous work, resulting in low e�ectiveness of knowledge
distillation and non-negligible forgetting.
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Bridging the distribution gap between old and new data has been
extensively studied by unsupervised domain-adaptive ReID [12, 66,
75]. Patch-based feature learning [66] is a representative approach,
which provides an inspiring observation that the gap between sim-
ilar patches are smaller compared to similar images. As demon-
strated in Figure 1, the selected patches are less a�ected by factors
such as background clutters, therefore more robust under distribu-
tion shift than the holistic image. We are thus motivated to make
full use of patch-level information for more e�ective knowledge
distillation, thereby mitigating catastrophic forgetting. The main
di�culty with this idea lies in two challenges: selecting patches
that are similar to the previous distributions without accessing old
data, and preserving crucial patch-level knowledge.

In this work, we propose a patch-based knowledge distillation
framework for lifelong person ReID. First, a di�erentiable patch sam-
pler is designed to select patch features by jointly optimizing two
objectives: being close to the old data and carrying diverse informa-
tion. The former objective can be e�ectively addressed based on the
model’s prediction con�dence as in previous practice [19, 29, 35].
We also propose to achieve the latter via a multi-branch design
along with a diversity loss. The selected patches are then fed to a
patch classi�er to distill knowledge from the old model. Secondly,
we develop patch relation distillation to retain useful relational
knowledge among patches. Considering the structure inherent in
patch relations, namely that inter-instance relations outnumber
informative intra-instance relations, we propose to treat these two
types of patch relations in a separate manner. By enforcing consis-
tency of intra-instance and inter-instance feature distances, both
local correlations and global identity information are preserved.

The contributions of our paper are summarized as follows:

• A patch-based knowledge distillation framework is curated for
lifelong person ReID. The proposed model exploits a key obser-
vation that the distribution gap induced by most related and dis-
criminative image patches is signi�cantly smaller than operating
in an image level. This helps alleviate the so-called catastrophic
forgetting in the interested task.

• A di�erentiable patch sampler is designed to minimize patch-
level distribution gap with the guidance from model con�dences.
The sampled patches are used for knowledge distillation and
make it more robust under the distribution shift.

• A patch relation distillation module is proposed to preserve rela-
tional knowledge among patch features. It works by distilling on
both intra-instance and inter-instance feature distances.

2 RELATEDWORKS
This section brie�y surveys a few research thrusts that are tightly
related to the research in this paper.

Person re-identi�cation. Person ReID has made remarkable
progress under various settings such as supervised learning [18,
40, 57], unsupervised learning [9, 36] and unsupervised domain
adaptation [12, 15, 66, 75, 76]. However, these settings all assume
that the training data can be access all at once and therefore strug-
gle to generalize to continuously increasing real-world data. To
tackle this problem, some methods for lifelong person ReID have
recently been proposed [46, 56, 63, 69]. Sugianto et al. [56] apply the
learning without forgetting method [34] to alleviate catastrophic

forgetting. Wu et al. [63] characterize lifelong person ReID by un-
seen class recognition, domain generalization and class imbalanced
learning, and then propose a comprehensive learning objective to
address these problems. Zhao et al. [69] propose neighbor selec-
tion and consistency relaxation strategies for better scalability and
generalization ability. Pu et al. [46] maintain a learnable knowl-
edge graph to accumulate previous knowledge and generalize to
unseen domains. However, the above methods distill knowledge at
image-level, which may be disturbed by distribution shift, result-
ing in performance degradation on old data. We propose to distill
knowledge at patch-level, which is more robust under distribution
shift.

There have been a series of studies on patch-based ReID [32, 52,
66] and part-based ReID [55, 57, 70–72]. They either address the
spatial misalignment problem between two person images [32, 52,
55, 70–72] or aim to learn discriminative local features [57, 66]. In
contrast, we perform patch-based knowledge distillation to mitigate
catastrophic forgetting in lifelong person ReID.

Lifelong learning. Lifelong learning methods have been de-
veloped in three major streams: expansion-based, rehearsal-based
and regularization-based. Expansion-based methods [11, 41, 51]
handle increasing knowledge by expanding model architecture on
demand. Rehearsal-based methods alleviate catastrophic forgetting
by recalling on stored [6, 38, 47] or synthesized [53, 62, 68] images
of previous tasks. However, they impose strict requirements on
storage space or image generator capacity. Regularization-based
methods [1, 14, 28, 34] add regularization terms to limit the change
of model parameters. The widely used learning without forgetting
method [34] falls into this category, which preserves old knowledge
with a distillation loss calculated on the new data.

