Weakly-Supervised Hashing in Kernel Space

Yadong Mu, Jialie Sheh, Shuicheng Yah
!National University of Singaporeelemy, eleyans@nus.edu.sg
2Singapore Management Universityhen@smu.edu.sg

Abstract

The explosive growth of the vision data motivates the
recent studies on efficient data indexing methods such as
locality-sensitive hashing (LSH). Most existing approesh
perform hashing in an unsupervised way. In this paper we
move one step forward and propose a supervised hashing
method, i.e., the LAbel-regularized Max-margin Partition
(LAMP) algorithm. The proposed method generates hash
functions in weakly-supervised setting, where a small por-
tion of sample pairs are manually labeled to be “similar”
or “dissimilar”. We formulate the task as a Constrained
Convex-Concave Procedure (CCCP), which can be relaxed
into a series of convex sub-problems solvable with efficient
Quadratic-Program (QP).

teristics including: 1) most existing LSH approachesraly 0  Figure 1. lllustration of the motivations fonaximum margin par-
linear feature representation. Unfortunately, kernetls tition andside information regularizatioin hashing. Figure (a)
are often more natural to gauge the similarity between vi- shows two hash functions which result in different margion
sual objects in vision research, which corresponds to prob- the same distribution. While figure (b) illustrates how sifer-
ably infinite-dimensional Hilbert spaces. The proposed Mation ('”_th'f example, three sample pairs are manuallgiéab
LAMP has a natural support for kernel-based feature repre- © P€ "similar”, denoted by triangle, stars, and squaredsbae-
sentation. 2) traditional hashing methods assume uniform spectively) Ican gur']de _mr?r;s_ reasonable hashing chleme' tin bo
data distributions. Typically, the collision probabilipftwo ~ o>c > Fesults on the right figures are more reasonable.
samples in hash buckets is only determined by pairwise sim-

ilarity, unrelated to contextual data distribution. In con
trast, we provide such a collision bound which is beyon
pairwise data interaction based on Markov random fields

d ganization and data access for various vision applications
The key research problems include similarity metric learn-
theory ing between pairwise data, and retrieval of nearest neigh-

. . : . _bors given any query datum. For the former, numerous al-
Extensive empirical evaluations are conducted on five 9 y query

widely-used benchmarks. It takes only several seconds toqorithms have been proposed, especially the kernel-intluce

generate a new hashing function, and the adopted ran-.mm_ri.C [8]. While for the latter problem, Iine_ar scan is an
dom supporting-vector scheme enables the LAMP algo_mtumve and common method, yet computationally forbid-

rithm scalable to large-scale problems. Experimental re- s::i';g;I:rg?éifgftgi:zfi'tj’xgcg;g;ﬁl\tgea?egﬁ:ﬁﬂ:em0
sults well validate the superiorities of the LAMP algorithm PP 9 9 '

eI i . A bunch of ANN algorithms were proposed based on the
over the state-of-the-art kernel-based hashing methods. concept oflocality-sensitive hashing_SH) [7]. Given a

similarity metrics«(-, -) in the feature space, the LSH algo-
rithms typically guarantee the probability for any two sam-
plesz; andzx; falling into the same bucket to be the quantity

Recent rapid growth of visual data brought by Internet (i, x;), known as the *locality sensitive” property.
has erose great interest in techniques for efficient data or- Despite of the notable success from LSH related algo-

1. Introduction



rithms [12, 13], several importantissues are seldom tackle transform. Although this assumption only holds under very
in related literature, which are however very common in re- mild conditions, the proposed kernelized LSH gains success
search topics like object recognition and image annotation in several vision benchmarks.
. ) To our best knowledge, rare prior work was devoted to
1 I\/I_any_ vision d_atasets are constructed accompanledhashing with side information. Typically metric learnirgy i
with rich side information, such as the category la- o tormed from these side information beforehand [8], ei-
be_ls of Caltech-101 images ary_j the tags qttached 10 thep ey monolithic, group, or per-category based [2], anditrad
Flickr or YouTube Qata. Trgd|t|onal hg;hlng methods tional hashing is then called afterwards. However, the per-
only guarantee a high collision probability for samples ¢, ,ance of metric learning heavily depends on the quality
that are near in the feature space. However, due 0 they ija information, and is not scalable for large-scal@vis
semantic gap between low-level features and Seman-y,iasets on the order of millions or billions.
tics, feature proximity is sometimes inconsistent with
semantic similarity. A straightforward solution is to .
utilize this side information as regularization term dur- 3. The LAMP Algorithm
ing hash table construction. 3.1. Basic Idea

