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ABSTRACT

Video action segmentation aims to densely cast each video frame
into a set of pre-defined human action categories. This work pro-
poses a novel model, dubbed as diffused Fourier network (DFN)
for video action segmentation. It advances the research frontier by
addressing several central bottlenecks in the existing methods for
video action segmentation. First, capturing long-range dependence
among video frames is known to be crucial for precisely estimat-
ing the temporal boundaries for actions. Rather than relying on
compute-intensive self-attention modules or stacking multi-rate di-
lated convolutions as in previous models (e.g., ASFormer), we devise
Fourier token mixer over shiftable temporal windows in the video
sequence, which harnesses the parameter-free and light-weighted
Fast Fourier Transform (FFT) for efficient spectral-temporal fea-
ture learning. Essentially, even simple spectral operations (e.g.,
pointwise product) bring global receptive field across the entire
temporal window. The proposed Fourier token mixer thus provides
a low-cost alternative for existing practice. Secondly, the results of
action segmentation tend to be fragmented, primarily due to the
noisy per-frame action likelihood, known as over-segmentation
in the literature. Inspired by the recently-proposed diffusion mod-
els, we treat over-segments as noises corrupting the true temporal
boundaries, and conduct denoising via a recurrent execution of a
parameter-sharing module, akin to the backward denoising process
in the diffusion models. Comprehensive experiments on three video
benchmarks (GTEA, 50salads and Breakfast) have clearly validated
that the proposed method can strike an excellent balance between
computations / parameter count and accuracy.
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Figure 1: The accuracy-complexity trade-offs for various
video action segmentation models. The ones closer to the
upper-left and with smaller radius (i.e., fewer parameters)
are more favored. Our proposed model is diffused Fourier
network (DFN).
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1 INTRODUCTION

Automatically segmenting human actions in video sequences is
essential for many applications, such as video surveillance [11],
robotics [20, 61], and future prediction for sequential data [47].
However, this task remains challenging due to the tremendous vari-
ations in the visual appearance and temporal dynamics of videos.
Developing fast and accurate methods for temporal action segmen-
tation is still an active research topic in computer vision.

In recent years, multi-stage dilated convolutional networks [15,
17, 37, 45] with non-local interactions such as self-attention [62,
67], hierarchical representations [1, 54], grammar [47] or graph
structures [18, 26, 70] have shown promising results in temporal
action segmentation. However, most of the state-of-the-art methods
suffer from high computational cost (e.g., quadratic time complexity
of self-attention modules) or diminishing returns of adding more
learnable parameters (e.g., stacked dilated convolutional layers),
which limits their practical applications. As such, it is strongly
needed for developing light-weight backbone networks that strike
a trade-off between computational cost and accuracy, particularly
for long-duration or high-frame-rate videos. Figure 1 calibrates
such trade-offs for a variety of related models.

We here propose a novel model, dubbed as diffused Fourier net-
work (DFN) for video action segmentation. The proposed model
is inspired by recent development along both spectral neural net-
works and diffusion-based generative models. Figure 2 shows the
architectural design of DFN. As seen, one of the defining features
of DFN is the Fourier-based token mixer. It efficiently captures
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Figure 2: The pipeline of diffused Fourier network (DFN). It adopts
stacked multi-scale blocks and Fourier token mixer to efficiently
extract visual features, and a multi-stage denoising process to predict
the labels for all video segments.

long-term temporal dependencies along different spectral frequen-
cies by taking advantage of the Convolution theorem [29]. Specifi-
cally, we use a sliding window to divide the video sequence into
non-overlapping windows and apply a Fourier transform to each
window. The Fourier coefficients are used as tokens that can be
mixed by spectral convolution and non-linear activation, rather
than standard compute-intensive self-attentions. Compared to the
self-attention module, the Fourier-based token mixer requires sig-
nificantly fewer parameters and computations, making it more
practical for real-world applications.

Another distinguishing trait of DFN is the utilization of multi-
stage diffusion-based blocks. Over-segmentation is a notorious
challenge in video action segmentation, referring to the undesired
fragmented action segments primarily caused by noisy frame-level
likelihood across action categories. DFN progressively refines the
initial over-segmentated predictions via a denoising process, guided
by the diffusion time embeddings and the diffusion coefficient pa-
rameters. This allows the model to focus on local cues and suppress
the noise in action predictions, resulting in smoother and more
accurate action boundaries. In addition, the entire diffusion process
was divided into multiple stages, either conditioned or not by the vi-
sual inputs, as shown in Figure 2. The unconditional diffusion stage
forces the model to seek cues from the prior regularity from general
human action sequences, while the conditional diffusion stages fur-
ther improves over-segmented prediction through denoising under
visual information. Additionally, the multi-stage diffusion models
are able to share parameters and raw visual features across time
steps, which can further help reduce the number of parameters and
computational complexity of the model, making it more efficient
and scalable.

