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ABSTRACT
Given a group of images, co-salient object detection (CoSOD) aims
to highlight the common salient object in each image. There are two
factors closely related to the success of this task, namely consensus
extraction, and the dispersion of consensus to each image. Most
previous works represent the group consensus using local features,
while we instead utilize a hierarchical Transformer module for
extracting semantic-level consensus. Therefore, it can obtain a more
comprehensive representation of the common object category, and
exclude interference from other objects that share local similarities
with the target object. In addition, we propose a Transformer-based
dispersion module that takes into account the variation of the co-
salient object in different scenes. It distributes the consensus to the
image feature maps in an image-specific way while making full use
of interactions within the group. These two modules are integrated
with a ViT encoder and an FPN-like decoder to form an end-to-end
trainable network, without additional branch and auxiliary loss.
The proposed method is evaluated on three commonly used CoSOD
datasets and achieves state-of-the-art performance.
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1 INTRODUCTION
Co-salient object detection (CoSOD) is a group-based image un-
derstanding task that aims to capture the common salient object
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presented in each image within the given group. Due to its wide
spectrum of applications in object detection, semantic segmenta-
tion, and image retrieval, significant research efforts have been
invested within this field over the past decade.

Conventionally, methods for solving this task rely on hand-
crafted visual features of the images. [36] is one of the first attempts
to apply deep learning to this problem. From then on, a variety of
network structures have been proposed and greatly improved the
performance of this task. Most of these works could be formalized
as a four-stage paradigm, which involves (1) image feature represen-
tation through an encoder, (2) consensus extraction performed on a
group of image features, (3) the dispersion of consensus to individ-
ual image features, and (4) co-saliency mask generation through a
decoder. Among them, consensus extraction and dispersion (similar
to the term “summarization and search” in [42]) are two key steps
and have been implemented in diverse ways in previous works. We
will give a detailed review on these methods in Section 2.

In this work, we also follow the four-stage paradigm since it
is basically consistent with the human cognitive process. Despite
significant breakthroughs achieved in this line of work, we have
observed two common issues among the majority of prior research.
Firstly, most previous works obtain the consensus by selecting or av-
eraging local features [10, 12, 27, 34, 44–47], which can capture the
representative region of the common object. However, it cannot pro-
vide complete, semantic-level information on the common object’s
category. Thus, such methods may fail when encountering large
intra-class differences, and may highlight some irrelevant objects
that have local similarities to the target object but do not belong
to the same category. Moreover, the majority of previous methods
implement the dispersion of consensus to image features by con-
catenation, addition, element-wise multiplication, dot-product, or
their combination [10, 12, 16, 27, 28, 30, 33, 34, 38–40, 44–47]. Nev-
ertheless, the common object may present very different attributes
and appearances in different images. Therefore, simply adding or
multiplying consensus to the image feature maps in the same way
may not reflect this diversity, resulting in poor performance on
challenging examples. Though some earlier works [14, 42] have
taken the image-specific variation of consensus into account ex-
plicitly or implicitly, they fail to maintain a compact and consistent
consensus representation, which may lead to inconsistent detection
targets and increased computation. We argue that it is important
to balance the commonality and the specificity, while controlling
the computational complexity in a reasonable range.

Based on these considerations, we develop two novel blocks
for semantic-level comprehensive consensus extraction and image-
specific dispersion. In particular, a hierarchical Transformer module
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is designed for consensus extraction. It alternates between aggre-
gating each image’s salient object information to its corresponding
class token, and aggregating a group of class tokens to the con-
sensus representation. In addition, an image-specific dispersion
module is put forward. It first refines the consensus vector with
cross-attention to add more context details to the consensus. Then
it performs dispersion through several Transformer blocks. Inter-
actions within the group are also introduced in this Transformer,
so the easy cases may help the difficult ones to achieve a proper
dispersion result. Besides, we leverage a pre-trained Vision Trans-
former [5, 24] as the encoder to provide high-quality features, and
an FPN-like network to decode the co-saliency masks.

In addition to the four-stage main branch for co-saliency masks
generation, recent CoSOD methods tend to introduce auxiliary
tasks or side pathways to enhance performance, such as additional
classification task [10, 27, 38, 45], salient object detection (SOD)
priors [8, 14, 43], various kinds of contrastive learning [10, 34, 45,
46], discriminator [46] and so on. These techniques contribute to the
gain in the final performance, but at the cost of complicated model
structure and abundant hyper-parameters. Moreover, some of them
require extra supervision in the training phase (e.g. class label [10,
27, 38, 45], single image saliency maps (SISM) [14]). In contrast
to this trend, our proposed model does not include any additional
designs beyond the mask generation pipeline. Experiments show
that our compact model with consensus extraction and dispersion
is able to achieve comparable or superior performance compared
to the previous models with complex modules.

To sum up, our contributions are as follows:
• We design a hierarchical consensus extraction module that lever-
ages high-level semantics embedded in the class token to obtain
a comprehensive representation of the common object category,
thus avoiding the ambiguity and incompleteness brought by
using local information as consensus. It also includes iterative
refinements to gradually improve the image semantics and the
consensus representation.

• This work proposes a Transformer-based dispersion module that
distributes the consensus to the image feature maps in an image-
specific manner, taking the diversity of the common object in
different images into account. It also enables intra-group interac-
tions during the dispersion process, thus maintaining a balance
between the commonality and the specificity.

• The two novel modules are combined with a plain ViT encoder
and an FPN-like decoder to form an end-to-end trainable CoSOD
network. Without additional structure and auxiliary loss, the
proposed method is characterized by its simplicity and clarity.
Extensive experiments on several public datasets have proven
the effectiveness of our model.

2 RELATEDWORKS
Most of the deep-learning-based CoSOD methods can be catego-
rized into the four-stage pipeline, namely image encoding, consen-
sus extraction, consensus dispersion, and mask decoding. A brief
summary of each of above ingredients is presented below.

Encoder and Decoder. For the encoder, a large body of prior works
use VGG [25] as a defaulted choice. More recent research has ex-
plored the use of the Transformer architecture. For instance, [12]

uses a T2T-ViT [35] branch accompanied with a CNN branch. [46]
uses a single PVTv2 [32]. [41] utilizes a Swin Transformer [22]. As
for the decoder, the idea of feature pyramid [20] is often utilized.
Multi-scale feature maps generated by the encoder are sent to the
decoder, and the predicted masks are obtained by aggregating the
maps of different scales. Although some improved designs may
be introduced to these two modules (e.g. Transformer necks be-
tween the encoder and the decoder [27], decoder with intra-group
interactions [43], decoder that explicitly focuses on edges [38]),
we prioritize the modules directly related to the group consensus.
Our proposed network uses a plain ViT [5] as the encoder to get
high-quality image feature map and semantic vector (i.e. the class
token), and a simple CNN-based FPN-like network as the decoder
to better capture the local information such as boundaries. Such
methodology decouples the task-specific designs for CoSOD with
the general feature extractor and dense predictor.