2. Kernel tricks are very popular in computer vision re- Figure 1 illustrates the main idea of our proposed Label-
search owing to its great potentials in handling nonlin- regularized max-margin partition (LAMP) algorithm. We
early separated data. For example, in bag-of-featureshave the following three observations:

(BOF) model, images are represented as collections of

orderless feature points, and thus the kernel function 1. Side information, such as “similar” or “dissimilar”
(e.g., intersection kernel) is a more natural choice for constraints, or label (tag) information, provides useful
data similarity measure. It arises the challenge for data cues for more reasonable hashing results, as seen from
indexing: how to construct hash table in kernel spaces? the example provided in Figure 1.

The above two issues motivate our work in this paper. 2. Larger margin between hash-induced partitions usu-

We propose a label-regularized maximum-margin partition ally indicates better generalization ability to out-of-
(LAMP) method (see Figure 1), to enhance hashing quality sample data. Denote the resulting margimasAll

by using kernel-based similarity and additional small num- query data falling within%v-neighborhood can be cor-
ber of pairwise constraints as side information. rectly judged, thus largey potentially implies lower

error rate in similarity search.

2. Related Works . . o
3. Although Figure 1 illustrates the case in linear fea-

For similarity search problem, unlike classic KD- ture space, however, image kernels are more natural
Tree [3], LSH is effective even in high-dimensional fea- choices for similarity measure in various vision appli-
ture spaces. One popular method in LSH is to generate cations. A hashing algorithm supporting kernel-based
a random vectoh from a particular probabilistic distribu- representation is especially useful.

tion, e.g.,p-stable distribution [5] fow?-metric space, and

bucket data according to the sign of the projected value on3.2. Notations
h. See [1] for a brief survey about LSH-related algorithms.
In this work we are particularly interested in kernel-based
hashing, which has wide applications in computer vision.
The state-of-the-art and possibly the only work was pro-
posed by Kulis et al. in [9], where random hyperplane-
based hash functions are generated to build buckets, base
on Central Limit Theoren{CLT) in kernel-induced Hilbert
space. Recall that traditional LSH requires random vectors
generated from a particular Gaussian distribution, e.igh, w
zero-mean and identity covariance matrix, which is unfor-

tunately infeasible in kernel space. The work in [9] per- T = Q(|jwl7) + Zf(—yif(xi))- 1)

Suppose we are given a collection of data poifits=
{z;}i=1..n wherez; lies in a linear vector space (maybe
of infinite dimensionality in kernel space). A hash function
can be equivalently regarded as a partition function which
aivides the original data space into two parts. Denote the

ash vector ag, the real-valued response of datupabout
w as f(z;), and the final partition label ag. Based on a
margin-oriented criterion, the binary partition task can b
formulated as below:

formed kernel-based hashing based on a fact revealed by

CLT, i.e., for sufficiently manyindependent identical dis-

tribution (i.i.d.) samples, their summaticn = %ZE:I T where(2 and{(-) denote the regularization function about
is distributed according to a multi-variate Gaussian, &ed t  functional norm||w||+ in Hilbert spaces (monotonically in-
desired hashing function can be obtained by a whiteningcreasing), and loss function of “margin’f (z) (typically



convex) respectively. The most popular definitions &re
norm Q(||wlj») = 3|lw|* and hinge los¢(z;) = (1 —
vif(z:))+, where the subscript indicates a cutoff at zero
to guarantee non-negativity. When handling non-lineaa dat
distributions, the so-called “kernel trick” is utilized.aEh
sample is transformed into an implicit Hilbert space (proba
bly infinite-dimensional) via a mapping functia{-). Fol-
lowing the representer theorem [1@}, can be expressed

as a linear combination of the mapped data vectors, i.e.,

w = Zle a;¢0(x;), whereq; represents the unknown pa-
rameter.