We empirically evaluate the proposed method on three standard
datasets for video action segmentation, including GTEA [16], 50sal-
ads [58] and Breakfast [31]. The experimental results consistently
show that, while demanding significantly lower computational cost
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and fewer parameters, the proposed DFN can still achieve superior
or comparable performances compared with its state-of-the-art
competitors. Comprehensive ablation investigations also validate
the effectiveness of the multi-stage diffusion module for mitigating
over-segments, and the Fourier-based token mixer in capturing
long-range temporal dependencies. All above make DFN a promis-
ing solution for real-world applications that require efficient and
accurate human action segmentation.

2 RELATED WORKS

Video action segmentation. Early approaches for action segmen-
tation are based on detecting motion boundaries [42, 50], sliding
windows [12, 69], or grammar representations [5, 41, 44, 55, 64]
such as hidden Markov models (HMM) [48] and conditional random
fields (CRF) [59]. Recently, deep neural networks with temporal con-
volutions [15, 32, 45] have made great success on densely labeling
general human activities. Meanwhile, methods exploring different
high-level representations, such as human-designed rules [1, 27],
self-attention mechanism [62, 67], sequence translation [4] or graph-
based embeddings [18, 26, 70], also perform remarkably well. How-
ever, considering the complex high-order temporal correlation in
videos, modern models for video action segmentation continue to
become more heavy-weighted in terms of parameters and time com-
plexity. In particular, the over-segmentation issue is usually solved
by stacking many refining modules [37, 45] or through dynamic
smoothing [63], incurring the increase of model parameters and
computational cost. Some prior works [4] directly predict the ac-
tion sequence to avoid using inefficient refinement modules, while
ETSN [38] tackles this issue by efficiently capturing semantic fea-
tures and unsupervised refinement. Different from above methods,
we provide a low-cost alternative by computing in some spectral
domain, and alleviate the over-segmentation errors by multi-stage
diffusion models.

Denoising diffusion models. Diffusion models [23] initially emerged
in vision tasks for content generation, and more recently gain its
popularity in. some other non-generative vision tasks, such as image
classification [71], panoptic segmentation [2, 9], object detection [8],
instance segmentation [19], and video recognition [25]. Different
from the feedforward-style data flow in traditional deep neural
networks, the stochastic denoising process in diffusion models en-
tails a diversity-encouraging generative model. Aforementioned
methods leverage conditional (rather than the original uncondi-
tional variant) diffusion process [57] to gradually get rid of the
noise that contaminates the data, guided by some reference infor-
mation (e.g., the encoding of the input image or text-enforced target
semantics). Inspired by the iterative diffusion frameworks in image
super-resolution [24, 52], we propose a cascaded diffusion network
that combines both unconditional and conditional diffusion stages
for action segmentation, which regards over-segmentation errors
as undesired noises and accordingly reformulates the problem.

Spectral neural networks. Learning feature representation in
some spectral domain (e.g., those induced via Fourier or wavelet
transforms) is recently attracting much research enthusiasm owing
to the non-local essence inherited from the spectral transform.
Existing works have explored the hybrid use of spatial, temporal
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and spectral information [10, 34, 65, 66]. For example, Fast Fourier
Convolution [10] proposed to mix the spatial-temporal and spectral
weights to efficiently capture global and local dependencies in
parallel. AutoFormer [66] devised an auto-correlation mechanism
to capture the series-wise temporal dependencies based on the
learned periods. FNet [34] provided an “efficient transformer” of
simpler token mixing mechanisms by constantly switching between
temporal and spectral domain. TimesNet [65] extended the analysis
of temporal variations into the 2D space under the observation of
multi-periodicity in time series. In this work, we propose Fourier
token mixer to jointly enhance the temporal and spectral features
sequentially, which supposedly introduce such inductive bias that
can improve the performance of temporal action segmentation.

3 THE PROPOSED METHOD

3.1 Preliminaries

We denote a RGB video sequence as V = {vt}tT:1 € REXWX3XT,

where v; represents the video frame at time ¢, with a spatial res-
olution H x W . Let X = {x,f}tT:1 € RE*T be the sequence of
feature maps extracted from V using a pre-trained backbone net-
work(e.g., I3D [6] or ViT [13]), where C is the dimension of fea-
tures. We define the ground-truth category of V as a sequence
Yo = {yt}tT:1 € {0, 1}XXT where y; represents a one-hot vector at
time ¢ and K indicates the total number of categories.