Knowledge distillation. Knowledge distillation is �rst pre-
sented by Hinton et al. [21] and then widely used to transfer knowl-
edge from one network to another network. Existing knowledge
distillation methods can be summarized into three categories: logit
distillation [3, 21] which matches the �nal predictions, feature dis-
tillation [49, 67] which matches the intermediate representations,
and relation distillation [37, 42, 45, 60] which matches inter-sample
relations. Li et al. [33] and Kim et al. [26] extend logit distillation
and relation distillation to patch-level, but their methods generate
patch features from a regular grid without any selection, bringing
the dilemma of high computational cost or loss of �ne-grained
information. We achieve more e�cient patch-based knowledge
distillation with the proposed di�erentiable patch sampler.

Patch selection. Several prior works employ di�erentiable
patch selection before downstream processing. Yang et al. [66]
exploit the spatial transformer [23] to locate discriminative patches
for feature extraction, but the training of the spatial transformer
could be di�cult [10]. Katharopoulos et al. [25] utilize learnable
attention to sample informative patches from high resolution im-
ages. Tseng et al. [59] and Cordonnier et al. [10] formulate patch
sampling as a top-K problem and solve it with the Gumbel-max
trick[24, 65] and perturbed optimizers [5] respectively. However,
these sampling-based methods draw samples from the same dis-
tribution, which may produce mutually similar patches conveying
overlapping information. We propose to sample each patch from a
di�erent distribution and introduce an additional diversity loss to
ensure diversity among selected patches.
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Figure 2: Overall architecture of our proposed framework. The loss functions marked with blue guide the patch sampler to
minimize patch-level distribution gap. The loss functions marked with light orange enforce the ReID model to learn from new
samples without catastrophic forgetting. Textured background represents that the module is frozen during training. � denotes
element-wise product.

3 PROBLEM FORMULATION
Lifelong person ReID concerns the learning over streaming data,
which we simulate with a stream of datasets D = {⇡1, . . . ,⇡) }.
Each dataset ⇡C consists of person images - C and identity labels
. C . During time C , the ReID model is optimized on the dataset ⇡C ,
aiming to learn from new samples without interfering with per-
formance on previous datasets ⇡1, . . . ,⇡C�1. Following the recent
lifelong person ReID literature [46, 56, 69], we assume that the
model cannot access training samples from previous steps, either
directly or through an external memory. At the test time, the model
is evaluated on the test split of all seen datasets and new unseen
datasets for its non-forgetting performance and generalization abil-
ity, respectively.

4 METHOD
We propose a patch-based knowledge distillation framework for
lifelong person ReID. As illustrated in Figure 2, it builds on an
image-based base model (Section 4.1) and incorporates three new
modules: a di�erentiable patch sampler (Section 4.2) for selecting
a diverse set of patches that tend to be invariably important over
streaming data and are used for piloting the distillation on the
new data, patch logit distillation (Section 4.3) that encourages the
current model to mimic the old one’s prediction on the selected
patches, and patch relation distillation (Section 4.4) that helps the
model to retain various type of patch-level relational knowledge.

4.1 Base Model
We begin by introducing a base model that only uses image-level
feature to address the lifelong person ReID problem. The base model
5 is a mapping from input images to logits (class scores over person
identities). It can be broken down into three stages as 5 = q �6 �k .
First, the backbone networkk (·) extracts a feature map from the in-
put image, followed by the global average pooling 6(·) that applies

average pooling over the spatial dimension to generate a ReID fea-
ture from the feature map. Finally, the classi�er head q (·) predicts
logits from the ReID feature, which can be converted to probabili-
ties with an activation function f such as softmax. Furthermore, let
a superscript > be the mark for something related to the old model.
For example, 5 > = q> �6 �k> denotes the model from the last time
step, which is frozen during training.

The primary goal of the base model is to extract discriminative
ReID-oriented features based on the current identity labels . C . Fol-
lowing the common practice of conventional ReID methods [18, 40],
we introduce the ReID loss consisting of a cross-entropy loss that
matches predicted probabilities to class labels and a triplet loss [20]
that encourages intra-class compactness and inter-class separabil-
ity. Given a mini-batch of samples {(G8 ,~8 )}⌫8=1 from the current
dataset ⇡C , where ⌫ is the mini-batch size, the ReID loss is de�ned
as

L'4�⇡ =
1
⌫

⌫’
8=1

L⇠⇢ (~8 ,f (5 (G8 )))

+ 1
⌫

⌫’
8=1

LCA8
⇣
6(k (G8 )),6(k (G?8 )),6(k (G

=
8 ))

⌘
,

(1)

where G?8 and G=8 are the positive and negative samples for G8 re-
spectively. All samples are from ⇡C only unless otherwise noti�ed.