Consensus Extraction and Dispersion. These two components are
the key to solving CoSOD, and represent the core of the network.
Therefore, previous studies have proposed various implementa-
tions. As for consensus extraction, the key lies in integrating the
features of a group of images. [33] concatenates the feature maps
of the group and performs convolutional operations on them to
get consensus. [16] uses an RNN to sequentially read the feature
map of each image, and the hidden state is used as consensus after
the whole group is processed. [8, 39] adopt PCA to get an optimal
direction (which can be seen as some type of consensus representa-
tion), and project the image feature maps to it. [30] uses Low-Rank
Bilinear Pooling [15] to obtain the consensus vector. [43] first fuses
each image’s SISM prediction with its feature map, then performs
consensus extraction by a Group-Attentional Semantic Aggregation
module that includes concatenation, block shuffle, atrous convo-
lution, and self-attention. [27, 44] apply global average pooling
(GAP) to the group of feature maps to get the consensus representa-
tion. [40] and [38] also employ GAP, but prior to that, they process
the group of feature maps using GCN and Gromov-Wasserstein-
distance-based matching [26], respectively. [47] first predicts SISMs
and performs GAP to the salient regions. Then, 𝐾 pixels with the
highest similarity to the pooled feature within the group are se-
lected and concatenated as the consensus. [10, 12, 34, 45, 46] utilize
the attention mechanism to compute correspondences between
each pair of pixels in the group. The attention matrix is then pro-
cessed with pooling and softmax operation and becomes a per-pixel
weight, which is used to perform weighted average pooling on the
image feature maps and obtain the consensus representation.

The dispersion of the consensus representation to the image fea-
ture maps is typically defined as concatenation, addition, element-
wise multiplication, dot-product, or their combination [10, 12, 16,
27, 28, 30, 33, 34, 38–40, 44–47]. On this basis, [44] computes the
gradient of the dot-product results with respect to the feature maps,
and multiplies the pooled gradient maps to the feature maps; [40]
utilizes weighted K-means algorithm to refine the dot-product re-
sults; [12, 34] first multiplies the consensus to the feature maps,
then enhances the fused maps using self-attention. [14, 42, 43] no-
tice the importance of image-specific dispersion, which is similar
to our ideas. Specifically, [43] multiplies an element-wise weight to
the consensus before adding it to the feature map of each image,
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and the weight is computed by a squeeze-and-excitation block. [14]
does not produce an explicit consensus representation. Instead, it
extracts salient object representations for each image separately un-
der the guidance of SISMs. Cosine similarity is calculated between
each image feature map and each representation vector, so 𝑁 masks
are obtained for each of the 𝑁 images (𝑁 is the size of the group).
Next, it integrates the 𝑁 masks for each image through weighted
averaging (weights are determined by the similarity between them),
and the resulting single mask is multiplied with the image feature
map. [42] uses convolution and self-attention operations to trans-
form the group of feature maps into a series of kernels (including
both image-specific and group-shared ones), and implements the
dispersion process by dynamic convolution.

Different from the above approaches, we put forward two novel
Transformer-based modules to perform extraction at the semantic
level, and implement image-specific dispersion while maintaining
a consistent consensus representation.

Extra Modules. Additionally, many prior works have also incor-
porated various additional modules or auxiliary tasks to further
enhance the performance and stabilize the training. [16] draws
inspiration from the perceptual loss in neural style transfer [11] to
ensure the consistency of the predicted foreground and the ground-
truth. [8, 39] require complicated refinements to be applied to the
model output. [42, 44] design novel data augmentation approaches
for training images. [28, 43, 47] co-train the CoSOD model with an
SOD branch. [8, 14] use SISMs predicted by another SODmodel. [46]
adds a discriminator at the end of the pipeline to perform adversar-
ial learning. To enhance the consensus learning, [10, 27, 30, 38, 45]
employ the image category labels and carry out an additional classi-
fication task on the extracted consensus; [10, 45] utilize contrastive
learning between different groupswhile [46] further proposes to use
memory-based contrastive learning; [34] explores self-contrastive
learning by masking the co-salient object or the remaining area;
[47] involves iterative refinement and purification.

Instead of investing efforts in this regard, we argue that these
additional designs are not a necessity. The pipeline of our model
is simple and direct, requiring only a minimal number of hyper-
parameters and loss functions.

Vision Transformer. Originally proposed in the field of NLP,
Transformer [29] leverages the attention mechanism to process
sequential data. Its notable application in computer vision, Vision
Transformer (ViT) [5], has shown superior performance to conven-
tional CNN due to its ability to model global correspondence in the
image. Afterward, a large number of ViT variants and related tech-
niques have been proposed, such as [2, 9, 13, 19, 22, 31, 32, 35]. They
focus on introducing more inductive bias, improving the scalability,
and designing new pre-training schemes. Though more advanced
architecture may further boost the performance, we use the origi-
nal ViT as backbone to keep the model simple. Such choice is also
coincident with the philosophy of [3, 18] that seeks to decouple
ViT pre-training and downstream fine-tuning.

Apart from the encoder, Transformer blocks are also employed
in the consensus extraction and dispersion stages of our model.
In this aspect, [28] shares a similar idea with our method. It sim-
ply concatenates a group of feature maps together and feeds them
into a Transformer to obtain the consensus. Then it concatenates

the consensus with the feature map of each image and feeds them
into another Transformer for dispersion. Such an approach does
not explicitly reflect the meaning of consensus, and incurs signifi-
cant computation and memory overhead. In contrast, our model
leverages the high-level semantics embedded in the class token to
effectively obtain a consensus representation that is better aligned
with the co-object’s category.

In addition, several successful attempts have also been made to
introduce Transformer to SOD (e.g. [21, 23]), and RGB-D CoSOD
(e.g. [41]). Our proposed CoSODmethod differs from these works in
that it places greater emphasis on inter-image interactions without
leveraging the depth information.

3 METHOD
The goal of CoSOD can be formalized as follows: given a group of
images {𝐼𝑛}𝑁𝑛=1 that contain objects of the same category, a group of
co-saliency masks {𝑀𝑛}𝑁𝑛=1 should be generated that highlight the
co-salient object in each image. Here the input images are resized
to the same shape, so 𝐼𝑛 ∈ R3×𝐻×𝑊 , while𝑀𝑛 ∈ [0, 1]1×𝐻×𝑊 .

The overall pipeline of our proposed network is presented in
Figure 1. As stated in Section 1, four stages are involved in the
network. The 𝐿-layer ViT encoder first takes {𝐼𝑛}𝑁𝑛=1 as the input
and generates feature maps1

{
𝐹𝐿,𝑛

}𝑁
𝑛=1, 𝐹

𝐿,𝑛 ∈ R𝐶×ℎ×𝑤 . Then the
consensus extraction module extracts the representation of the
common object class 𝒈 ∈ R𝐷 . The consensus dispersion module
applies𝒈 to each featuremap, and finally the decoder takes the fused
maps and outputs mask predictions {𝑀𝑛}𝑁𝑛=1. It should be noted
that the above pipeline is also a general procedure in most of the
previous works, though many of them introduce some additional
branches or tasks to it.