Diffusion models [23] aim to generate samples from Gaussian
noises via bi-directional processes: diffusion process (add noises)
and denoising process (remove noises). Specifically, diffusion pro-
cess adds Gaussian noises step by step from the real sample sy ~
q(s) to generate s, ..., spr, which can be formulated as:

q(silsi-1) = N (si; V1 = fisi—1, fil), (1)
where N denotes the normal distribution and f; is user-settable
variance schedule. And

M
q(smlso) = | [ qsilsiz). )
i=1

On the other hand, the denoising process removes the noises
step by step from a pure Gaussian noise sy; ~ N'(0,1) to generate
so by a parameterized distribution pg, which can be formulated as:

M
poCsom) = psm) | | po(si-1lsi), ®)

i=1
with the variational assumption below:
polsi-tlsi) = N(si-1; pg(si, ), Zg (si, 1)) 4)

The seminal DDPM model [23] proposed to fix Zg(s;, i) to a con-
stant value aizl determined by f;, and rewrite pg(s;, i) as a function
of the estimated noise zg(s;, i), or a function of $g(s;, i) ~ so. Take
Sp(si, i) as an example:

\/_( —Qj-1)si + \/—_(1 — ai—1)3(si, l)

1-a;

Hg(si i) = (5)
where o; = 1-f, a; = H;'Czl ay. and Sy is an output of a neural net-
work, such as RNN [43], LSTM [53] or U-Net [49]. During inference,
s; is denoised by predicted Sg step-by-step and finally generate sp.
As described above, the parameterized distribution py only generate
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Figure 3: Illustration of the proposed multi-stage diffusion model
pipeline. The overall framework contains an ordinary diffusion
process and a cascaded multi-stage denoising process. There are two
heterogeneous ingredients during denoising: an unconditional stage
and several conditional stages. The unconditional stage denoises
from pure noise using the priors from data, while the conditional
stages do the rest job conditioned on the output X of Visual Feature
Encoder (VFE). See the main text for more details.

si—1 by the current noised sample s; and step index i at each step.
Moreover, several vision tasks such as super-resolution [24] or text-
image generation [51] are also interested in learning conditional
distribution pg(s|x).

3.2 Cascaded Multi-Stage Diffusion Networks

As shown in Figure 3, a cascaded multi-stage diffusion (MSD) tem-
poral network is designed to efficiently predict action segmentation
sequences. The first stage is an unconditional denoising process
that learns a prior distribution of actions over the full videos from
the training data. The remaining stages use the results generated
in previous stage as a reference template and adds visual features
as extra conditions for further denoising to generate the final seg-
mentation. Similar to the traditional diffusion models, the goal of
MSD is also to recover the input from the noise: it regards Yy as so
and performs both the diffusion process and the denoising process.
However, the Gaussian noises can not be applied to discrete one-hot
vector sequence Yo. To map the discrete vectors into the real field,
we choose the modified inverse function g of softmax, which is
formulated as:

g(x) = (1 —x)log(x + €) + xlog(x — (K — 1)¢), x € {0, 1 (6)

where € is a hyper-parameter to prevent value explosion. The
mapped Y is also known as “logits®. For brevity, we omit all the g
in the formula below. Then the diffusion process can be formulated
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as:
q(YilYi-1) = N(Yi; Vi Yioq, (1 — ap)D), (7
where a; =1 - f; and
M
g(YimlYo) = [ | a(¥ilYiz1), ®

i=1

which is the same as Equation 1. The denoising process of MSD
also uses parameterized py to estimate distribution, but it is slightly
different from the traditional diffusion models. Specifically, MSD
adopts cascaded multi-stage denoising. The first stage does not read
visual features as its conditions, while the remaining stages are
conditioned on the visual features. In implementation, we achieve
this by setting the visual information of each step as:

: !

x-{ % i ®
where M’ € {0,1,...,M — 1} is a hyper-parameter to control the
number of steps on unconditional stages. Formally, we have the
definition of parameterized distribution py in MSD:

M
po(YomlX) = p(Ya) | | po(Yim11¥i, X0), (10)
i=1
where
po(Yi—1IYi. Xi) = N(Yi1; pig(Yi. i, Xi), o71), (11)

and pg(Y;, i, X;) is rewritten as a function of the estimated Y,
which is formulated as:

Vai (1= @i—1)Y; + Vai (1 - ai—1)Yo(Yi,1,X;)

Yii. X)) = -
po(Yi,1,X;) 1-g

(12)
In above formula, a; = H;C:l ay and ?Q(Yi, i,X;) is generated
by a simplified temporal neural network f(0;Y;, i, X;), which is
optimized by a mean squared loss:

L=1f(6;Y1,,X:) = Yol[*. (13)

For accelerating, the denoising diffusion implicit model (DDIM) [56]
is also used during training and inference.

