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Abstract

Exact recovery from contaminated visual data plays an
important role in various tasks. By assuming the observed
data matrix as the addition of a low-rank matrix and a
sparse matrix, theoretic guarantee exists under mild con-
ditions for exact data recovery. Practically matrix nuclear
norm is adopted as a convex surrogate of the non-convex
matrix rank function to encourage low-rank property and
serves as the major component of recently-proposed Ro-
bust Principal Component Analysis (R-PCA). Recent en-
deavors have focused on enhancing the scalability of R-
PCA to large-scale datasets, especially mitigating the com-
putational burden of frequent large-scale Singular Value
Decomposition (SVD) inherent with the nuclear norm op-
timization. In our proposed scheme, the nuclear norm of an
auxiliary matrix is minimized instead, which is related to
the original low-rank matrix by random projection. By de-
sign, the modified optimization entails SVD on matrices of
much smaller scale, as compared to the original optimiza-
tion problem. Theoretic analysis well justifies the proposed
scheme, along with greatly reduced optimization complex-
ity. Both qualitative and quantitative studies are provided
on various computer vision benchmarks to validate its ef-
fectiveness, including facial shadow removal, surveillance
background modeling and large-scale image tag transduc-
tion. It is also highlighted that the proposed solution can
serve as a general principal to accelerate many other nu-
clear norm oriented problems in numerous tasks.

1. Introduction
Visual data which are corrupted either by sensory noises

or interferential outliers during data acquisition frustrate
many computer vision algorithms, which motivates many
robust estimation methods such as RANSAC [5] in the past
decades. Recent years have witnessed a surge of sparsity-
oriented robust learning. Early study in machine learn-
ing revealed empirical superiority of �1-norm regulariza-
tion over that based on �2-norm. This rough message soon
spread to other related research fields and inspired the in-
vestigation of other forms of sparsity. The sparse learn-
ing methods have reshaped a large part of the computer

vision research and are undergoing a continuing progress
from both theoretic and practical aspects.

In this paper we focus on visual recovery that can be
cast as a low-rank matrix recovery problem, which favors
sparse singular value structures for the recovered data ma-
trix. Such a sparsity prior gains notable successes in var-
ious applications, including face processing [16], movie
recommendation [11] and even photometric stereo [19].
Specifically, matrix nuclear norm was employed to enforce
such sparsity. We investigate an important sparse learn-
ing framework named Robust Principal Component Anal-
ysis (R-PCA) [16]1 in the literature, which restores the true
subspace structure by identifying sparse residuals from the
observed data matrix.

Our main contribution is the exposition of a principled
accelerated R-PCA algorithm for visual recovery, which
radically differs from previous efforts on enhancing the
scalability of R-PCA. One major source of previous low op-
timization efficacy stems from estimating the singular struc-
tures of large-size matrices. To address this issue, we ad-
vocate utilizing the recent idea of “compressed optimiza-
tion” [2, 1, 15]. In detail, the data matrices are before-
hand compressed by projecting onto random matrices and
the optimization proceeds intelligently on either the origi-
nal or compressed data, balancing accuracy and computa-
tional expense. In Section 4 we employ such an idea to ac-
celerate the time-consuming nuclear norm regularized opti-
mization. Theoretic analysis regarding efficiency gain and
performance loss is later provided in Section 5 and empiri-
cal validation on several vision benchmarks is presented in
Section 6. It is also highlighted that this principled idea can
be adapted to other nuclear norm oriented problems [11].

2. Related Work
The relevant literature to our work mainly originates

from the following lines of work:
1) Compressed Sensing: Namely it studies the process

of acquiring and reconstructing a signal utilizing the prior

1Although being spiritually similar, another line of work (e.g., [7])
which also used the term “R-PCA” has fundamental difference to the work
discussed here. We stick to the notation without expected confusion.
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knowledge that it is sparse or compressible. Under mild
conditions a sparse signal can be reconstructed from lim-
ited number of observations, even nearly all of which are
corrupted [17]. Equipped with reasonable visual dictionar-
ies or bases, many tasks in computer vision can be similarly
cast as seeking a sparse coefficients on the bases and solved
by techniques borrowed from compressed sensing. Several
successful applications have been presented, including face
recognition [18, 14] and image super-resolution [20].

2) Nuclear Norm Oriented Learning: The idea of low-
rank matrix can be regarded as extending the concept of
“sparse vector” to the matrix field. However, matrix rank is
neither continuous nor convex, which complicates the pur-
suit of global optimum. A popular surrogate function is
the matrix nuclear norm (also known as trace norm or Ky
Fan k-norm in the literature), which is defined as the sum
of all singular values and a convex function. Srebro et al.
proposed max-margin matrix factorization (MMMF) [12]
for collaborative prediction, using matrix nuclear norm and
hinge loss to obtain a low-rank representation. Wright et
al. [16] demonstrated its success in surveillance background
estimation and facial shadow removal.