However, optimizing the model only by ReID loss may lead to
catastrophic forgetting on previously seen datasets. To preserve
learned knowledge, we enforce consistency between the current
model and the old model using a distillation loss that minimizes the
Kullback-Leibler divergence between the logits of the two models:

L ⇡ =
1
⌫

⌫’
8=1

KL
�
f (5 > (G8 )/g)

�� f (5 (G8 )/g)� , (2)

where g is a hyperparameter referred to as the temperature by
Hinton et al. [21]. Then, the loss function for the base model is
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treated as a weighted sum of L'4�⇡ and L ⇡ :
L10B4 = L'4�⇡ + W0L ⇡ , (3)

where W0 is a trade-o� factor between the ReID feature learning
and knowledge distillation.

Despite the wide application of knowledge distillation in lifelong
learning tasks [54, 56], it is known that this approach relies heavily
on the relatedness of old and new data [2, 34] because distribution
shift between these data can result in a gradual error build-up to
the previous datasets [13]. Unfortunately, such distribution shift
is common across ReID datasets, leading to poor non-forgetting
performance. In order to mitigate the interference of distribution
shift on knowledge distillation, we’ll present our patch-based model
in the following sections.

4.2 Di�erentiable Patch Sampling
In this section, we �rst explain the underlying mechanism of the
proposed di�erentiable patch sampler in a simpli�ed scenario, i.e.,
sampling a single patch, and then introduce three key designs to
guide the patch sampler to select a diverse set of patches that are
less a�ected by the distribution shift.

Sampling a single patch. For the sake of computational e�ciency,
we sample the patch from a relatively small feature map instead
of the original image. Speci�cally, given an input images G8 , we
use the last feature maps k (G8 ),k> (G8 ) and treat them both as a
set of candidate features. To model the sampling probability of
each candidate feature, a learnable scorer is employed to predict
a score vector B8 , where each value is subsequently converted to
the sampling probability of the 9-th candidate feature k (G8 ) 9 ( 9
indexes all possible neurons or image patches) using an activation
function f . Hence, the distribution of the sampled patch feature ?8
is modeled as

%
�
?8 = k (G8 ) 9

�
= f (B8 ) 9 . (4)

Directly choosing a maximum from the above distribution is non-
di�erentiable. We adopt a di�erentiable alternative by using the
Gumbel-max trick [24] to draw a discrete sample"8 :

"8 = one_hot
⇣
argmax

9
(B8 +⌧) 9

⌘
, (5)

where ⌧ is a vector of i.i.d. Gumbel noise samples, and employing
a straight-through estimator [4, 24] to enable di�erentiation of
argmax in the backward pass. Here,"8 determines the location of
the sampled patch, so it is used as a shared mask to extract patch
features of the two models from feature mapsk (G8 ),k> (G8 ):

?8 = "8 �k (G8 ), ?>8 = "8 �k> (G8 ), (6)

where � denotes element-wise product. In this way, the patch
sampling process becomes di�erentiable.

Sampling with multiple branches. A single patch is often insuf-
�cient. To draw  patches from an image, a popular solution is
to sample  times from the same distribution without replace-
ment [59, 65]. However, this may produce mutually similar patches,
as shown in Figure 3a. To capture diverse patterns in the feature
map, we propose a patch sampler with  branches. Each branch is
designed to separately learn a di�erent distribution and sample a
patch from it. Let (?8,A , ?>8,A ) denote the patch features sampled by

(a) Patch sampling with a single branch

(b) Patch sampling with  branches

Figure 3: Comparison of sampled patches on the CUHK03
dataset [32] with either single or multiple branches in the
proposed model. Sampling locations are mapped back onto
the image for better visualization.

the A -th branch, then our patch sampler samples  patches for an
image: �

(?8,1, ?>8,1), . . . , (?8, , ?>8, )
 
. (7)

This multi-branch design allows more diversity among sampled
patches, as shown in Figure 3.

Con�dence loss. In order to guide the di�erentiable patch sampler
to minimize patch-level distribution gap, the loss function has to
penalize patches that are far from previous distributions. This may
be seen as out-of-distribution detection at patch-level, and thus
can be solved similarly. Inspired by a group of out-of-distribution
detection methods that interpret inputs with low prediction con-
�dence as out-of-distribution examples [19, 29, 35], we estimate
each patch’s closeness to previous distributions with its con�dence
on the old model. Given a patch with features (?8,A , ?>8,A ), its con�-
dence on the old model can be measured by the negative entropy
of the model prediction f (q> (?>8,A )) [44]. Based on this, we de�ne
the con�dence loss in the form of entropy:

L2>=5 =
1
⌫ 

⌫’
8=1

 ’
8=1

H
⇣
f (q> (?>8,A ))

⌘
. (8)

It is easy to see that minimizing L2>=5 is equivalent to maximiz-
ing the con�dence of sampled patches on the old model, thereby
training the sampler to select patches that are closer to previous
distributions.