The idea underlying MSD is to divide the denoising process of
the diffusion model into several stages. The first stage of the net-
work starts with pure random Gaussian noise. Since there is no
visual information as a condition, this part of the parameters is
forced to learn the prior knowledge from the training data, and
also avoids confusion in visual features, such as motion blur or
over-fitting features, etc. In the remaining stages, MSD refines the
action segmentation results generated by the preivous stage by
incorporating visual features as conditions. With the assistance
of visual features, the network moves towards a more accurate
estimate of the action segmentation sequence during the diffu-
sion process. Moreover, the segmentation becomes progressively
smoother and closer to the true distribution as more information
is propagated by multiple stages. It has been proved in previous
works [37, 45, 67] that such structure of multi-stage refinement
can effectively solve the problem of over-segmentation. However,
such refinement modules often suffer from overfitting or the input
distribution misalignment, thus networks designed to be recurrent
by simply stacking or sharing their weights usually perform poorly,
which is discussed in the Section 4. Unlike these networks, diffusion
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Figure 4: Architectural design of neural blocks (a) with Fourier
token mixer (b). In (a), a basic block contains a temporal feature ex-
tractor, a Fourier token mixer, and a multi-layer perceptron (MLP),
which aggregate temporal and spectral features sequentially with
some residual connections. In (b): Temporal features are firstly trans-
formed tothe spectral domain through linear dimensional reduction
and window-based Fast Fourier Transformation (FFT). Then, the
spectral convolution with ModReLU activation mixes all tokens of
each sliding window. Finally, after the inverse FFT and MaxPooling,
the features are restored to the original dimension by another linear
transformation.

models regards such refinement as multi-step denoising process,
which can save a lot of parameters while continuously refining and
smoothing the generated segmentation results.

3.3 Fourier Token Mixer

The self-attention module in transformer models is computationally
expensive, making it difficult to be optimized on long sequences.
Previous works [34, 39, 68] have made great efforts on exploring
the alternatives of the self-attention mechanism. These methods
experiment with various light-weighted operators to mix tokens
instead. However, like traditional transformers, all of them are de-
signed for fixed-length inputs, which limits their ability to capture
multi-scale dependencies in long-duration videos. For this reason,
we here propose to divide the whole sequence into non-overlapped
multi-scale windows and adopt efficient operations (e.g., pointwise
product) in some spectral domain for capturing multi-scale global
dependencies. Different from the traditional self-attention mech-
anism via sliding window [67], this approach does not face the
trade-off between the size of the receptive field and the computa-
tional cost, since the larger window sizes of self-attention requiring
the exponentially computational costs. We term the proposed new
module as Fourier Token Mixer, which is inserted into the pipeline
as a neural block, shown in Figure 4.

Formally, supposed that x is the input feature of a module, the
temporal feature-extracting module is formulated as:

fl(x) = og(norm(x) - W"), (14)
where norm refers to the Instance Normalization [60]. W is a tem-

poral dilated convolution [7] with kernel size = 3, o is the GELU
activation [22]. Like most temporal networks [15], this module
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relies on stacking of multi-scale residual blocks to extract long de-
pendencies, while self-attention mechanism makes the model more
effective in solving global and local aggregation. However, mining
the intrinsic relationships of spectral features is a more effective way
to mix tokens. According to the Convolution Theorem [29], updat-
ing a single value in the spectral domain globally affects all original
data, enabling the Fourier Token Mixer to cope with long temporal
dependencies. Compared to self-attention mechanism, Fourier To-
ken Mixer only requires O(Ilog!) complexity for mixing I tokens,
instead of O(I%). However, the long time segmentation still needs
window-based mechanism to further decrease the computational
costs. Inspired by the strategy proposed in SwinTransformer [40],
the temporal sequence is divided into non-overlapping windows,
while enabling the interaction of all tokens by shifting. We also
adopt this strategy and achieve an O(T log!) complexity for each
token mixer layer compared to O(TI) in ASFormer [67], where
I denotes the window size. As shown in Figure 4(b), the Fourier
Token Mixer is formulated as:

Fx) = h(F om(F(x) - W*))), (15)

where #(-) and F~1(-) indicate Fourier transformation and its
inversion, respectively. W¥ is a group of complex parameters to
make inner product in the spectral domain. A(-) is a function for
feature aggregation, such as MaxPooling, and oy indicates the
ModReLU activation [3], which is formulated as:

{ (|z|+b)é, |z| +b >0,
M:

16
0, 2] +b < 0. (16)