YiYj

(a) (b)

Figure 2. lllustration of the hinge-shaped loss functiéf$in (a)
and regularizefi(-) in (b).

In this paper we adopt the term “side information” to de-
note any user-supplied “similar” or “dissimilar” consings

between two samples. For example, when the data are par-

tially labeled, it is reasonable to expect samples shahiag t

same label to stay in adjacent hash buckets, toggling an ex-

tra penalty when they are projected into different panisio
Hereafter the constraint set for all the side informatiatas
noted agd,. We can then add another regularization term

to enforce the consistency between hashing partitions and

constraints (for clarity, we assuné, only contains “sim-
ilar” constraints, and the extension to “dissimilar” case i
straightforward):

Q(||w|) +Ze —yif () + A > A )
0c0,
Prior study in [6] adopted Laplacian los§z;) — f(y;)| for

regularization termii(-). Although retaining convexity, this
form, however, triggers unexpected high penalty when two
samples stay in the same partition yet have a large distance
To avoid this issue, here we propose an alternative definitio
of the regularizefi(-) as below:

h(bs.5) = {(_

Itis linear and convex with respectigy;, analogous to the
traditional hinge loss iSupporting Vector MachingVM).
See Figure 2 for an intuitive comparison.

Following the traditional notations in max-margin for-
mulation [11], we arrive at the following optimization prob

0,
Yili)+s

Yi = Yj

Yi Yy ®)

lem:
min wl® + Z@ = =G @
w,b,§,C,y P
€O,
s.t. yi(whe; +0)+& > 1, & >0, Vi,
vy + Cij >0, G; >0, V(i,5) € O,.

3.3. Random SV and Relaxation

For data sets of large size, the problem in (4) is compu-
tationally prohibitive. In this work we propose the idea of
“random supporting vectors” to reduce the computational
burden. Namelyy data are randomly sampled frotand
serve as the supporting vectors (SV). In other woud$s
expressed as below:

vig(x1) + vag(w2) +
[d)(xl)v e 7(775(:610)] v

Moreover, since in LSH-related algorithmsis always set
to be sigriw? x;+b), theny; (w’ z;+b) is consequently non-
negative and can be equivalently expresseflds:; + b|.
Another crucial relaxation of the formulation is to replace
yiy; With (w”z; +b)(wTx; +b), such that variableg’s are
eliminated in the optimization. Finally, we get the modified
formulation:

w o vpd(ap)

. 1 7
o PO E G ©
0695
st WThki4+bl+& > 1, (6)
(VTkji + b)(l/Tkj + b) + C’ij >0, (7)

& >0, Vi,
CZ]ZO v(a])€®sv

whereG is ap x p Gram matrix computed from theran-
dom supporting vectors, arig denotes the inner products
between thé-th sample and ajp supporting vectors.

To optimize Problem (5), however, is difficult since it
is non-convex and nonlinear. In the following subsections,
we first point out its relationship witbonstrained-concave-
convex-procedurCCCP) (Section 3.4), and then present
the relaxed convex sub-problems in each iteration (Sec-
tion 3.5), together with the efficient cutting-plane basd&t Q
solver (Section 3.6). An overview is provided in Algo-

rithm 1.