The whole model is trained in an end-to-end fashion. Given
the predictions {𝑀𝑛}𝑁𝑛=1 and the ground-truth masks {𝐺𝑛}𝑁𝑛=1, the
objective is to minimize the Binary Cross Entropy (BCE) loss

𝐿BCE = − 1
𝑁

𝑁∑︁
𝑛=1

∑︁
𝑖, 𝑗

(𝐺𝑛𝑖,𝑗 log𝑀𝑛
𝑖,𝑗 + (1 −𝐺𝑛𝑖,𝑗 ) log(1 −𝑀𝑛

𝑖,𝑗 )), (1)

and Intersection over Union (IoU) loss

𝐿IoU = 1 − 1
𝑁

𝑁∑︁
𝑛=1

∑
𝑖, 𝑗 𝐺

𝑛
𝑖,𝑗
𝑀𝑛
𝑖,𝑗∑

𝑖, 𝑗 (𝐺𝑛𝑖,𝑗 +𝑀
𝑛
𝑖,𝑗

−𝐺𝑛
𝑖,𝑗
𝑀𝑛
𝑖,𝑗
) . (2)

Putting these two together we have

𝐿total = 𝐿BCE + 𝐿IoU . (3)

The utilization of these loss functions is a common practice in
CoSOD methods [12, 27, 38, 45, 46].

In the following subsections, we first describe the encoder and
decoder in details. Based on the ViT feature, a simple yet effective
baseline model is proposed. Next, we introduce the newly-designed
extraction and dispersion modules, and demonstrate how to in-
corporate them into the baseline model to further enhance the
performance.

1“Feature map” (in R𝐶×ℎ×𝑤 ) is commonly used in the context of CNN, while “patch
tokens” (in Rℎ𝑤×𝐶 ) are suitable for the context of ViT. They can be converted to each
other through the operations of flattening and reshaping. In this paper, we consider
these two terms interchangeably.
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Figure 1: The pipeline of the proposed co-salient object detection model.

3.1 Encoder
We use a plain ViT [5] as the image encoder. The input image is
first divided into non-overlapping patches and linearly projected to
obtain a sequence of token embeddings. These patch tokens along
with a learnable class token are then fed into multiple Transformer
layers. The Transformer architecture enables efficient parallel pro-
cessing and effective global interactions.

Previously, CoSOD models that use Transformer-base encoders
typically employ variants of ViT that are better suited for dense pre-
diction tasks, e.g. PVTv2 [32] in [46], T2T-ViT [35] in [12], Swin [22]
in [41]. On the contrary, the use of original ViT decouples the de-
sign of the pre-training process and the need of downstream tasks,
as mentioned in [3, 18]. Therefore, our model is fully compatible
with the research progress in pre-training, scalability, and other
aspects of ViT. In this paper, we choose the ViT model pre-trained
with CLIP [24]. CLIP adds a linear projection to the original ViT’s
output, and the projected class token is treated as the CLIP image
feature vector. Meanwhile, CLIP utilizes another Transformer to
encode the sentence corresponding to the image into a CLIP text
vector, and performs cross-modal contrastive learning. We choose
CLIP’s ViT weight for two reasons. Firstly, the large-scale con-
trastive pre-training of CLIP will endow the image features with
rich and high-quality semantic information. Secondly, the sentence
supervision used by CLIP provides a more complete description of
the images compared to other supervision signals such as category
labels, which ensures that image features will not miss crucial in-
formation about the co-object when the scene is complex. More
advanced pre-training schemes can be easily introduced to our
model by simply changing the encoder’s initial weight.

3.2 Decoder
Following the previous works [10, 27, 38, 45–47], we adopt an FPN-
like [20] decoder, whose input includes not only the image feature

maps fused with consensus, but also the output of intermediate
layers in the encoder. Unlike CNNs and some ViT variants that have
hierarchical architecture, the intermediate features of ViT remain
at the same scale throughout the network, and the output of earlier
layers does not necessarily contain finer-grained information than
that of later layers. Thus, we ignore the order of these intermediate
maps and simply sum them together. We do not use the multi-
scale supervision like [10, 14, 34, 42, 44–46] either, i.e. the loss is
computed only once. Specifically, the decoder works as:

Dec(𝐹 1, ..., 𝐹𝐾 ) = Conv(
𝐾∑︁
𝑙=1

Up𝑙 (𝐹 𝑙 )), (4)

where Conv is a 1× 1 convolution that reduces the channel number
to one and produces the mask prediction; Up𝑙 is a series of 3 ×
3 convolutions and 2× bilinear upsamplings that progressively
expand the spatial dimension.

3.3 A Naive Approach
Based on the pre-trained encoder, a straightforward idea is to ex-
tract consensus from the CLIP feature vectors. As an initial try, we
simply use the mean of these vectors after normalization as con-
sensus, and disperse it to the image feature maps by element-wise
multiplication. Formally, we first obtain the CLIP feature vectors:

𝒗𝑛CLIP = LinearCLIP (𝑐𝐿,𝑛), 𝑛 = 1, ..., 𝑁 , (5)

where 𝑐𝐿,𝑛 is the class token in the ViT’s final output, LinearCLIP is
CLIP’s additional linear projection. Next, we conduct the averaging
operation:

𝒈 =
1
𝑁

𝑁∑︁
𝑛=1

Norm(𝒗𝒏CLIP), (6)

where Norm is the 𝑙2 normalization. And

𝐹 𝑙,𝑛 = 𝐹 𝑙,𝑛 · Linear𝑙Dis (𝒈), 𝑙 ∈ {𝑙1, ..., 𝑙𝐾 } , 𝑛 = 1, ..., 𝑁 , (7)
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Figure 2: Failure cases of the naive approach. A/B/C represent the group of camera/tablet/dolphin, respectively. The input
images, the ground-truth masks, the results of our naive model and full model are presented. In group A, the naive model
cannot capture the target object in many cases. While in group B/C, the majority of the results are correct (e.g. B1/B4/C2/C3),
but some predictions fail to fully cover the details of the co-object (B3/B5/C1/C4) or are interfered by other objects (B2/C1/C5).

𝑀𝑛 = Dec(𝐹 𝑙1,𝑛, ..., 𝐹 𝑙𝐾 ,𝑛), 𝑛 = 1, ..., 𝑁 , (8)

where 𝐹 𝑙,𝑛 is the output feature map of ViT’s layer 𝑙 ; LinearDis is a
linear projection that adjusts the dimension of the consensus vector
𝒈; 𝐹 𝑙,𝑛 is the map after dispersion; {𝑙1, ..., 𝑙𝐾 } ⊂ {1, ..., 𝐿} are the
selected intermediate layers’ indices (𝑙𝐾 = 𝐿).

Note that in (7), we disperse 𝒈 to not only 𝐹𝐿,𝑛 but also all
the inputs of the decoder, so as to reinforce the consensus signal
during the decoding process. This multi-stage dispersion is also a
commonly adopted procedure in prior works [27, 30, 38].

It is shocking that such a simple strategy has achieved a fairly
competitive performance compared with previous works, as can be
later seen in Table 1. The results demonstrate the quality of CLIP
vectors and the effectiveness of the four-stage pipeline. In order to
further improve the model, we examine the output masks, and some
typical results are shown in Figure 2. Two types of problems can
be identified. (I) In the first case, the predictions of many images in
the group deviate significantly from the target object, indicating
that there may be further room for improvement in the consensus
extraction stage. (II) In the second case, most images’ co-object is
detected correctly, while a few hard examples make the model go
wrong. It can be inferred that the consensus is well-extracted in
these groups, but it is not sufficient to guide the model to capture
the whole co-object or distinguish the co-object from interference
in a complex scene.

3.4 Semantic-Level Consensus Extraction
We first modify Equation (6) to facilitate more advanced consensus
extraction. In addition to the CLIP vectors, we also utilize the CLIP
feature maps to include richer information, i.e.