Diversity loss. To avoid the scores in branches from converging
to the same or similar values, resulting in poor patch diversity, we
introduce a diversity loss to penalize mutually similar patch pairs,
such as those with high cosine similarity:

L38E =
1

⌫ 2

⌫’
8=1

 ’
A ,B=1

h?8,A , ?8,B i
k?8,A kk?8,B k

, (9)

where h·, ·i is the inner product and k·k is the ✓2 norm. However, the
diversity loss may distract the patch sampler away from its original
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objective. To cope with it, we introduce a weight W1 to control the
degree of patch diversity, and de�ne the total loss function for the
patch sampler as

LB4; = L2>=5 + W1L38E . (10)

4.3 Patch Logit Distillation
Patch logit distillation intends to utilize selected patch features
for knowledge distillation. However, directly passing patch-level
information would disturb image-level feature learning due to the
distribution discrepancy between images and patches. For example,
patch features can interfere with the batch statics in the classi�er
q and then further a�ect the training of the whole model.

Instead of using a shared classi�er q , we employ a separate
patch classi�er q? to predict logits from patch features and distill
knowledge from the old model. The distillation loss for all patches
within a mini-batch is calculated as

L%!⇡ =
1
⌫ 

⌫’
8=1

 ’
A=1

KL
⇣
f (q> (?>8,A )/g)

�� f (q? (?8,A )/g)⌘ . (11)

Since the patches are selected to be closer to the previous distribu-
tions, patch logit distillation is less a�ected by the distribution shift
and thus more e�ective. When performing together with image-
based distillation, it also helps retain more detailed knowledge
about local cues.

4.4 Patch Relation Distillation
Relation distillation is also utilized to preserve high-order knowl-
edge beyond class scores. The intuition is that knowledge can be
complementarily represented by feature relations beyond individ-
ual features [42], which is in line with the task goal of person ReID
(namely matching images for the same identity). While its power
in lifelong learning has only recently been explored [8, 58], we take
a step further by distilling on patch relations.

Among ⌫ sampled patches within a mini-batch, there are a
small proportion of intra-instance relations that correspond to local
correlations within the image, and numerous inter-instance rela-
tions containing sparse yet valuable global identity information.
Since intra-instance relations are signi�cantly outnumbered, we
propose to handle them separately. Suppose the patch relation is
represented by pairwise feature distance 3 (·, ·), we consider the
following two sets of distances, i.e., all intra-instance distances and
a fraction of inter-instance distances from the same sampler branch:

(8=CA0 =
⌫ÿ
8=1

�
(3 (?8,A , ?8,B ),3 (?>8,A , ?>8,B ))

�� A , B 2 [1 . . ], A < B
 
,

(8=C4A =
 ÿ
A=1

�
(3 (?8,A , ? 9,A ),3 (?>8,A , ?>9,A ))

�� 8, 9 2 [1 . . ⌫], 8 < 9
 
.

(12)
It is desirable for the current model to be consistent with the old
one in these distances, so we adopt a Huber loss ;X to penalize the
di�erence between each distance generated by the two models:

L%'⇡ =

Õ
;X (38=CA0 � 3>8=CA0)

|(8=CA0 |
+

Õ
;X (38=C4A � 3>8=C4A )

|(8=C4A |
, (13)

Table 1: Dataset statistics of the LReID benchmark [46]. Since
the sampling procedure results in the numbers of train IDs
being all 500, the original numbers of IDs are listed for com-
parison. ‘-’ denotes that the dataset is not used for training.

Type Dataset Scale #train IDs #test IDs

Seen

Market-1501 [73] large 500 (751) 750
CUHK-SYSU [64] mid 500 (942) 2900
DukeMTMC-reID [48] large 500 (702) 1110
MSMT17_V2 [61] large 500 (1041) 3060
CUHK03 [32] mid 500 (700) 700

Unseen

VIPeR [16] small - 316
PRID [22] small - 649
GRID [39] small - 126
i-LIDS [74] small - 60
CUHK01 [31] small - 486
CUHK02 [30] mid - 239
SenseReID [70] mid - 1718

where (38=CA0,3>8=CA0) 2 (8=CA0 and (38=C4A ,3>8=C4A ) 2 (8=C4A . Since
the intra-instance and inter-instance terms contribute equally to the
distillation loss, both intra-instance and inter-instance relational
knowledge are preserved during training.