3.4. Concave-Convex Procedure

Notable acceleration is possible based on the observation
that Problem (5) is actually a special casecohstrained-
concave-convex-proceduf€CCP) [17, 15], which targets
at optimization problems in the following forms:

fo(x) - 90(33)
filz) = gi(2) <

(8)

min
€T

s.t. i=1,...,m,



fort=1...t,4 dO
Relax the CCCP problem into convex sub-problem

J; using Taylor expansion (Section 3.5), and
initialize (ww, bt70) = (wt, bt),
fork=1...knq: do
1. Calculate the cutting planes at location
(wk, bt i) and add into the constraint set;
2. Use Quadratic-Program to solve the reduced
cutting-plane problem (Section 3.6) and obtgin
a new solutionwy k+1, bt k+1);
end
end

Algorithm 1: The LAMP algorithm

where f; andg; are both real-valued convex functions. In
other words, both the objective amd constraints are the

difference of two convex functions. Assume the Hessians

of all g; are positive semi-definite, in theth iteration an

upper bound of objective value can be achieved by replac-
ing g; with its first-order Taylor expansion around current

solutionzy, i.e., T(g(xt)) = g(xt) + Org(xe)(x — ),
whered, g(x+) denotes the first-order derivative gfz) at
Tt.

convex solvers. The value of parametds then updated to
getz;41. Given an initial valuer,, the solution serie$x; }

obtained by CCCP is guaranteed to reach a local optimum.
For Problem (5), the objective is convex and the con-

straint (6) is difference-of-convexu(! k; + b| is convex).

And constraint (7) proves to be convex after some trans-

forms. For clarity we use the abbreviatign= v"k; + b
andf; = v*k; + b, and then we have,

fifi+C; 20 & [P+ fi+2fifi+26; > f2+ 17
1 1 1
= §(fi+fj)2+gij > §ff+§ff
1%
b

inequality can be further transformed into the following
difference-of-convex form:

1 ~ 1. ~
—VT(ML' + Mj)V — §Z/TML'J‘Z/ — C’ij S 0

2
M; =0, Mj =0, Mj; =0

After introducing a new notatiowr = , the above

where the operator denotegpositive semi-definiteMatri-
cesM;, M; andM;; can be calculated frork; andk;. For
example, it is easy to verify that

kikT L(ki + k)

Mi' = )
T (ki k)T 1

The sub-problem obtained by Taylor expansion is in
a simpler convex form and can be solved by off-the-shelf

3.5. Taylor Expansion att-th Iteration

Before proceeding, this subsection elaborates on the
detailed convex sub-problem at tieh CCCP iteration.
Firstly, note thatv'k; + b| is non-smooth, whose derivative
possibly doesn't exist at some locations. In this situatien
replace gradient with the subgradient [4] alternatively:

ok +b] =
Ol ki +b] =

ki - sign(vy ki + by),
sign(v] k; + by).

The Taylor approximations for constraints (6) and (7) are
then expressed as:

ki +b ~  (Tki+0)-sign(v) ki + ), (9)
1. _ " 1_
3 TML-jz/ ~ l/tTML'jl/ — §VtTMith' (20)

The number of slack variablgs equals to the data number
while the number of;; equals to the cardinality of séi;.
Here we introduce another two variables to reduce the pa-
rameter number, i.e., &€t = >, § and¢ = ) o Gij-
Putting everything together, finally we obtain the optimiza
tion problem in the-th iteration:

1
min ~vTGr +

A A
T = Zer 22 (1)
n n

10,8,

which is subject to the following two convex constraints:
3 (1 — (VTk; +b) - sign(v] k; + bt)) :
- +

1. SO 1_
Z (QVT(ML' + Mj)V — VtTMijV + §l/tTMith)
+
0O

£ = 12)

¢ =

3.6. Optimization with Cutting Plane

CCCP-based relaxation produces a sequence of sub-
problem7;, t = 0...tq: asin (11). However, solving
Problem (11) is still difficult and time-consuming since the
variablesé, ¢ andv are highly coupled. A practical way
is to accelerate using Cutting-Plane (CP) method [14]. In
CP terminology, the original Problem (11) is usually called
master problemBoth variableg and( can be regarded to
be nonlinear functions af. For example, fot, we have,

(@)=Y (1 (T + b))+,

i

(13)

whereci = sign(v'k; + b:) is fixed throughout the-th
CCCP. Assume CP method takes at miast,,. iterations
to converge for optimizing7;, and denote the optimum in
its k-th iteration as ;. The basic idea of CP method is to
maintain a collection of linear constraints, substituibmigy-

thus Problem (5) is a CCCP problem, and can be solved byinal nonlinear ones like in (12). This constraint set isi@hit

general CCCP solutions.