𝐹
𝐿,𝑛
CLIP = LinearCLIP (𝐹𝐿,𝑛), 𝑛 = 1, ..., 𝑁 . (9)

Based on the feature maps
{
𝐹
𝐿,𝑛
CLIP

}𝑁
𝑛=1

and the semantic vectors{
𝒗𝑛CLIP

}𝑁
𝑛=1, two steps are performed alternatively, as shown in

Figure 3. In the global step, a group-based semantic agreement
Transformer (GSAT) layer refines the image semantics and extracts
consensus simultaneously. Specifically, it takes the semantic vectors

along with their average as input and performs self-attention:

[𝒗 (𝑖 ) ,
{
𝒗𝑛,(𝑖 )𝑔

}𝑁
𝑛=1

] = Trans(𝑖 )GSAT ( [
1
𝑁

𝑁∑︁
𝑛=1

𝒗𝑛,(𝑖 ) ,
{
𝒗𝑛,(𝑖 )

}𝑁
𝑛=1

]),

(10)
where 𝑖 = 1, ..., 𝑀 + 1 is the layer index; the initial 𝒗𝑛,(1) is 𝒗𝑛CLIP.
In the local step, an image-based local information aggregation
Transformer (ILIAT) layer comes into play. It processes each image
individually, and can be defined with self-attention:

[𝒗𝑛,(𝑖+1) , 𝐹𝐿,𝑛,(𝑖+1)
CLIP ] = Trans(𝑖 )ILIAT-SA ( [𝒗

𝑛,(𝑖 )
𝑔 , 𝐹

𝐿,𝑛,(𝑖 )
CLIP ]), (11)

or cross-attention:

𝒗𝑛,(𝑖+1) = Trans(𝑖 )ILIAT-CA (𝒗
𝑛,(𝑖 )
𝑔 , 𝐹

𝐿,𝑛
CLIP, 𝐹

𝐿,𝑛
CLIP), (12)

where 𝑖 = 1, ..., 𝑀 ;𝑛 = 1, ..., 𝑁 ; the three inputs of TransILIAT-CA
are used as query, key, and value, respectively; the initial 𝐹𝐿,𝑛,(1)CLIP is
𝐹
𝐿,𝑛
CLIP.
Intuitively, ILIAT processes local information and aggregates the

salient object features of each individual image into its semantic
vector. The GSAT layer facilitates semantic-level information ex-
change, extracting the common component from the semantics of
individual images. It is similar in effect to the averaging operation
in Equation (6), but the additional parameters and self-attention
mechanism allow for more flexible interactions of the image seman-
tics. GSAT also updates the semantic vector of each image, thus
they can participate in the following ILIAT layer and provide more
reliable guidance for the aggregation of local information.

After𝑀+1 layers of GSAT and𝑀 layers of ILIAT, the last GSAT’s
output corresponding to the average semantic token is treated as
the final consensus representation. To fully utilize the important
semantic priors endowed by the pre-training of CLIP vectors, we
also add Equation (6) to the consensus, i.e.,

𝒈 = 𝒗 (𝑀+1) + 1
𝑁

𝑁∑︁
𝑛=1

Norm(𝒗𝒏CLIP) . (13)

The proposed Transformer-based consensus extraction differs
from the commonly used attention-based method [10, 12, 34, 45, 46]
in that it leverages the ViT’s class token to perform semantic-level
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Figure 3: The proposed consensus extraction module. As for
the ILIAT layer, a self-attention-based version is presented
here, which can be replaced by a cross-attention-based ver-
sion as in Equation (12).

aggregation and iterative refinement. Therefore, it is able to grasp
the complete representation of the co-object without being easily
disrupted by other objects that are locally similar to the target.
It also reduces the cost of computing the attention matrix. More
detailed comparisons can be found in the supplementary materials.

3.5 Image-Specific Consensus Dispersion
In order to better cope with the variation of the co-object, we design
another Transformer-based module to perform the dispersion of
consensus to image features, as shown in Figure 4. It first situates
the consensus representation within the specific context of each
image:

�̃�𝑛 = TransCTCA (LinearCTCA (𝒈), 𝐹𝐿,𝑛, 𝐹𝐿,𝑛), 𝑛 = 1, ..., 𝑁 , (14)

where TransCTCA is the contextualization Transformer layer with
cross-attention (CTCA), and the three inputs are used as query,
key, and value, respectively; LinearCTCA is a linear projection that
adjusts the channel number. The output �̃�𝑛 thus represents the
image-specific status and attributions of the co-object in image 𝐼𝑛 .
There is a slight difference between TransCTCA and the original
Transformer layer. We multiply the results of cross-attention and
MLP with a learnable channel-wise coefficient, thus allowing the
network to adaptively learn the degree of contextualization.
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Figure 4: The proposed dispersion module.

Subsequently, the attributed consensus is concatenated with the
corresponding image feature map and processed by multiple image-
based Transformer layers for dispersion (ITD). Moreover, to further
facilitate interactions within the group, we insert an aggregation
and allocation (A&A) operation between adjacent ITD layers. It is
implemented by concatenating the output consensus token with
their average and applying a linear projection, as shown below
in Equation (15). Through the communication of the attributed
consensus, the easy cases (where the co-object can be effortlessly
located) may help the difficult cases (where the co-object is con-
cealed or interference exists) to better focus on the common object.
Besides, the A&A process guarantees that the dispersion will not
deviate significantly from the extracted consensus while ensuring
the flexibility of the dispersion (i.e. multiple Transformer layers). A
similar idea is also adopted by [43] in its decoder design.

Besides, we also retain the dispersion implemented by multipli-
cation, since it has exhibited satisfactory performance and remains
fully compatible with the improved pipeline. To sum up, Equation
(7) in the naive approach is modified to Equation (14) followed by:{

[�̃�𝑛,(𝑖+1)
pre , 𝐹𝐿,𝑛,(𝑖+1) ] = Trans(𝑖 )ITD ( [�̃�

𝑛,(𝑖 ) , 𝐹𝐿,𝑛,(𝑖 ) ])
�̃�𝑛,(𝑖+1) = Linear(𝑖 )A&A ( [�̃�

𝑛,(𝑖+1)
pre , 1

𝑁

∑𝑁
𝑛=1 �̃�

𝑛,(𝑖+1)
pre ])

, (15)

𝐹 𝑙,𝑛 = 𝐹 𝑙,𝑛 · Linear𝑙Dis (�̃�
𝑛,(𝑀 ′+1)
pre ), (16)

𝐹𝐿,𝑛 = 𝐹𝐿,𝑛,(𝑀
′+1) · Linear𝐿Dis (�̃�

𝑛,(𝑀 ′+1)
pre ), (17)

where 𝑙 ∈ {𝑙1, ..., 𝑙𝐾−1} ;𝑛 = 1, ..., 𝑁 ; 𝑖 = 1, ..., 𝑀′ is the layer index;
the initial �̃�𝑛,(1) = �̃�𝑛, 𝐹𝐿,𝑛,(1) = 𝐹𝐿,𝑛 .
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Table 1: Performance comparision with the state-of-the-art methods. C/S/D stand for COCO-9213/COCO-SEG/DUTS-class
dataset, respectively. The best and second-best results under each metric are marked in bold and underlined respectively.