For the sake of conciseness, the linear transformations for dimen-
sion reduction and dimension lifting are omitted in Equation 15.
Finally, we use a multi-layer perceptron (MLP) to aggregate the
global and local information, which is formulated as:

fie(x) = x +MLP(f (x) + £ (L (0), 17)
where k indicates the k-th block. It is worth noting that the spectral
branch simply use the features from temporal branch, which is dif-
ferent from the aggregating in parallel of Fast Fourier Convolution
(FFC) [10]. This is because sequential aggregating mechanism can
enable the model to use fewer blocks to obtain larger receptive
field. Moreover, this neural block dominated by temporal feature
extraction modules involves more inductive bias, which is supposed
to be helpful for the temporal action segmentation task. As a result,
the Fourier token mixer is able to capture global dependencies with
fewer parameters and lower computational complexity compared
with the self-attention-based models. Moreover, the multi-scale
window size and fusion strategy allow our model to capture the
relationship between tokens at different scales and frequencies,
making it better suited for the task of temporal action segmenta-
tion in long-duration videos. This is crucial, as the prominence of
multi-scale actions is a key challenge in long-duration videos.

4 EVALUATIONS
4.1 Experimental Setup

Implementation details. We implement our model using Py-
Torch [46], and all experiments are executed on a machine with an
NVIDIA GeForce GTX Titan X GPU. We use Adam optimizer [30]
with a learning rate of 0.0005 and batch size of 1. The whole DFN
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pipeline contains two parts: the Visual Feature Encoder (VFE) and
the Multi-Stage Diffusion (MSD). VFE is a multi-stage temporal net-
work with the stacked Fourier Token Mixer blocks, namely Fourier
Network (FN). We adopt totally 5 blocks per stage and set the di-
lation of temporal convolution to 4k for each block k, while the
window size is 4<*1 + 1 for Fourier token mixer. MSD is a denoising
diffusion model with M = 100 steps, which are divided into multiple
stages during the denoising process. The parameters are shared in
the same stage. In function g, € is set to 0.001.

Datasets. The evaluation results are based on 3 popular datasets:
Georgia Tech Egocentric Activities (GTEA) [16], 50salads [58] and
the Breakfast dataset [31]. The GTEA dataset contains 7 types of
daily activities, each performed by 4 different subjects with 11 action
classes including background. GTEA only has meta actions such as
take, put or open, etc. Each video contains about 600 to 1000 frames
at 15 fps. It will perform official 4-fold cross-validation and report
the average results for evaluation. The 50salads dataset captures
25 people preparing two mixed salads each and contains over 4h
of annotated accelerometer and RGB-D video data with 19 action
classes including action start and action end. Each video contains
about 20 actions and about 4000 to 9000 frames at 15 fps. In the
experiments, only RGB features extracted from I3D networks [6]
are used. It will perform official 5-fold cross-validation and report
the average results for evaluation. The Breakfast dataset is among
the largest dataset for action segmentation task, which has 1,712
videos of cooking breakfast in the kitchen environment with a
overall duration of 77h. It has 48 different actions including SIL and
will perform official 4-fold cross-validation and report the average
results for evaluation.

Evaluation metrics. For all the dataset, the following evalua-
tion metrics are reported: frame-wise accuracy, the segmental
edit score, and the segmental F1 scores at temporal intersection
over union (tIoU) thresholds of 0.10, 0.25 and 0.50, denoted by
F1@{0.10, 0.25,0.50}. The number of the parameters(#) and compu-
tational complexity — Giga Floating-point Operations Per Second
(GFLOPS) are also discussed in this paper.

4.2 Comparison with State-of-the-art

We compare the proposed cascaded DFN with state-of-the-art meth-
ods on three datasets. The detailed results are shown in Table 1.
It has two parts: methods in the upper table is mainly based on
the I3D [6] features, and the methods in the lower part is based
on the Br-prompt [36] features. Since most of the methods is nei-
ther open-sourced nor provide specific statistics of parameters or
computations, it is difficult to make comparisons with completely
identical settings. Therefore, DFN gives priority to keeping the
lowest parameter amount and computational complexity compared
to all existing methods. As seen, without large model size or lots of
computation, DFN still achieves competitive results, which makes it
more likely to be the solution for real-world applications requiring
efficient and accurate human action segmentation.

4.3 Ablation Studies

Fourier token mixer vs. self-attention: To evaluate the effective-
ness of Fourier token mixer, we compare it with the self-attention
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Table 1: Evaluation results of action segmentation methods on three datasets. Score in bold indicates the best performance.