3) Compressed Optimization: It represents very re-
cent progress towards large-scale optimization. The ba-
sic idea is to sketch large data matrix using random pro-
jection. Representative work includes compressed least-
squares for over-determined linear system [2, 1] and com-
pressed non-negative matrix factorization [15]. In these
aforementioned works, the random matrices used for com-
pression are mostly produced from standard Gaussian dis-
tribution or randomized Fourier transform [9]. One recent
work by Shi et al. [10] discussed the random projection
using hashing, and successfully accelerated sparse coding
based face recognition. To our best knowledge, all of previ-
ous work along this line are focusing on the acceleration for
linear systems. Our work in this paper is the first one to in-
vestigate compressed optimization for matrix nuclear norm
based problems.

3. Preliminaries

3.1. Robust Principal Component Analysis

The generating procedure of real-world observations is
always suffering from noises and outliers. Assume the col-
lected data matrix D ∈ R

m×n has an underlying low-rank
structure, yet corrupted by sparse additive noises. Denote
these two ingredients as A,E ∈ R

m×n respectively. To
be immune to arbitrarily large errors, the ideal penalty for
error matrix E is the matrix zero-norm, i.e., counting non-
zero elements in the matrix. The initial formulation [16] can
be described as below:

min
A,E

rank(A) + λ‖E‖0, s.t. D = A+ E. (1)

Unfortunately, Problem in (1) is difficult to solve ow-
ing to the non-convexity and high non-smoothness from the
rank measure and zero-norm penalty. Similar to the trick
used in the vector-based optimization, we practically solve
the following relaxed form:

min
A,E

‖A‖∗ + λ‖E‖1, s.t. D = A+ E, (2)

where ‖ · ‖1 denotes the matrix �1-norm (i.e., the sum
of absolute matrix entries), ‖ · ‖∗ denotes the matrix nu-
clear norm and λ is a positive parameter for balancing. In
detail, suppose by Singular Value Decomposition (SVD),
Am×n = Um×mΣm×nV

T
n×n, where the subscripts describe

the matrix sizes. Both U and V are known to be orthogonal
and the (i, i)-th entry of Σ is equal to the singalur value σi

for i = 1 . . .min(m,n), otherwise 0. Nuclear norm is de-
fined as the sum of all singular values. It has been suggested
as a convex surrogate to the rank function, and proves to be
the convex envelope (smallest bounding convex function) of
the rank function on matrices with unit spectral norm [16].

3.2. Augmented Lagrange Multiplier Method

The optimization of R-PCA in (2) is straightforward by
observing that both the constraints and objectives are con-
vex. Normally it can be recast as a Semi-Definite Program
(SDP) and optimized by off-the-shelf interior-point solvers.
However, the Newton step in each iteration is computation-
ally expensive, which makes the scalability to large matrices
problematic. A naive implementation even consumes about
104 iterations to converge and runs 8 hours on a common PC
for a matrix of size 800× 800. Recent endeavor on acceler-
ated R-PCA [8] has employed the techniques such as Aug-
mented Lagrange Multipliers (ALM)2, which guarantees a
better convergence rate. In this subsection we elaborate on
a brief description for ALM in solving R-PCA. Particularly,
the general ALM method targets constrained optimization
problems as below:

min
X

f(X), s.t. h(X) = 0, (3)

where f(X) and h(X) are both convex. We can get the
augmented Lagrangian function:

L(X,Y, μ) = f(X) + 〈Y, h(X)〉+ μ

2
‖h(X)‖2F , (4)

where μ is a parameter that is increased in iterations. ‖ · ‖F
denotes the Frobunius norm of a matrix. We can relate the

2Note that ALM method has two popular variants, i.e., exact ALM and
inexact ALM [8]. The latter is faster yet sometimes converges to incor-
rect solutions, thus by default the notation ALM refers to the exact version
both in algorithmic discussion and experimental design until otherwise no-
tified. Extensions of the proposed algorithm to the inexact ALM and other
relevant methods (e.g., Accelerated Proximal Gradient [8]) are straightfor-
ward.
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general ALM method to R-PCA problem by identifying the
variable X = (A,E) and

f(X) = ‖A‖∗ + λ‖E‖1, h(X) = D −A− E.