Training CoCA [44] CoSOD3k [8] CoSal2015 [37]
Method Set 𝐸max

𝜉
↑ 𝑆𝛼 ↑ 𝐹max

𝛽
↑ 𝜖 ↓ 𝐸max

𝜉
↑ 𝑆𝛼 ↑ 𝐹max

𝛽
↑ 𝜖 ↓ 𝐸max

𝜉
↑ 𝑆𝛼 ↑ 𝐹max

𝛽
↑ 𝜖 ↓

DeepACG(CVPR21)[38] S 0.771 0.688 0.552 0.102 0.838 0.792 0.756 0.089 0.892 0.854 0.842 0.064
GCoNet(CVPR21)[10] D 0.760 0.673 0.544 0.105 0.860 0.802 0.777 0.071 0.887 0.845 0.847 0.068

CoEGNet(TPAMI21)[8] D 0.717 0.612 0.493 0.106 0.825 0.762 0.736 0.092 0.882 0.836 0.832 0.077
CADC(ICCV21)[42] C+D 0.744 0.681 0.548 0.132 0.840 0.801 0.759 0.096 0.906 0.866 0.862 0.064

CoSFormer(arxiv21)[28] C+D 0.770 0.724 0.603 0.103 0.879 0.835 0.807 0.066 0.929 0.894 0.891 0.047
DCFM(CVPR22)[34] C 0.783 0.710 0.598 0.085 0.874 0.810 0.805 0.067 0.892 0.838 0.856 0.067
UFO(TMM23)[27] S 0.782 0.697 0.571 0.095 0.874 0.819 0.797 0.073 0.906 0.860 0.865 0.064

CoRP(TPAMI23)[47] C+D 0.741 0.703 0.575 0.110 0.866 0.825 0.801 0.072 0.915 0.877 0.888 0.049
GCoNet+(TPAMI23)[45] S+D 0.814 0.738 0.637 0.081 0.901 0.843 0.834 0.062 0.924 0.881 0.891 0.056

MCCL(AAAI23)[46] S+D 0.796 0.714 0.590 0.103 0.903 0.858 0.837 0.061 0.927 0.890 0.891 0.051
Ours (naive) S+D 0.804 0.707 0.598 0.080 0.914 0.851 0.847 0.056 0.942 0.888 0.903 0.047

Ours (full model) S+D 0.831 0.741 0.631 0.081 0.922 0.863 0.857 0.054 0.941 0.890 0.902 0.047

4 EXPERIMENTS
4.1 Datasets
We evaluate the proposed method on three widely-used CoSOD
datasets, including Cosal2015 [37], CoSOD3k [8], and CoCA [44].
Both of CoSOD3k and CoCA are challenging since there are many
distracting objects in each group, and the co-object exhibits high
diversity in different images. The metrics for evaluation include
maximum E-measure [7], S-measure [6], maximum F-measure [1],
and mean absolute error (MAE) [4]. We use the evaluation tools
provided by GICD [44]. The evaluation is performed at the original
scale of each image.

There are currently three supervised training sets for CoSOD,
namely COCO-9213 [33], DUTS-class [44], and COCO-SEG [30].
Our model is trained on the combination of COCO-SEG and DUTS-
class to keep pace with the state-of-the-art (SOTA) methods [45, 46].

4.2 Implementation Details
All images are rescaled to 224 × 224 as the input. The number of
GSAT/ILIAT/ITD layers are set to 3/2/4, respectively. The batch
size is set to 16 for training. During inference, the whole group is
processed in a single pass regardless of its size. The model is trained
using Adam optimizer for 15 epochs. The learning rate is set to 3e-5.
We use the CLIP [24] pre-trained ViT-B/16 as the image encoder. To
take full advantage of the pre-trained weight, we set the learning
rate of the encoder to 1

10 of the rest of the network.
All experiments are conducted on a single NVIDIA GeForce

3080Ti. Using the benchmark designed by [46], the inference speed
is∼95fps, which is on par with recent SOTAmethods. Please refer to
the appendix for a detailed description on the model configuration.

4.3 Main Results
Quantitative Results. Table 1 shows the quantitative performances

of our model and some representative works in recent years. To
reduce the effect of randomness, we independently train our model
three times and report the averaged performance. Among the pre-
vious works, CoSFormer [28], GCoNet+ [45], MCCL [46] achieve

SOTA performance on CoSal2015, CoCA, CoSOD3k, respectively.
Our naive model performs better than CoSFormer on CoSal2015
and better than MCCL on CoSOD3k (except for S-measure). Its
results on CoCA are similar to that of CoSFormer and MCCL but
inferior to that of GCoNet+. Equipped with the newly-designed ex-
traction and dispersion modules, our full model demonstrates better
performance. It surpasses the naive model on the two hard test sets
(CoSOD3k and CoCA) while maintaining competitive performance
on the simple one (CoSal2015). Specifically, the performance of
the full model on CoCA is comparable to that of GCoNet+, while
the pipeline and objective function of our model are much simpler
than GCoNet+ and MCCL. The full model performs exceptionally
well on CoSOD3k, surpassing all previous methods by a large mar-
gin (e.g. +1.9% max E-measure and +2.0% max F-measure). It also
outperforms CoSFormer on most metrics, showing the benefits of
designing task-specific Transformer modules.

Qualitative Results. Figure 5 shows some predicted masks of our
model and previous SOTA methods. Five types of test images are
considered here, including the normal cases and four typical kinds
of difficult cases. “Tiny Object” requires the model not to miss the
subtle details in the image. By leveraging the rich semantics in the
CLIP vector and aggregating the local information in the ILIAT layer,
our model manages to detect very small co-objects like bubbles.
“Distraction” implies the existence of salient interfering objects
in the image, while “Variation” means that the co-object exhibits
very different appearances in different images. Methods that rely
solely on local information may be misled by such complex scenes,
resulting in detecting incorrect objects or the omission of certain
parts of the co-object. In contrast, our method avoids these issues
through semantic-level consensus extraction and image-specific
dispersion, thus it effectively obtains the information of the co-
object and conducts accurate detection. Lastly, “Complex Boundary”
refers to the images with complicated co-object structures. Due to
the lack of specialized modules for boundaries and the relatively
low resolution of the network, our model does not perform perfectly
on the fine structures, which is also a common problem in existing
CoSOD methods. In future studies, we plan to refer to the latest
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Figure 5: Qualitative results of the proposed method and some state-of-the-art methods.

Table 2: Impacts of the proposed modules.

Extraction Dispersion 𝐸max
𝜉

↑ 𝑆𝛼 ↑ 𝐹max
𝛽

↑

avg CLIP vec multiply 0.804 0.707 0.598
GSAT multiply 0.808 0.715 0.606

GSAT+ILIAT(CA) multiply 0.806 0.721 0.610
GSAT+ILIAT(SA) multiply 0.809 0.710 0.604

avg CLIP vec CTCA 0.812 0.715 0.598
avg CLIP vec CTCA+ITD 0.820 0.733 0.624

(w/o A&A)
avg CLIP vec CTCA+ITD 0.827 0.738 0.630

GSAT+ILIAT(CA) CTCA+ITD 0.831 0.741 0.631

research in the field of image segmentation to obtain insights for
addressing this issue.