50salads GTEA Breakfast

F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc F1@{10,25,50} Edit  Acc
DTCN [32] 522 47.6 374 431 59.3 - -
ST-CNN [33] 559 49.6 37.1 45.9 594 58.7 544 419 - 60.6 -
TResNet [21] 69.2 65.0 544 605 660 74.1 699 57.6 644 658 -
TRN [35] 70.2 65.4 56.3 63.7 66.9 77.3 71.3 59.1 72.2 67.8 -
TDRN [35] 729 68,5 572 66.0 68.1 79.2 744 627 741 70.1 -
ED-TCN [32] 68.0 639 526 598 647 722 693 56.0 - 64.0 - 43.3
BCN [63] 823 813 740 743 844 885 87.1 773 844 798 68.7 655 550 662 704
ASREF [27] 849 8.5 773 793 845 894 878 798 837 773 743 689 56.1 724  67.6
HASR [1] 86.6 8.7 785 81.0 839 89.2 872 748 845 769 747 695 570 719 694
ETSN [38] 852 839 754 788 820 91.1 90.0 779 86.2 782 740 690 562 703 67.8
G2L [17] 803 78.0 698 734 822 899 873 758 846 785 763 699 546 745 708
MS-TCN [15] 763 740 645 679 80.7 858 834 698 790 763 526 48.1 379 61.7 663
MS-TCN++ [37] 80.7 78,5 70.1 743 837 888 8.7 760 835 80.1 64.1 58.6 459 65.6 67.6
UVAST [4] 89.1 87.6 81.7 839 874 927 913 81 921 80.2 759 70.0 57.2 765 66.0
DPRN [45] 87.8 8.3 794 82.0 872 929 920 829 909 820 756 705 57.6 751 71.7
EUT [14] 89.2 875 810 829 874 882 872 740 839 770 762 71.8 598 750 74.6
CETNet [62] 87.6 8.5 80.1 817 869 918 912 813 879 803 793 743 619 77.8 749
ASFormer [67] 85.1 834 760 796 856 90.1 88.8 79.2 846 797 760 706 574 750 735
DEN (I3D [6]) 857 840 77.9 812 869 923 917 814 901 8L5 784 749 635 768 75.0
ASFormer [67](Br-prompt [36]) 89.2 87.8 813 838 881 941 920 830 916 812 -
DFN (Br-prompt [36]) 894 884 824 839 882 960 939 88.1 940 84.2 -

Table 2: Ablation study of self-attention (SA) and Fourier
token mixer (FTM) based on ASFormer [67] baseline on the
GTEA datasets. ‘Order’ indicates the order of feature aggre-
gation in FTM; ‘), °s’, ‘m’ indicate temporal feature extractor,
spectral feature extractor and multi-layer perceptron, respec-
tively, ’+’ means the concatenation in parallel, while ” means
the sequential aggregation; ‘SA~’ indicates the ASFormer
with self-attention with half the number of layers and dou-
bled the base (2 — 4%), which is the same as FTM-based
networks.

Param. Orders F1@{10,25,50} Edit Acc
SA 1.13M t.t.m 941 920 830 916 81.2
SA™ 0.55M t.t.m 92.7 918 825 904 81.1
0.48M m.t.s 935 923 856 91.0 828
FIM 0.48M s.t.m 91.7 895 794 88.6 81.2
0.49M t+sm 928 916 814 90.9 83.0
0.48M t.s.m 94.5 93.1 86.8 93.4 83.5

mechanism in ASFormer [67] on Br-prompted [36] visual features.
As shown in Table 2, the Fourier Network (FN) (i.e., with Fourier
token mixer) with fewer parameters and lower computational cost
achieves better performance than the one with self-attention mech-
anism, indicating that it is better suited for the task of temporal
action segmentation. It is worth noting that compared with the self-
attention baseline (ASFormer [67]), FN still has a large improvement
with half the number of layers by doubled the atrous rates, which
proves the effectiveness of spectral calculations. Furthermore, we

Table 3: Ablation study results of the number of blocks with
Fourier token mixer based on ASFormer [67].

(#) blocks Param. GFLOPS F1@{10,25,50} Edit Acc
2 0.26M 0.31 893 875 79.2 831 80.0
5 0.48M 0.58 945 93.1 86.8 934 835
8 0.71M 0.85 95.8 934 87.0 93.8 83.9
10 0.89M 1.04 96.0 935 87.2 938 837

investigate the optimal mixing order of spectral features with tem-
poral features in our proposed network, as shown in Table 2. The
conclusion is that mixing spectral features with temporal features
in the sequential order can further improve performance in tempo-
ral segmentation tasks. In addition, the experimental results show
that the inductive bias introduced in Temporal Feature Extractors
is important for achieving good performance. It is reasonable be-
cause inductive bias allows the model to generalize better to unseen
data, by making certain assumptions about the structure of the data
based on prior knowledge or experience. As a result, we propose
to construct each neural block in a ‘temporal — spectral — mlp’
order, and add an extra residual connection on the spectral feature
extractor, consist to the architecture shown in Figure 4.