The overall ALM optimization of R-PCA proceeds
by iteratively increasing μ (e.g., μk+1 = 2μk) in each
iteration and minimizing the resultant L(X,Y, μk) in
Equation (4). In each iteration, a global optimum is feasible
by alternatively optimizing either A or E with the other
variable fixed, i.e., the following two steps

Step-1: Update A with E fixed

Ak+1 = argmin
A

1

μk
‖A‖∗ +

1

2
‖A− (D − Ek +

1

μk
Yk)‖2F .

Step-2: Update E with A fixed

Ek+1 = argmin
E

λ

μk
‖E‖1 + 1

2
‖E − (D −Ak+1 +

1

μk
Yk)‖2F .

Both of above subproblems are verified to have closed-
form solutions. In detail, we define the following soft-
thresholding (ST) operator [3] for shrinkage purpose, i.e.,
Sε[x] = sign(x) · max(|x| − ε, 0). Assume W = UΣV T

by SVD, the optima for the subproblems can be directly ob-
tained from the ST operator:

USε[Σ]V
T = argmin

X
ε‖X‖∗ + 1

2
‖X −W‖2F , (5)

Sε[W ] = argmin
X

ε‖X‖1 + 1

2
‖X −W‖2F . (6)

4. Optimization by Projected Nuclear Norm
In the algorithm described in Section 3.2, the computa-

tional bottleneck in each iteration is the SVD computation
in Step-1, while other steps are amenable to parallelized ac-
celerating tricks. The full SVD of a 2000 × 2000 matrix
takes more than one minute on a common PC. Although
previous study proposes partial SVD for saving unnecessary
computations [8] under some scenarios, generally dense
SVD-related computations are unavoidable. The main-
stream of previous efforts on R-PCA acceleration mainly
focus on reducing iteration count before convergence. In-
stead, here we revisit this problem from a novel aspect. For
very-large data matrices (e.g., on the order of 104 × 104),
a plausible solution is to devise a surrogate nuclear norm
defined on a size-reduced matrix. Here we demonstrate this
possibility by utilizing the isometry-preserving random pro-
jection or hashing. Suppose the problem scale is m×n and
P = 1√

p · P̃ ∈ R
m×p (p � m), where P̃ is a random ma-

trix drawn from the Gaussian distribution with zero mean
and unit standard deviation. The original R-PCA is refor-
mulated as below:

minA′,A,E ‖A′‖∗ + λ‖E‖1 (7)
s.t. D = A+ E, A′ = PTA.

Algorithm 1: Accelerated R-PCA using linear pro-
jection and the exact ALM method

0 input: Observation matrix D ∈ R
m×n.

1 Y ∗
0 = 0; E∗

0 = 0; A∗
0 = 0; μ0

1 > 0; μ0
2 > 0; ρ > 1;

λ = 1/
√
m; k = 0;

while not converged do
2 A0

k+1 = A∗
k; E0

k+1 = E∗
k ; j = 0;

while not converged do
3 Ej+1

k+1 = S λ

μk
1

[D −Aj
k+1 + (μk

1)
−1Y ∗

k ];

4 (U,Σ, V ) = SVD(PTAj
k+1);

5 (A′)j+1
k+1 = US(μk

2 )
−1 [Σ]V

T ;

6 Aj+1
k+1 = p

m+μp
P (W2 − PTW1) +W1;

7 j = j + 1;
end

8 Y ∗
k+1 = Y ∗

k + μk
1(D −A∗

k+1 − E∗
k+1);

9 μk+1
1 = ρμk

1 ; μk+1
2 = ρμk

2 ; k = k + 1;
end

where A′ = PTA ∈ R
p×n is a projected low-rank matrix,

with smaller size than original m × n. The augmented La-
grange function for Problem (7) can be presented as below:

L(A′, A,E, Y, μ1, μ2) � ‖A′‖∗ + λ‖E‖1 + 〈Y,D −A− E〉
+
μ1

2
‖D −A− E‖2F +

μ2

2
‖A′ − PTA‖2F ,

where the constraint A′ = PTA is actually used as penalty
function unlike in standard ALM trick. It is mainly de-
signed to avoid the optimal matrix A overfitting to specific
random matrix P , as explained in Subsection 5.2 later.

Following the same spirit described in Section 3.2, opti-
mizing the transformed problem with linear random projec-
tion in (7) involves the following three subproblems during
optimizing L(A′, A,E, Y, μ1, μ2) in each iteration:

(P1) min
A′

1

μ2
‖A′‖∗ + 1

2
‖A′ − PTA‖2F ,

(P2) min
E

λ

μ1
‖E‖1 + 1

2
‖E − (D −A+

1

μ1
Y )‖2F ,

(P3) min
A

μ1

2
‖A− (D − E +

1

μ1
Y )‖2F +

μ2

2
‖PTA−A′‖2F .