The �nal loss function for our framework is

L = L10B4 + LB4; + W2L%!⇡ + W3L%'⇡ , (14)

where W2 and W3 are hyperparameters to balance the contributions
of patch logit distillation and relation distillation, respectively.

Remarks. The patch sampler, the patch classi�er and the patch
relation distillation module are employed only to regularize the
training of the ReID model and do not participate in the model
inference during testing. Therefore, the extra computational over-
head brought by our framework stays in the training stage and does
not a�ect testing.

5 EXPERIMENTS
5.1 Datasets and Evaluation Metrics

Datasets. We conduct extensive experiments on the LReID bench-
mark [46]. It consists of twelve ReID datasets, including �ve seen
datasets (Market-1501 [73], CUHK-SYSU [64], DukeMTMC-reID [48],
MSMT17_V2 [61] and CUHK03 [32]) for non-forgetting evaluation
and seven unseen datasets (VIPeR [16], PRID [22], GRID [39], i-
LIDS [74], CUHK01 [31], CUHK02 [30] and SenseReID [70]) for
generalization evaluation. Note that CUHK-SYSU is a person search
dataset, so we follow the procedure in [46] by �rst cropping the
images using the ground-truth person bounding box annotation
and then selecting a subset of identities with more than 4 bounding
boxes. To mitigate the problem of unbalanced class number among
datasets, we randomly sample 500 identities from each seen dataset
for training. During evaluation, all test datasets are merged into
one benchmark. To sum up, the processed ReID datasets contain
40459 training images of 2500 identities and 9854 testing images of
3594 identities in total. More detailed statistics for these datasets
are provided in Table 1.
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Table 2: Comparison with the state-of-the-art methods on the LReID benchmark. ‘*’ represents the base model in Section 4.1. ‘†’
represents the results reported in [46]. All methods adopt ResNet-50 as the feature-extracting backbone.

(a) Training order-1: Market-1501 ! CUHK-SYSU ! DukeMTMC-reID! MSMT17_V2 ! CUHK03.

Method Market-1501 CUHK-SYSU DukeMTMC-reID MSMT17_V2 CUHK03 Seen-Avg Unseen-Avg

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

Finetune 32.71 58.34 57.99 60.62 25.16 43.81 4.48 13.12 41.33 43.43 32.34 43.86 38.38 34.43
SPD [60] 35.63 61.16 61.70 63.97 27.45 47.13 5.18 15.45 42.17 44.29 34.43 46.40 40.38 36.57
LwF [34]* 56.27 77.11 72.86 75.14 29.59 46.45 5.99 16.55 36.10 37.50 40.16 50.55 47.16 42.57
CRL [69] 58.04 78.18 72.51 75.10 28.29 45.15 6.00 15.81 37.39 39.79 40.45 50.81 47.76 43.47
AKA [46]† 51.2 72.0 47.5 45.1 18.7 33.1 16.4 37.6 27.7 27.6 32.3 43.1 44.3 40.4
AKA [46] 58.05 77.43 72.52 74.83 28.65 45.15 6.13 16.22 38.66 40.43 40.80 50.81 47.60 42.63
Ours 68.47 85.72 75.59 78.59 33.77 50.40 6.49 16.96 34.11 36.79 43.69 53.69 49.09 45.42

JointTrain 68.12 85.24 81.35 83.83 60.36 75.72 24.57 48.87 42.74 43.57 55.43 67.45 49.82 46.29

(b) Training order-2: DukeMTMC-reID! MSMT17_V2 ! Market-1501 ! CUHK-SYSU! CUHK03.

Method DukeMTMC-reID MSMT17_V2 Market-1501 CUHK-SYSU CUHK03 Seen-Avg Unseen-Avg

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

Finetune 26.12 45.74 3.31 10.30 29.12 54.10 57.20 60.03 40.34 40.93 31.22 42.22 36.10 32.04
SPD [60] 28.54 48.47 3.67 11.51 32.26 57.36 62.06 64.97 43.00 45.21 33.90 45.51 39.82 36.31
LwF [34]* 42.71 61.67 5.06 14.33 34.42 58.58 69.93 73.00 34.08 34.14 37.24 48.35 43.95 40.10
CRL [69] 43.47 63.11 4.81 13.69 35.03 59.77 70.01 72.79 34.49 36.79 37.56 49.23 45.28 41.43
AKA [46]† 32.5 49.7 - - - - - - - - - - 40.8 37.2
AKA [46] 42.22 60.14 5.40 15.14 37.20 59.77 71.24 73.90 36.92 37.86 38.60 49.36 46.00 41.72
Ours 58.27 74.10 6.39 17.39 43.18 67.40 74.52 76.90 33.66 34.79 43.20 54.11 48.60 44.12