4.4 Ablation Studies
We conduct experiments to examine the role of the proposed mod-
ules. Different choices of the extraction and dispersion method are
tried as in Table 2. We report the results on CoCA since it contains
the most challenging scenarios which are precisely the focus of our
model design. It can be concluded that: (1) each module (GSAT, IL-
IAT, CTCA, ITDw/ A&A) can improve the performance of the naive
method. (2) Combining these modules further enhances the per-
formance, indicating the complementary nature of the extraction
and dispersion process. (3) Using cross-attention in ILIAT exhibits
better performance than using self-attention, suggesting that up-
dating local features during consensus extraction is not necessary.

(4) The improvement in performance brought by modifying the
dispersion stage (especially introducing ITD) is greater than that
of modifying the extraction stage, which means that designing a
distribution strategy capable of handling complex scenes is more
significant than improving the quality of the naive average-CLIP-
vector-based consensus representation. In Section 3.3, we note that
the naive model has fewer Type I failures (mainly due to extraction
issues) than Type II failures (mainly due to dispersion issues), which
is consistent with the experimental findings. Additional ablation
experiments are provided in the supplementary materials.

5 CONCLUSION
We summarize the mainstream CoSODmethods into a general four-
stage paradigm. Based on that, we note two major issues regarding
the group consensus. We propose to focus on semantic-level infor-
mation to extract a comprehensive consensus representation, and
consider the image-specific variation of the co-object when dispers-
ing the consensus to image features. We first present a simple yet
effective model leveraging high-level semantics in CLIP vectors.
Then an improved model is put forward that involves hierarchical
consensus extraction, iterative semantics refinement, image-specific
consensus attribution, and dispersion with cross-image interactions.
The performance of the full model and the effectiveness of its mod-
ules are demonstrated by extensive experiments.

ACKNOWLEDGMENTS
This work is supported by Beijing Natural Science Foundation
(Z190001), National Key R&D Program of China (2022ZD0160305)
and a research grant from BOE Technology.



Co-Salient Object Detection with Semantic-Level Consensus Extraction and Dispersion MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

REFERENCES
[1] Radhakrishna Achanta, Sheila Hemami, Francisco Estrada, and Sabine Susstrunk.

2009. Frequency-tuned salient region detection. In 2009 IEEE conference on
computer vision and pattern recognition. IEEE, 1597–1604.

[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. 2022. BEiT: BERT Pre-
Training of Image Transformers. In International Conference on Learning Repre-
sentations. https://openreview.net/forum?id=p-BhZSz59o4

[3] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu
Qiao. 2023. Vision Transformer Adapter for Dense Predictions. In The Eleventh
International Conference on Learning Representations. https://openreview.net/
forum?id=plKu2GByCNW

[4] Ming-Ming Cheng, Jonathan Warrell, Wen-Yan Lin, Shuai Zheng, Vibhav Vineet,
and Nigel Crook. 2013. Efficient salient region detection with soft image ab-
straction. In Proceedings of the IEEE International Conference on Computer vision.
1529–1536.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
YicbFdNTTy

[6] Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali Borji. 2017. Structure-
measure: A new way to evaluate foreground maps. In Proceedings of the IEEE
international conference on computer vision. 4548–4557.

[7] Deng-Ping Fan, Cheng Gong, Yang Cao, Bo Ren, Ming-Ming Cheng, and Ali Borji.
2018. Enhanced-alignment Measure for Binary Foreground Map Evaluation.
In Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial Intelligence
Organization, 698–704. https://doi.org/10.24963/ijcai.2018/97

[8] Deng-Ping Fan, Tengpeng Li, Zheng Lin, Ge-Peng Ji, Dingwen Zhang, Ming-
Ming Cheng, Huazhu Fu, and Jianbing Shen. 2021. Re-thinking co-salient object
detection. IEEE transactions on pattern analysis and machine intelligence 44, 8
(2021), 4339–4354.

[9] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra
Malik, and Christoph Feichtenhofer. 2021. Multiscale vision transformers. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 6824–
6835.

[10] Qi Fan, Deng-Ping Fan, Huazhu Fu, Chi-Keung Tang, Ling Shao, and Yu-Wing Tai.
2021. Group collaborative learning for co-salient object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12288–
12298.

[11] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer
using convolutional neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2414–2423.

[12] Yanliang Ge, Qiao Zhang, Tian-Zhu Xiang, Cong Zhang, and Hongbo Bi. 2022.
TCNet: Co-Salient Object Detection via Parallel Interaction of Transformers and
CNNs. IEEE Transactions on Circuits and Systems for Video Technology (2022).

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16000–16009.

[14] Wen-Da Jin, Jun Xu, Ming-Ming Cheng, Yi Zhang, and Wei Guo. 2020. Icnet:
Intra-saliency correlation network for co-saliency detection. Advances in Neural
Information Processing Systems 33 (2020), 18749–18759.

[15] Shu Kong and Charless Fowlkes. 2017. Low-rank bilinear pooling for fine-grained
classification. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 365–374.

[16] Bo Li, Zhengxing Sun, Lv Tang, Yunhan Sun, and Jinlong Shi. 2019. Detecting
Robust Co-Saliency with Recurrent Co-Attention Neural Network.. In IJCAI,
Vol. 2. 6.

[17] Long Li, Junwei Han, Ni Zhang, Nian Liu, Salman Khan, Hisham Cholakkal,
Rao Muhammad Anwer, and Fahad Shahbaz Khan. 2023. Discriminative Co-
Saliency and Background Mining Transformer for Co-Salient Object Detection.
arXiv:2305.00514 [cs.CV]

[18] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. 2022. Exploring plain
vision transformer backbones for object detection. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part IX. Springer, 280–296.

[19] Yanghao Li, Chao-YuanWu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra
Malik, and Christoph Feichtenhofer. 2022. Mvitv2: Improved multiscale vision
transformers for classification and detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4804–4814.

[20] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2017. Feature pyramid networks for object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2117–2125.

[21] Nian Liu, Ni Zhang, Kaiyuan Wan, Ling Shao, and Junwei Han. 2021. Visual
saliency transformer. In Proceedings of the IEEE/CVF international conference on
computer vision. 4722–4732.

[22] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer us-
ing shifted windows. In Proceedings of the IEEE/CVF international conference on
computer vision. 10012–10022.

[23] Zhengyi Liu, Yuan Wang, Zhengzheng Tu, Yun Xiao, and Bin Tang. 2021. Tri-
TransNet: RGB-D salient object detection with a triplet transformer embedding
network. In Proceedings of the 29th ACM international conference on multimedia.
4481–4490.

[24] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[25] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[26] Justin Solomon, Gabriel Peyré, Vladimir G Kim, and Suvrit Sra. 2016. Entropic
metric alignment for correspondence problems. ACM Transactions on Graphics
(ToG) 35, 4 (2016), 1–13.

[27] Yukun Su, Jingliang Deng, Ruizhou Sun, Guosheng Lin, Hanjing Su, and Qingyao
Wu. 2023. A Unified Transformer Framework for Group-based Segmentation:
Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection.
IEEE Transactions on Multimedia (2023), 1–13. https://doi.org/10.1109/TMM.2023.
3264883

[28] Lv Tang and Bo Li. 2021. CoSformer: Detecting co-salient object with transform-
ers. arXiv preprint arXiv:2104.14729 (2021).

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[30] Chong Wang, Zheng-Jun Zha, Dong Liu, and Hongtao Xie. 2019. Robust deep
co-saliency detection with group semantic. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 33. 8917–8924.