The algorithmic pseudo-code is found in Algorithm 1.
Note that both (P1) and (P2) are solvable using the ST
operator presented in (5) or (6) (lines 4-5 and line 3 re-
spectively), with reduced problem size. (P3) proves to be
a quadratic program with closed-form optimal solutions.
Specifically, use the abbreviations W1 = D − E + Y/μ1

and W2 = A′. By setting the first-order derivative of the
objective function in (P3) to be zero, we get

(μ1I + μ2PPT )A = μ1W1 + μ2PW2, (8)

which has efficient approximate optimum by observing
PTP ≈ m

p I (I is the identify matrix with its size inferred in
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the context) derived from the property of Gaussian random
matrices [13]. Based on the Sherman-Morrison-Woodbury
formula3, it can be verified that

(μI + PPT )−1 ≈ μ−1I − μ−1 · p

μp+m
· PPT , (9)

where μ = μ1/μ2 and the approximation comes from
PTP ≈ m

p I as aforementioned. By multiplying the above
matrix inverse to the right hand in (8), finally we obtain the
optimum by A∗ ≈ p

m+μpP (W2 − PTW1) +W1.
For the case that both m, n are very large as seen in many

collaborative filtering problems, we employ the bilinear ran-
dom projection as following

minA′,A,E ‖A′‖∗ + λ‖E‖1 (10)
s.t. D = A+ E, A′ = PTAQ,

where Q = 1/
√
q · Q̃ ∈ R

n×q with Q̃ drawn from standard
Gaussian distribution (q � n). Likewise we can get the
following updating rule for matrix A:

A∗ ≈ pq

mn+ μpq

(
PW2Q

T + μW1

)
. (11)

5. Theoretic Analysis
The proposed algorithm in Section 4 provides the pos-

sibility of breaking the curse of large-scale R-PCA opti-
mization. This speedup brought by size-reduced nuclear
norm optimization is at the cost of degraded estimation ac-
curacy. It is meaningful to investigate the relationship be-
tween ‖A‖∗ and ‖A′‖∗ under randomly-generated projec-
tion matrix (since their nearness implies the recovery con-
dition of R-PCA can be approximately applied), and other
issues including the computational and storage complexities
for original R-PCA and the proposed method.

5.1. Bounds of the Projected Nuclear Norm

Before continuing, we first point out the isometry prop-
erty of Gaussian random projection:

Lemma 1 (Norm-Preserving Property [13]): Let each en-
try of an n×p matrix R be chosen independently from stan-
dard Gaussian distribution (i.e., with zero mean and unit
standard deviation). Denote v = 1√

pR
Tu for any u ∈ R

n.
Then for ε ∈ (0, 1), there are E(‖v‖2) = ‖u‖2 and
Prob

(∣∣‖v‖2 − ‖u‖2∣∣ ≥ ε‖u‖2) < 2 exp
(−p

4

(
ε2 − ε3

))
.

From Lemma 1 we get the bounds of projected nuclear
norm from both below and above:

Theorem 1 (Bounds for Projected Nuclear Norm) Con-
sider a low-rank data matrix A ∈ R

m×n and the projected

3Visit http://en.wikipedia.org/wiki/Woodbury matrix identity for a
quick reference.

matrix B = 1√
pR

TA ∈ R
p×n, where R ∈ R

m×p (p � m)
is the projection matrix drawn from standard Gaussian dis-
tribution. Assume rank(A) = r and p > r. With high
probability and small ε the following relations hold

(K1) (1− ε)‖A‖2F ≤ ‖1/√p ·RTA‖2F ≤ (1 + ε)‖A‖2F ,
(K2) ‖1/√p ·RTA‖∗ ≥ √

1− ε/
√
r · ‖A‖∗,

(K3) ‖1/√p ·RTA‖∗ ≤ √
1 + ε · ‖A‖∗.