JointTrain 60.36 75.72 24.57 48.87 68.12 85.24 81.35 83.83 42.74 43.57 55.43 67.45 49.82 46.29

In order to simulate real-world lifelong learning scenarios with
arbitrary domain order, we investigate two representative training
orders used in [46]. Let training order-1 and order-2 represent
Market-1501! CUHK-SYSU! DukeMTMC-reID!MSMT17_V2
! CUHK03 and DukeMTMC-reID!MSMT17_V2!Market-1501
! CUHK-SYSU! CUHK03, respectively.

Evaluation metrics. We use mean Average Precision (mAP) and
Rank-1 accuracy (R1) to evaluate the performance on each ReID
dataset. Moreover, the average performance on both seen datasets
and unseen datasets are calculated as measures of non-forgetting
performance and generalization ability, respectively.

5.2 Implementation Details
We utilize a ResNet-50 [17] pretrained on ImageNet [50] as the
feature extractor. Note that the last stride is set to 1 as suggested
in [40]. Following [46], the model is trained for 50 epochs with 150
iterations per epoch using an Adam optimizer [27]. The learning
rate is set to 3.5 ⇥ 10�4 initially and decays by ⇥0.1 at 25th and
35th epochs. The batch size is set to ⌫ = 128. In speci�c, each batch
is composed of 32 identities and 4 images per identity. The input
images are resized to 256 ⇥ 128 with data augmentations including
random cropping, horizontal �ipping and erasing. For the patch
sampling step, patch features are sampled from the last feature map

of size 16 ⇥ 8. The scorer for predicting sampling probabilities is a
two-layer perceptron with 4096 hidden units.

We follow Zhao et al. [69] to set the loss weight W0 = 1 and
the temperature g = 2. The number of patches per image and the
remaining loss weights are empirically set as  = 3, W1 = 0.5,
W2 = 0.1 and W3 = 100. We provide sensitivity analysis of newly
introduced hyperparameters  , W1, W2 and W3 in Section 5.4. The
whole architecture is implemented with PyTorch [43] and trained
on single NVIDIA 2080 Ti GPU. During evaluation, the retrieval
result is computed based on the Euclidean distance of image-level
features, following the practice in [46].

5.3 Comparison with State-of-the-Art
In this section, we compare our method to �ve lifelong learning
methods that do not rely on exemplar memory: Finetune, SPD [60],
LwF [34], CRL [69] and AKA [46]. Finetune denotes �ne-tuning
model on new datasets without knowledge distillation. SPD is an
advanced feature distillation method. LwF, CRL and AKA are com-
petitors based on logit distillation. For a fair comparison, these
methods are reproduced with the same backbone and the same
ReID loss consisting of cross-entropy loss and triplet loss, except
AKA which uses its proposed plasticity loss instead of triplet loss.
We summarize the �nal result of each method on the LReID bench-
mark in Table 2. We also report the upper-bound for each setting
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(a) Training order-1 (b) Training order-2

Figure 4: Evolution of non-forgetting performance on the �rst seen dataset during training process.

(a) Training order-1 (b) Training order-2

Figure 5: Evolution of generalization ability on unseen datasets during training process.

estimated by JointTrain, where all data from all steps are assem-
bled in advance for joint training once. The number of epochs for
JointTrain is set to 250 to match the total training time.

Non-forgetting performance on seen datasets. Table 2 shows that
on seen datasets, we improve the average mAP of state-of-the-art
methods by 2.89% and 4.60% under training order-1 and order-2,
respectively. In particular, on the Market-1501 dataset, the perfor-
mance gap to the upper-bound in terms of mAP is almost eliminated
(v.s. previous best with a gap of 10.07%) under training order-1 and
narrowed from 16.89% to 2.09% under training order-2. Note that
models with strong regularization to mitigate catastrophic forget-
ting usually have limited adaptation ability, i.e., weak performance
on subsequent datasets, while our method strikes a balance between
non-forgetting and adaptation, thereby achieving competitive re-
sults on most seen datasets. Figure 4 illustrates the mAP and R1
curves on the �rst seen dataset after each training step. It can be
seen that the forgetting of our method is moderate, and the per-
formance is signi�cantly better than that of alternative methods.
This demonstrates that our method is e�ective for alleviating cata-
strophic forgetting in lifelong person ReID.