ized empty and expanded immediately after obtaining a new



solutionz, ,, according to the following rule: sincgv) is In Figure 3 we show the objective value’s evolutionary
convex and has positive semi-definite Hessian matrix, it cancurves of both the reduced cutting-plane problem and the
be approximated around ; by a linear inequality: correspondingnaster problenin (11), which are captured

~ ~ -~ o~ ~ during the experiment on the massive MNIST-Digit bench-

§0) = E@r) + 0kl - (7 = Dp), VP ERMTL, (14) Lo The cu?ves validate the fact that cutting-plane metho

whered, ¢ denotes any subgradient §fv) at v, ;. The provides a lower bound of original master problem with
case of¢(v) is similar. These linear constraints are called convergence guarantee. In practice it typically converges
cutting planesin CP terminology. The optimization pro- in fewer than 10 iterations. Refer to [15] for the detailed
ceeds using efficient Quadratic-Program (QP) solver anddiscussion about the convergence property of outer CCCP
terminates until no salient gain when adding more cutting- l0op.
plane constraints. In other words, denote the sub-problem
in the t-th CCCP and thé-th Cutting-Plane as/; ;. The %

. LV . —— Master problem
optimum sequencg’,, k = 0. .. kyq. monotonically in- 300f —E— Reduced cutting-plane problem| |
creases until the convergence to the optimal solutiag,of

3.7. Practical Issues

Objective values
N
o
o

A trivially “optimal” solution is to assign all data to the
same partition, and the resultant margin will be infinite-pos
itive. To prevent such a meaningless solution, a partition-

balance constraint is required. A possible solution is to en 5053 4 6 s 10 12 "
force*l § % Z:Lzl (l//k'i + b) § l, Whel’el iS a pre-deﬁned Number of cutting-plane iterations
constant (fixed to be 0.1 in our implementation). Figure 3. Evolutionary curves of the inner cutting-planego

Another important strategy is to reduce the correlation
between randomly-generated hash functions. We capital- . -
ize on the similar idea in [16]. Stacking the hash hijts 4.2. Bayesian Collision Bound
i = 1...n of all data into a ha_sh-value vector_, we prefer In this sub-section we give a bound for two samples’
lower squared Pearson coefficients between different hashcollision probability in the constructed hash buckets from
value vectors. Moreover, this additional penalty can be a Bayesian point of view. Recall that the object function to
seamlessly incorporated into the quadratic tgu Gv. optimize is as follows (shift variableis ignored for clarity

_ ) _ without loss of generality):
4. Algorithmic Analysis ) \ \
— 2 1 T A2 s
4.1. Complexity and Convergence Jo = gllwl” + = > (1 -yl + o > (—wiyj)+-
i 00

In our formulation, each sub-problegt ; is a convex . . )

quadratic program witlp + 2 variables f represents the Associating each sample with a random variable, and mod-

number of random supporting vectors) and at st eling the data intera_cti_on _vvith Markov_ Random Fields
linear constraints, and can be efficiently solved using off- (MRF), the above optimization problem is then equivalent
the-shelf convex QP solvers. In practice we use the built-in 10 Maximize the following joint probability:
QP solver in the MOSEK optimization package. 1, A -

The value ofk,,,.. reflects the convergence speed of the P,y < exp ( - §Hw|| ) H GXP{ - ;(1 - Yiw ﬂfi)+}
cutting-plane method. Assume the cutting-plane procedure d
h_alts when satisfying Fhe-_optlmallty condition, i.e., the H exp{ _ &(—yiyjh}’ (15)
difference between objective values of the master problem n
and reduced cutting-plane problem is below a threshold
An important observation is that,,., is actually upper-  whereexp(—1||w||*) can be regarded as a priori knowledge
bounded by a constant only relatedeio\; and A,. The aboutw, while the other two are uniary and binary poten-
conclusion follows from two facts: 1) The objective value tials respectively. The binary potential reflects the inpac
of Problem (11) is upper-bounded singe b) = 0 is a fea- of side information. Note that under our proposed-
sible point in the master problem. 2) The amount by which dom supporting vectorschemew is subject to specific
the solution increases by adding one constraint is lower- parametric-form distribution. Specifically, with in total
bounded by a constant determinedeby; and; (see [14] training data ang) random SVs, denotH to be a distri-
for details). Consequently, the algorithm can only perform bution which can generatelength zero vectors; except
a constant number of iterations before termination. for p entries being one (the opportunity to get a value one