[31] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong
Lu, Ping Luo, and Ling Shao. 2021. Pyramid vision transformer: A versatile back-
bone for dense prediction without convolutions. In Proceedings of the IEEE/CVF
international conference on computer vision. 568–578.

[32] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong
Lu, Ping Luo, and Ling Shao. 2022. Pvt v2: Improved baselines with pyramid
vision transformer. Computational Visual Media 8, 3 (2022), 415–424.

[33] Lina Wei, Shanshan Zhao, Omar El Farouk Bourahla, Xi Li, and Fei Wu. 2017.
Group-wise deep co-saliency detection. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence. 3041–3047.

[34] Siyue Yu, Jimin Xiao, Bingfeng Zhang, and Eng Gee Lim. 2022. Democracy
does matter: Comprehensive feature mining for co-salient object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
979–988.

[35] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Fran-
cis EH Tay, Jiashi Feng, and Shuicheng Yan. 2021. Tokens-to-token vit: Training
vision transformers from scratch on imagenet. In Proceedings of the IEEE/CVF
international conference on computer vision. 558–567.

[36] Dingwen Zhang, Junwei Han, Chao Li, and Jingdong Wang. 2015. Co-saliency
detection via looking deep and wide. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2994–3002.

[37] Dingwen Zhang, Junwei Han, Chao Li, Jingdong Wang, and Xuelong Li. 2016.
Detection of co-salient objects by looking deep and wide. International Journal
of Computer Vision 120 (2016), 215–232.

[38] Kaihua Zhang, Mingliang Dong, Bo Liu, Xiao-Tong Yuan, and Qingshan Liu. 2021.
Deepacg: Co-saliency detection via semantic-aware contrast gromov-wasserstein
distance. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 13703–13712.

[39] Kaihua Zhang, Tengpeng Li, Bo Liu, and Qingshan Liu. 2019. Co-saliency de-
tection via mask-guided fully convolutional networks with multi-scale label
smoothing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 3095–3104.

[40] Kaihua Zhang, Tengpeng Li, Shiwen Shen, Bo Liu, Jin Chen, and Qingshan Liu.
2020. Adaptive graph convolutional network with attention graph clustering
for co-saliency detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 9050–9059.

[41] Ni Zhang, Junwei Han, and Nian Liu. 2022. Learning implicit class knowledge for
rgb-d co-salient object detection with transformers. IEEE Transactions on Image
Processing 31 (2022), 4556–4570.

[42] Ni Zhang, Junwei Han, Nian Liu, and Ling Shao. 2021. Summarize and search:
Learning consensus-aware dynamic convolution for co-saliency detection. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 4167–
4176.

[43] Qijian Zhang, Runmin Cong, Junhui Hou, Chongyi Li, and Yao Zhao. 2020. CoAD-
Net: Collaborative aggregation-and-distribution networks for co-salient object
detection. Advances in neural information processing systems 33 (2020), 6959–6970.

[44] Zhao Zhang, Wenda Jin, Jun Xu, and Ming-Ming Cheng. 2020. Gradient-induced
co-saliency detection. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16. Springer, 455–472.

https://openreview.net/forum?id=p-BhZSz59o4
https://openreview.net/forum?id=plKu2GByCNW
https://openreview.net/forum?id=plKu2GByCNW
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.24963/ijcai.2018/97
https://arxiv.org/abs/2305.00514
https://doi.org/10.1109/TMM.2023.3264883
https://doi.org/10.1109/TMM.2023.3264883


MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Peiran Xu and Yadong Mu

[45] Peng Zheng, Huazhu Fu, Deng-Ping Fan, Qi Fan, Jie Qin, and Luc Van Gool. 2022.
GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector. arXiv
preprint arXiv:2205.15469 (2022).

[46] Peng Zheng, Jie Qin, Shuo Wang, Tian-Zhu Xiang, and Huan Xiong. 2023.
Memory-aided Contrastive Consensus Learning for Co-salient Object Detec-
tion. arXiv preprint arXiv:2302.14485 (2023).

[47] Ziyue Zhu, Zhao Zhang, Zheng Lin, Xing Sun, and Ming-Ming Cheng. 2023. Co-
Salient Object Detection with Co-Representation Purification. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2023).



Co-Salient Object Detection with Semantic-Level Consensus Extraction and Dispersion MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

A MODEL CONFIGURATIONS
In this section, we provide a detailed description of the specific
structure and hyper-parameters choice of the proposed model.

A.1 Encoder
Following the ViT-B/16 in [5], the ViT encoder has 12 Transformer
layers. The patch size is 16 × 16. The hidden dimension is 768, and
the number of Transformer heads is 12. We use the pre-trained
weights provided by CLIP [24]. To be consistent with CLIP, the
output of the ViT’s final layer is processed with layer normalization
and linear projection, resulting in 512𝑑 tokens.

A.2 Consensus Extraction and Dispersion
The hidden dimension of GSAT and ILIAT is 512, which is the same
as the CLIP feature dimension. In CTCA, the 512𝑑 consensus is first
linearly projected to 768𝑑 . Then it participates in the cross-attention
with the 768𝑑 ViT feature maps. The hidden dimension of ITD is
set to 768, which is the same as the dimension of the feature maps.
We intuitively set the number of GSAT layers to 3, the number of
ILIAT layers to 2, and the number of ITD layers to 4. The number
of Transformer heads is set to 8 in all these modules. The A&A
module projects the 768𝑑 + 768𝑑 concatenated vector to 768𝑑 . The
projection before multiplying the consensus to the feature maps
is 768𝑑 → 768𝑑 for the full model, and 512𝑑 → 768𝑑 for the naive
model.

A.3 Decoder
The indices of the intermediate features that are sent to the decoder
(denoted as {𝑙1, .., 𝑙𝐾 } in the paper) are {4, 6, 8, 12}. They are all of
the shape 𝑁 × 196 × 768, where 𝑁 is the size of the group, 196 =
224
16 × 224

16 is the number of tokens (the class token is discarded). In
the full model, ITD is applied to the last group of features (i.e. index
12) and it does not change the shape. In the decoder, each group of
features is first reshaped to 𝑁 × 768 × 14 × 14 and then processed
by three consecutive CNN blocks. Each block contains a 3 × 3
convolution followed by batch normalization, ReLU activation, and
a 2× bilinear upsampling in sequence. The first block reduces the
channel number to 256, while the following blocks do not change
the channel dimension. After that, the four groups of features with
shape 𝑁 × 256 × 112 × 112 are added together. The sum is sent to
another 3 × 3 convolution and bilinearly upsampled again to get
the final output.

A.4 Training Scheme
The code is implemented with PyTorch. During training, the batch
size is set to 16 and we use the batch sampler designed by [14]. In
each iteration, it randomly selects a group and samples 16 images
from it. Batches with less than 16 images are allowed, but batches
with only one image are discarded since CoSOD is ill-defined for
a single image. No image will be sampled more than once in one
epoch. During inference, each group is processed in a single pass,
regardless of the group size. The input image is resized to 224× 224
and normalized for both training and inference. The ground-truth
is resized to 224 × 224 for training, and the loss is calculated at this

scale. When evaluating the performance at the inference stage, the
network output is resized to the image’s original size. We use the
evaluation tools provided by [44]2. No data augmentation is used
during training, except for horizontal flipping with a probability of
50%.