Generalization ability on unseen datasets. As shown in Table 2,
our method outperforms the state-of-the-art method AKA on un-
seen datasets under both training orders. Speci�cally, we improve
the average mAP by 1.49% under training order-1 and 2.60% under
training order-2, further approaching the upper-bound. Figure 5
depicts the trend of average mAP and R1 on all unseen datasets

Table 3: Ablation study of the patch sampler.

Method Seen-Avg Unseen-Avg

mAP R1 mAP R1

Base model 40.16 50.55 47.16 42.57
Ours w/o L2>=5 41.94 52.22 47.62 43.57
Ours w/o L38E 42.90 52.60 47.71 43.60
Ours w/o multi-branch 43.13 52.79 48.32 43.67
Ours 43.69 53.69 49.09 45.42

during training process. We can observe that our method achieves
the overall best performance. While some methods without distil-
lation loss or with weaker distillation loss such as FineTune and
CRL outperform us in the early steps, they fail to continuously
improve their generalization ability. In contrast, our method shows
consistent improvement over time.

5.4 Ablation Studies
In this section, we conduct experiments under training order-1
to examine the e�ectiveness of each module and the in�uence of
hyperparameters.

E�ectiveness of di�erentiable patch sampler. We introduce a dif-
ferentiable patch sampler with three key components: a con�dence
loss, a diversity loss and a multi-branch design. Here, we analyze
the impact of each component on the �nal performance in Table 3.
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Table 4: Ablation study of patch-based distillation losses. ‘q ’
denotes using a shared classi�er q for patch logit distillation.
‘FC’ represents distilling knowledge of all patch relations in
a uni�ed way.

Losses Seen-Avg Unseen-Avg

L%!⇡ L%'⇡ mAP R1 mAP R1

40.16 50.55 47.16 42.57
q 37.02 48.17 44.44 39.94
X 43.00 52.98 47.91 44.02
X FC 43.54 53.98 48.42 43.47
X X 43.69 53.69 49.09 45.42

It can be seen that the sampler trained without the con�dence loss
yields the second-lowest results only after the base model, suggest-
ing that the guidance from the old model is crucial to our sampler.
The diversity loss and the multi-branch design contribute to the
�nal performance by helping to focus on diverse cues. For example,
the multi-branch design allows each patch to be sampled from a
di�erent distribution, giving it an edge in terms of patch diversity
compared to the sampling without replacement strategy [65] as
previously shown in Figure 3. As a result, the full model is able to
capture various local information and thus obtains the best perfor-
mance.

E�ectiveness of patch logit distillation. Table 4 explores the contri-
bution of each patch-based distillation loss by adding the proposed
losses. We can observe that using a shared classi�er for patch logit
distillation results in undesired performance degradation, while
employing a separate patch classi�er in our formulation yields
better results. This validates our design in handling image-patch
discrepancy. Compared to the base model, patch logit distillation
brings a signi�cant improvement by 2.84% and 0.75% in average
mAP on seen and unseen datasets, respectively, verifying its high
e�ectiveness.

E�ectiveness of patch relation distillation. We compare the pro-
posed patch relation distillationwith amore straightforwardmethod
that distills on entire relations at once. As shown in Table 4, there
is already a noticeable improvement by simply taking all patch rela-
tions into account, which is in linewith the intuition that knowledge
is complementarily represented by feature relationships. Treating
intra-instance and inter-instance relations separately enables our
model to achieve higher overall performance. Particularly, the aver-
age mAP on unseen datasets is lifted by 1.18% on top of patch logit
distillation, indicating that patch relation distillation plays a key
role in improving the generalization ability.

Hyperparameter analysis. In Figure 6, we vary newly introduced
hyperparameters, namely, the number of patches per image  and
the loss weights W1, W2 and W3, to study the sensitivity of our method
to patch complexity, patch diversity and the two patch-based distilla-
tion modules. As shown in Figure 6a, the model produces relatively
lower results when  = 1, since it can not access intra-instance
patch pairs for relation distillation. On the other hand, excessively
increasing patch complexity with a large  also leads to slightly

(a) #patches per image (b) The weight for L38E

(c) The weight for L%!⇡ (d) The weight for L%'⇡

Figure 6: Sensitivity to hyperparameters.

weaker performance. Figure 6b demonstrates that W1 in the range
of [0.5, 1.5] bene�ts the �nal performance by ensuring a certain
degree of patch diversity, while a larger W1 results in performance
degradation as it distracts the patch sampler away from its original
objective. Comparing Figure 6c and Figure 6d, we can observe that
patch logit distillation has a larger impact on the non-forgetting
performance, while patch relation distillation shows a greater in-
�uence on the generalization ability. Overall, the performance of
our method is stable for these hyperparameters over a reasonably
wide interval.