0€O



is identical for every entry). For any; € II, under a mild
assumption that globally optimal solution conditionedmgn

is unique and feasible for some polynomial-time optimiza-
tion method (cutting-plane method in our implementation,
which we suppose can achieve good enough solution that
is approximately globally optimal), unique* andy* are
determined under above assumptions by solving the opti-
mization problem:

w', Yyt =argmax P, ,, w~ m, (16)
w.y

The estimations of andy consequently determine an-
other binary-valued random variablg; which values 1
wheny; = y;, otherwise 0. Finally we can expressed the “ -
collision probabilityPr(y; = y;) of datai, j as an integral Local-Patch Tiny-Image
of §;; over distributionlI:

Figure 4. Example images used in the experiments.

(yi =y;) = /51‘3‘ drm;. (17)
one background class. Each class contains tens of exam-
Note thatPr(y; = y;) not only depends on the two data, ples, forming a median-scale data set{X images). We
but also are affected by the contextual data distribution f  adopt Caltech-101 since many existing algorithms on im-
damentally differing from traditional collision bound&éi age kernels [9] use it as a test bed. Specifically, we first ex-

in [5]. tract three kinds of local features, including geometria pl
_ PCA-SIFT, pyramid histogram of visual words (PHOW).
5. Experiments After that, intersection kernels on histograms are catedla

MNIST-Digit 2 is built for handwritten digits recognition.
Among the total 70K examples, there are 7K images for
each digitin0 ~ 9. In practice, eacB8 x 28 digitimage is
transformed by matrix-to-vector concatenation and normal
ized to be unit-length feature.

CIFAR-10%is a labeled subset of the 80 million tiny images
dataset, containing 6082 x 32 color images in 10 classes
(6K images for each class). The dataset is constructed to
learn meaningful recognition-related image filters whese r

Our evaluations consist of two parts, on benchmarks ei-
ther with groundtruth labels or not. For each data $&%
samples are used for hash table construction, and the eest ar,
used for testing. Most databases are of large size~x9K7
million), thus we randomly sample (n = 2000 by default
in practice) data from the whole benchmark as working set,
which proves to enhance efficacy without much loss of ac-
curacy. On most benchmarks (except for Caltech-101), we

2
adopt the Gaussian kern&l(z;, z;) = exp (*nyiiw) sponses resemble the behavior of human visual cortex. In
where the scaling factoy takes three value$) (5o, o and  the experiment we use the 387-d GIST image feature and
50 respectivelyg is the standard variation dfc; — x;||). Gaussian kernels.
The resultant three kernels are flna”y combined with uni- In Figure 5we p|0t the retrieval performance on Caltech-

form weights. For the parameters in our formulation, by 101, MNIST and CIFAR-10 using KLSH and the proposed
default we set\; = 80 andA; = 10. For the number of | AMP. Following the evaluation scheme developed in [16],
random supporting vectors, we get 40 for the firstthree e collect all samples falling into hash buckets below a
experiments, and= 100 for others. It takes roughly~ 15 fixed un-normalized Hamming distance (2 in our experi-
seconds to generate a hash function on our common deskments), and calculate the percentage of “good neighbors”
top PC, depending on the maximum iteration before con- (those having same labels with query sample). In case of
vergence. All experiments repeat 10 times, and the reportedewer than 100 searched data, the threshold of Hamming
averaged results are compared with the state-of-the-art Ke distance will be increased until collecting enough nearest
nelized Locality-Sensitive Hashing (KLSH) in [9]. neighbors. By default two “similar” constraints are ran-