Number of blocks in FN:. To evaluate the impact of size of model
with Fourier token mixer, we compare different number of blocks.
As shown in Table 3, when the number of blocks increases, the
amount of parameters and the computational costs also increase
accordingly, as well as the performance. This is because the stacking
of blocks brings a larger receptive field and better non-locality.
However, considering the law of diminishing marginal utility and
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Figure 5: Comparison of different temporal window strategies. (a):
Sliding strategy, which distinguishes the local information of each
token. But the calculation of each token is generally independent,
which thus requires high computational cost. (b): Chunk strategy
that divides the sequence into chunks. Each of the chunk is com-
puted independently. Although this strategy is computationally fast,
the tokens between chunks lack information interaction. (c): Swin
strategy, which adopts a shift operation when dividing chunks, to
ensure the information exchange between adjacent chunks without
any extra computational cost.

Table 4: Ablation study results of different window strategies
on GTEA datasets.

Strategies GFLOPS F1@{10,25,50} Edit Acc

Sliding 9.0 95.1 935 869 93.6 84.0
Chunk 0.5 93.2 929 828 915 833
Swin 0.5 945 931 86.8 934 835

the accuracy-complexity trade-off of the model, we finally choose
the number of blocks to be 5.

Choice of temporal windows: To compare different strategies of
generating temporal windows in the Fourier Network, we con-
duct ablation studies with the same window sizes. The results
are shown in Table 4. Generally speaking, chunk or swin strategy
can save about O(k) computational complexity when compared
with the sliding strategy, where k is the window size. In addition,
the sliding strategy also consumes a lot of GPU memory during
the back-propagation calculation. Therefore, ASFormer [67] uses
different masks for tokens to implement sliding strategy. This is
because matrix products satisfies the distributive property. Unfor-
tunately, this property is not satisfied in the Fourier transform.
Sliding Discrete Fourier Transform (SDFT) [28] proves that, given
the sequence x, when the window of size m is shifted from n — 1 to
n, the DFT sequence X (n) is totally changed, which is formulated
as: Xp(n) = [Xgp(n—=1) —x(n—m) +x(n)] - ¢/*™*/m_Furthermore,
this is harder to simplify after the non-linear operations (e.g., Mod-
ReLU). Therefore, we adopt the swin strategy similar to that in
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Table 5: Ablation study results of diffusion model and Frame-
Wise Classification (FWC.) baseline model on GTEA dataset.
We adopt the network with Fourier Token Mixers as baseline
model. ‘Steps’ indicates the number of refining/denoising
steps for segmentation; ‘s* means all parameters are shared
weights on Refinement Stages; ‘L€’ indicates additional use
of classification losses for better visual features, see more
explanation in main text.

# Method Steps Param. F1@{10,25,50} Edit Acc

1 FWC. 3 0.48M 945 93.1 86.8 934 835
2 FWC. 0 0.16M  60.8 59.2 516 504 769
3 FWC.s* 3 0.27M 935 924 857 914 827
4 FWC. 10 1.26M 935 921 852 90.1 80.8
5 FWCs* 10 0.27M 938 927 86.5 91.8 81.2
6 Diff. 100 0.49M 958 93.6 87.8 937 84.0
7 Diff.L¢ 100 0.51IM 96.0 939 88.1 94.0 84.2

Table 6: Ablation study results of the number of stages on
GTEA datasets. ‘U-C’ indicates ‘UnConditional’, and ‘C’ in-
dicates ‘Conditional’. The total steps of diffusion process
M =100, and the number of unconditional stages is always
set to 1, while the number of steps at each ‘C’ stage is the
same.

number of number of

U-Csteps  C stages F1@{10,25,50} Edit Acc
0 1 953 933 875 934 835
0 2 958 937 878 938 84.1
0 3 955 936 876 93.6 838
10 2 959 937 875 93.6 842
20 2 96.0 939 88.1 94.0 84.2
30 2 956 93.6 875 935 837
50 2 950 93.0 872 931 834

Table 7: Ablation study results of total diffusion steps M on
GTEA datasets. The number of steps in each stage maintains
the same proportion.

M GFLOPS F1@{10,25,50} Edit Acc
5 0.5 948 93.2 869 93.6 835
10 0.6 95.1 93.6 87.2 937 84.0
100 0.8 96.0 939 88.1 94.0 84.2

1000 3.5 95.9 939 883 94.0 84.2

SwinTransformer [40], which achieves non-trivial improvement in
Table 4.