6 CONCLUSION
We address catastrophic forgetting in lifelong person ReID with
the proposed patch-based knowledge distillation framework. It con-
sists of a di�erentiable patch sampler, patch logit distillation and
patch relation distillation. Speci�cally, the patch sampler is trained
to select patches that are less a�ected by distribution shift with
guidance from the old model. Patch logit distillation regularizes
the current model to mimic the old one’s prediction on the selected
patches, while patch relation distillation preserves relational knowl-
edge by imposing consistency constraints on intra-instance and
inter-instance patch distances. Extensive experiments on the LReID
benchmark demonstrate that our method outperforms state-of-the-
art baselines in both non-forgetting and generalization evaluations.
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Appendix

A NETWORK ARCHITECTURE
We summarize the network architectures of the proposed framework in Table 5.

Table 5: Network architectures of our proposed framework. The framework includes a feature extractor, a scorer and a classi�er.

(a) The feature extractor. Its last stride (in conv5_1) is set to 1.

Layer name Input size Output size Feature extractor

conv1 3 ⇥ 256 ⇥ 128 64 ⇥ 128 ⇥ 64 7 ⇥ 7, 64, stride 2

conv2_x
64 ⇥ 128 ⇥ 64 64 ⇥ 64 ⇥ 32 3 ⇥ 3 max pool, stride 2

64 ⇥ 64 ⇥ 32 256 ⇥ 64 ⇥ 32
266664
1 ⇥ 1, 64
3 ⇥ 3, 64
1 ⇥ 1, 256

377775
⇥ 3

conv3_x 256 ⇥ 64 ⇥ 32 512 ⇥ 32 ⇥ 16
266664
1 ⇥ 1, 128
3 ⇥ 3, 128
1 ⇥ 1, 512

377775
⇥ 4

conv4_x 512 ⇥ 32 ⇥ 16 1024 ⇥ 16 ⇥ 8
266664
1 ⇥ 1, 256
3 ⇥ 3, 256
1 ⇥ 1, 1024

377775
⇥ 6

conv5_x 1024 ⇥ 16 ⇥ 8 2048 ⇥ 16 ⇥ 8
266664
1 ⇥ 1, 512
3 ⇥ 3, 512
1 ⇥ 1, 2048

377775
⇥ 3

avg_pool 2048 ⇥ 16 ⇥ 8 2048 global avg pool

(b) The scorer. The number of patches per image  is set to 3.

Layer name Input size Output size Scorer

layer1 2048 ⇥ 16 ⇥ 8 4096 ⇥ 16 ⇥ 8 1 ⇥ 1, 4096, stride 1

layer2 4096 ⇥ 16 ⇥ 8 3 ⇥ 16 ⇥ 8 1 ⇥ 1, 3, stride 1

(c) The classi�er. The class number is set to 2500 according to the LReID benchmark.

Layer name Input size Output size Classi�er

fc 2048 2500 2500-d fc

B PATCH VISUALIZATION
As shown in Figure 7, both the multi-branch design and the diversity loss L38E are essential to ensure patch diversity.

(a) Our method without multi-branch (b) Our method without L38E (c) Our full method

Figure 7: Comparison of sampled patches on the CUHK03 dataset under training order-1. Sampling locations are mapped back
onto the image for better visualization. Note that some patches in (b) are overlapped.
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C PATCH RELATION VISUALIZATION
As demonstrated in Figure 8, patch relations are better preserved with the proposed distillation loss L%'⇡ .
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(a) The model before adaptation

� � �� �� ��

�

�

��

��

��

�������������	

���	���������	

� � �

�

�

�

� � �

�

��

��

(b) Themodel after adaptation using our
method without L%'⇡
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(c) The model after adaptation using our
full method

Figure 8: Comparison of patch feature similarities on the �rst seen dataset under training-order 1. The patches are randomly
sampled from a mini-batch of batch size ⌫ = 8. It can be seen that our full method preserves some key patch relations better
than the method without L%'⇡ .

D PATCH SIZE
The patch size in this paper is adopted as 16⇥ 16 in all experiments. We empirically �nd the size is already su�cient for achieving knowledge
distillation in the person re-identi�caiton task, as demonstrated by the experimental results in Table 2. Intuitively, the stacked convolutions
in the model will gradually enlarge the receptive �eld of each neuron. As a result, even a single neuron (e.g., a neuron corresponding to the
aforementioned 16 by 16 patch) at the topmost layer will admit non-local feature representation. Choosing the right patches is regarded to
be more imporant than using a large patch size.