. domly generated for each data, resulting in 4K random con-
5.1. Data Sets with Labels straintsgin all. It can be observed that%he performance of
We adopt three benchmarks with labels as below: our proposed LAMP outperforms pervious KLSH on all
Caltech-10% is one of the most popular benchmarks for three databases. Performance superiority of LAMP is es-
object recognition, containing 101 distinct categoried an

2http://yann.Iecun.(:om/exgb/mnist/
Ihttp://www.vision.caltech.edu/ImagBatasets/Caltech101/ Shttp://www.cs.toronto.edlfiz/cifar.html
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Figure 5. Hashing evaluation on Caltech-101, MNIST-Digitd CIFAR-10. The first row shows the percentage of “goodhi®g’, while
the second row illustrates the averaged retrieved sampibers using 1K randomly-generated queries.

pecially obvious when the number of hash bits is small, in enhance hashing quality using the following trick: we can
terms of both count of searched samples and percentage afandomly generate a bunch of sample pairs that are among
good neighbors. When the number of hash bits continu-k-nearest-neighbors during linear scan, and impose them as
ously grows, KLSH tends to produce increasingly smaller “similar” constraints. In this way we conduct the evalua-
pieces by cutting strongly-correlated data cliques. In-con tions on the following two data sets:
trast, LAMP tends to keep the integrity of those cliques, Local-Patch is comprised of roughly 30082 x 32 sub-
resulting in a more slowly and stably decreasing number of images extracted from photos of Trevi Fountain (Rome),
searched samples, as seen in the second row of Figure 5. Notre Dame (Paris) and Half Dome (Yosemite). The goal
We also investigate the impact of different parameter is to evaluate fast algorithms which retrieve the correspon
choices in Figure 6. First, by raising the parameter of ran- ing patches given a query patch. We compute 128-d SIFT
dom constraint number per datum, a significant increasevector for each subimage, and utilize a uniform combina-
of retrieval accuracy can be observed, which is in accor- tion of three Gaussian kernels.
dance with the intention of “similar” constraints. In the Tiny Image® consists of over 80 Million images crawled
second experiment, to validate the influence of side infor- using Google’s image search engine. Here we focus on a
mation, accuracies on CIFAR-10 under varying parametersubset of Tiny Image, which contains roughly 1.7 Million
Az are presented. Whek, = 0, it is equivalent to not use  images scaled to the resolution3% x 32 pixels. Follow-
side information and only rely on the max-margin criterion. ing [9], 384-d GIST feature vectors are extracted and the
It is observed that more side information (i.e., large) similarity is measured through multiple Gaussian kernels.
brings better performance. Finally, we plot the performenc  Figure 7 shows the results. In each experiment, 2K sam-
curve under different values. The performances are stable ples are randomly selected, each of which contributes four
and slightly increase under larggrvalues, which proves  similar constraints generated from its 4-nearest-neighbo

LAMP’s robustness t@. Each single hash function is working with = 100 sup-
porting vectors. Compared with unsupervised KLSH, the
5.2. Data Sets without Labels performance enhancement brought by the weak supervi-

sion and max-margin criterion is significantly observalile o

Although learning with labels or tags becomes popu- both data sets

lar, such information is still missing in many vision bench-
marks, or FOO noisy to use. AlthO.Ugh the LAMP glgorlthm “http://phototour.cs.washington.edu/patches/defzuit.
is not designed for such scenarios. However, it can still  Shttp:/people.csail.mit.edu/torralba/tinyimages/
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6. Conclusions 4]

We presented a novel hashing algorithm named LAMP, [s]
which generates high-quality hash functions with kernel
tricks and weak supervision. The problem is formulated
within a regularized maximum margin framework. More-
over, we provide a bound for the collision probability in the
hash buckets based on Markov Random Fields theory. The
proposed method makes no assumptions about the distri-
bution of the input data, thus can be immediately applied [9]
to any image databases. The LAMP algorithm adopts a ran-
dom sampling strategy in constructing both working set and
supporting vectors, which enables it scalable for largdesc
datasets. Empirical evaluations show its superiority tiver
state-of-the-art kernelized hashing algorithms.
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