Influence of steps of diffusion / denoising process: To evaluate the
influence of the diffusion steps on the performance of the model, we
conduct ablation studies by varying M from 5 to 1000. The results
are shown in Table 7. Due to the recurrent calculation of fp, the
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Table 8: Comparison of the number of parameters and
FLOPs of our proposed method with other methods on GTEA
datasets using I3D [6] features. The FLOPs are calculated
using an input with the fixed length of 1000 frames.

Method Param. GFLOPS F1@{10,25,50} Edit Acc
MS- 1.0M 1.0 88.8 857 76.0 83,5 80.1
TCN+ [37]

ASRF [27] 1.3M 1.3 89.4 878 798 837 773
HASR [1] 18.8M 12.8 89.2 872 748 845 769
ETSN [38] 0.8M 0.8 91.1 90.0 779 86.2 78.2
DPRN [45] 4.1M 7.0 92,9 920 829 909 82.0
ASFormer [67] 1.1M 1.7 90.1 88.8 79.2 84.6 79.7
MSD + AS- 1.3M 2.0 91.8 915 812 89.7 809
Former [67]

DFN 0.5M 0.8 923 91.7 814 90.1 815

computational costs grow with the increase of the total number of
steps. Considering the trade-off between the model complexity and
performance, we empirically set M to 100.

Effectiveness of diffusion models: To evaluate whether the pro-
posed diffusion model can handle over-segmentation, we make ab-
lation studies on baseline network using frame-wise classification
or diffusion. The frame-wise classification based methods always
adopt some Refinement Stages [15, 37] (similarly, Decoders [67],
Temporal Reconstruction Networks (TRN) [45]) to further refine the
segmentation results to alleviate over-segmentation. However, this
part of the network usually requires a large number of parameters
and computations to achieve the goal (about 2/3 of total network),
as shown in Table 5.2. Moreover, due to the uncontrollable input
distribution and the indistinguishable goal of stages, sharing param-
eters or stacking structure effects little (in Table 5, #3-#5). As for the
diffusion models, the difference is that each stage is pre-defined as
a step i during denoising process, controlled by f; and the diffusion
time embeddings. As each step in the diffusion process is defined
as adding Gaussian noise, the entire diffusion model is usually de-
signed to be light-weighted, shared and recurrently used to save
parameters and GFLOPS. Specifically, we adopt a simple MLP with
some temporal convolutional layers conditioned on visual features
from the network with Fourier token mixers. As shown in Table 5
#6, the diffusion model achieves better F1 and Edit scores, implying
better performance in solving over-segmentation. In Table 5 #7, we
further improve performance by using additional supervisions on
visual features (cross-entropy loss and T-MSE loss [37]). Addition-
ally, we also visualize the output of diffusion model and compare it
with ground truth annotations. As we can see, the diffusion model
can effectively alleviate the over-segmentation problems. The visu-
alization results are shown in Figure 6.

Multi-stage diffusion: To evaluate the effectiveness of the pro-
posed multi-stage diffusion model, we vary it with a single-stage
diffusion model. For the single-stage diffusion model, we only use
the conditional stage, which takes the visual features during de-
noising process. The results are shown in Table 6. As we can see,
the multi-stage diffusion model achieves better results than the
single-stage diffusion model on both datasets, indicating that the
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Figure 6: Visualization of the diffused output at each
stage and ground truth annotations (GT). The example is
‘S1_Pealate_C1’ from the GTEA dataset.

unconditional denoising process in the first stage helps to learn a
better prior distribution and improves the performance of the final
segmentation.

Parameter and complexity analyse: To evaluate the effectiveness
of the proposed model in reducing the amount of parameters and
calculations, we compare the number of parameters and FLOPs
of our model with that of state-of-the-art methods, as shown in
Table 8. Compared to ETSN [38], DFN outperforms on all the met-
rics, indicating its effectiveness; compared to DPRN [45], DFN only
uses about 12% number of parameters and 11% computational com-
plexity to achieves competitive performance (about 0.3% ~ 1.5%
drops). It is notable that multi-stage diffusion models (MSD) can
be transferred to most temporal segmentation networks with a
small cost of parameters and computation, as shown in the Ta-
ble 8, MSD+ASFormer [67]. The result shows that this can further
improve the performance.

5 CONCLUSION

We present Diffused Fourier network, an efficient solution for hu-
man action segmentation via multi-stage diffusion models and
Fourier Token Mixer. DFN utilizes the strength of diffusion models
to solve over-segmentation, and combines with Fourier Token Mixer
to efficiently capture both local and global information. Through ex-
tensive experiments results, we demonstrate that DFN outperforms
existing methods while using fewer parameters and computations.
Furthermore, we conduct ablation studies to analyze the contribu-
tions of each component in DFN and provide insights into future
research directions. Our work shows the potential of combining
diffusion models and token mixing mechanisms for efficient and
accurate temporal action segmentation tasks.
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