We combine theDUTS_class [44] dataset and the COCO-SEG [30]
dataset together, so there are 369 groups and 209k images in total.
With the sub-group size (i.e. batch size) set to 16, each training
epoch contains 13k iterations. We train the model for 15 epochs
(about 200k iterations). We use Adam optimizer with weight decay
set to 1e-4 and betas set to [0.9, 0.99] empirically. The learning rate
is set to 3e-5 by a few trials.

A.5 Model Efficiency

Table 3: Model statistics.

Model #params FLOPs inference time fps

DCFM [34] 142.3M 31.7G 0.008s ∼125
GCoNet+ [45] 18.4M 27.5G 0.009s ∼120
MCCL [46] 27.0M 5.9G 0.017s ∼60
DMT [17] 40.4M 84.4G 0.023s ∼45
Ours-naive 99.6M 28.4G 0.007s ∼150
Ours-full 156.7M 34.7G 0.010s ∼95

Since CoSOD is a group-based task, the inference time is related
to the size of the group. On a single NVIDIA GeForce 3080Ti, the
speed of our full model is about 0.10s per group in CoCA [44] (about
16 images per group), 0.12s per group in CoSOD3k [8] (about 21
images per group), and 0.23s per group in CoSal2015 [37] (about 40
images per group). The speed of the naive model is about 0.09s per
group in CoCA, 0.10s per group in CoSOD3k, and 0.20s per group
in CoSal2015. We also evaluate the inference time and speed on
the benchmark proposed by [46]3, and compare them with recent
models. Following the original papers, we set the input shape of
DCFM [34] and our models to 224 × 224, and the input shape of
GCoNet+ [45]/MCCL [46]/DMT [17] to 256 × 256. We also utilize
fvcore to calculate the FLOPs of these models4, and count the num-
ber of their parameters. The results are shown in Table 3. Though
our model is heavier than previous ones in terms of parameters,
its computational complexity does not show a significant increase
compared to DCFM [34] and GCoNet+ [45]. Although MCCL [46]
has a very lightweight structure, its inference speed is slower than
our model. In summary, our model outperforms previous models in
most evaluation metrics while maintaining competitive inference
efficiency.

Table 4 illustrates the distribution of parameters and computa-
tions across the modules of our model. It can be observed that the
encoder occupies a substantial portion of the parameters, while the
calculation is concentrated in the encoding and decoding stages.
2https://github.com/zzhanghub/eval-co-sod
3https://github.com/ZhengPeng7/CoSOD_fps_collection. The original benchmark is
used on an A100, while we evaluate all models on a 3080Ti to get the results in Table 3.
4The batch size is set to 1 for all models when checking FLOPs.
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Table 4: Detailed statistics of the full model.

Module #params FLOPs

Encoder 86.2M 17.7G
Consensus Extraction 15.8M 0.2G
Consensus Dispersion 42.9M 6.1G

Decoder 11.8M 10.7G

Total 156.7M 34.7G

B ADDITIONAL EXPERIMENTAL RESULTS
The paper has presented the ablation studies on the proposed con-
sensus extraction and dispersion modules. In this section we ex-
amine the design of other components in the pipeline. As in the
paper, CoCA [44] is used as test set, since it contains the most
challenging examples and thus can clearly showcase the impact of
different designs. Due to time constraints, each ablation experiment
is conducted only once. Although there may be some randomness,
the trend of the results is quite evident in most cases.

B.1 Encoder Pre-training Scheme
We first focus on the encoder, and analyze the impact of CLIP pre-
training. As shown in Table 5, we compare the default pre-training
and fine-tuning scheme with three other settings: training from
scratch, using the pre-trained weights without fine-tuning, using
the pre-trained weights and fine-tuning it with the learning rate
setting to the same value as other modules. It can be clearly seen
that the default setting achieves the best performance, which shows
the importance of both the priors from large-scale pre-training and
the task-specific information from the downstream fine-tuning.

Table 5: Impacts of encoder initialization and training
scheme.

Encoder 𝐸max
𝜉

↑ 𝑆𝛼 ↑ 𝐹max
𝛽

↑
trained from scratch 0.699 0.593 0.387
pre-trained & frozen 0.759 0.645 0.527

pre-trained & fine-tuned (0.1× lr) 0.804 0.707 0.598
pre-trained & fine-tuned 0.742 0.646 0.478

B.2 Number of Layers
Next, we carry out the ablation experiment on the number of IL-
IAT/ITD layers. Note that the number of GSAT layers should always
be the number of ILIAT layers plus one (when #ILIAT>0), so it is
not mentioned explicitly here.

The results in Table 6 indicate that the existence of these two
modules brings about the most significant performance improve-
ment, while the impact of changing their number is relatively small.
Concretely speaking, adding ITD layers has a greater benefit than
adding GSAT and ILIAT layers. It reveals that the naive model
requires more improvements in the dispersion stage rather than
the extraction stage, which is consistent with the findings of the
ablation experiments in the paper. Moreover, adding more layers

to the default setting (#ILIAT=2, #ITD=4) will not further improve
the performance. This may be due to overfitting caused by the
over-complex consensus learning.

Table 6: Impacts of the number of layers.

#ILIAT #ITD 𝐸max
𝜉

↑ 𝑆𝛼 ↑ 𝐹max
𝛽

↑ #params
0 0 0.804 0.707 0.598 99.6M
2 2 0.828 0.734 0.623 140.1M
2 4 0.831 0.741 0.631 156.7M
4 2 0.830 0.736 0.623 152.8M
4 4 0.825 0.727 0.615 169.3M

B.3 Loss Functions
Table 7 shows the ablation study on the loss functions. Two loss
functions are employed in our model, namely the Binary Cross
Entropy (BCE) loss and the Intersection over Union (IoU) loss. As
mentioned in [45], IoU loss supervises the model on the region level,
while BCE loss helps the model focus on details. Experiments also
show that combining these two losses leads to better performance
than using either one independently.

Table 7: Impacts of the loss functions.

IoU loss BCE loss 𝐸max
𝜉

↑ 𝑆𝛼 ↑ 𝐹max
𝛽

↑
✓ 0.820 0.724 0.626

✓ 0.822 0.728 0.613
✓ ✓ 0.831 0.741 0.631

B.4 Iterative Refinement
As suggested by the reviewer, we carry out an experiment on the
effectiveness of the iterative refinement (in the consensus extrac-
tion module). The iterative refinement uses multiple GSAT-ILIAT
process. It means that the extracted consensus from one GSAT layer
is further refined by the following ILIAT layer and GSAT layer, uti-
lizing local details obtained from the hierarchical structure. Table 2
has already proven the effectiveness of GSAT and ILIAT separately.
Here we compare the default full model (with 3 GSAT layers and
2 ILIAT layers) against a model with less iterations (i.e. 2 GSAT
layers and 1 ILIAT layer). The results are shown in Table 8. It can be
concluded that introducing the iterative process in the consensus
extraction stage can better refine the consensus representation with
local details, thus enhance the overall performance.

Table 8: Impacts of iterative refinement.

#GSAT #ILIAT 𝐸max
𝜉

↑ 𝑆𝛼 ↑ 𝐹max
𝛽

↑
2 1 0.828 0.730 0.625

3 (default) 2 (default) 0.831 0.741 0.631
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