Proof of (K1): Denote matrix A as concatenated column
vectors, i.e., A = (a1, . . . , an). From Lemma 1, with high
probability, ∀ i ∈ {1, . . . , n} we have

(1− ε)‖ai‖22 ≤ ‖1/√p ·RTai‖22 ≤ (1 + ε)‖ai‖22, (12)

which can be accumulated over all i to calculate ‖A‖2F =
‖a1‖2 + . . .+ ‖am‖2. Obviously (K1) holds.
Proof of (K2): Performing SVD on both A and B, we get

A =

r∑
i=1

σiuiv
T
i , B =

r∑
i=1

λiaib
T
i ,

where we assume all singular values have been sorted in
descending order, i.e., σ1 ≥ σ2 ≥ . . . ≥ σr and λ1 ≥ λ2 ≥
. . . ≥ λr. To bound ‖B‖2∗ from below, first we observe that
for any 1 ≤ k ≤ r, with high probability

∑
i=1...k

λ2
i ≥

∑
i=1...k

vTi B
TBvi =

∑
i=1...k

1

p
vTi A

TRRTAvi

=
∑

i=1...k

σ2
i

∥∥∥∥ 1√
p
RTui

∥∥∥∥
2

≥ (1− ε)
∑

i=1...k

σ2
i ,

where the first inequality follows from the variational char-
acterization of the Ky Fan k-norms [6], i.e.,

∀k ∈ {1, rank(A)}, λ1(A) + . . .+ λk(A)

= max
{
tr(UT

k AUk) : Uk ∈ R
n×k and UT

k Uk = I
}
.

For finite-dimensional real vectors, ‖x‖2 ≤ ‖x‖1 ≤√
d‖x‖2, where d is its dimensionality. Therefore we have

∑
i=1...r

λi ≥
√ ∑

i=1...r

λ2
i ≥

√
(1− ε)

∑
i=1...r

σ2
i ≥

√
1− ε

r

∑
i=1...r

σi,

which accomplishes the proof of (K2).
Proof of (K3): The nuclear norm can be recast as the
minimum of an optimization problem about the Frobenius
norm [11], i.e., it can be equivalently defined as

‖X‖∗ = min
X=UV T

‖U‖F ‖V ‖F , (13)

where (U, V ) is arbitrary decomposition of X without
bounded dimensionalities. Denote the SVD of A is UΣV T .
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Define U0 = UΣ
1
2 and V0 = V Σ

1
2 , it can be verified

‖A‖∗ = ‖U0‖F · ‖V0‖F and∥∥∥∥ 1√
p
RTA

∥∥∥∥
∗

≤
∥∥∥∥ 1√

p
RTU0

∥∥∥∥
F

‖V0‖F

=

∥∥∥∥ 1√
p
RTUΣ

1
2

∥∥∥∥
F

·
√

tr(V Σ
1
2Σ

1
2V T )

≤ √
1 + ε‖UΣ

1
2 ‖F · ‖Σ 1

2V T ‖F (14)
=

√
1 + ε‖U0‖F · ‖V0‖F =

√
1 + ε‖A‖∗,

where Inequality (14) follows from (K1).

5.2. Break the Curse of Large Nullspace

Both Problems (7) and (10) rely on random matrices P
or Q. Unfortunately, directly optimizing with fixed P or Q
will get problematic results. Recall the facts p � m and
q � n for dimensionality reduction purpose. It immedi-
ately indicates that the row nullspace of PT is of far larger
dimension than its range space, thus optimal A∗ tends to
hide most of its energy into the nullspace and causes the un-
desired ‖PTA∗‖∗ ≈ 0. To avoid this issue, the random ma-
trix in each iteration of Algorithm 1 is independently gen-
erated and promptly changed at the inner loop. In practice
we can beforehand produce a larger random matrix M with
size sm × sn with s slightly bigger than 1 (e.g., 1.2 in our
implementation). To sample m × n matrix P is equivalent
to randomly shifting an m× n sub-window across M .

5.3. Beyond Gaussian Random Matrix

The prior analysis focuses on Gaussian random matrix
case. Actually the above analysis can be straightforwardly
extended to any random matrices with zero mean and unit
variance, so that Lemma 1 still holds with slightly different
decaying probability based on the Johnson-Lindenstrauss
lemma [13] and Theorem 1 thus follows to hold. Specif-
ically, we can employ other hashing-based sparse random
matrices for the same purpose. An example is the following
very-sparse matrix R with its (i, j)-th entry as

rij =
√
k ×

⎧⎨
⎩

1, with prob 1
2k

0, with prob 1− 1
k−1, with prob 1

2k

where k is the parameter to control the matrix sparsity. It is
easily verified E(rij) = 0 and E(r2ij) = 1.

5.4. Complexity Analysis

The original ALM based R-PCA (Section 3.2) has its
computational complexity hinged on the SVD of m×n ma-
trix, whose complexity is known to be O(m·n·min(m,n)),
roughly a cubic function for near-square matrices. For our
linear projection based R-PCA, the complexities of (P1)-
(P3) in Section 4 are pmn+O(np2), O(mn), and O(pmn)

respectively, resulting an overall complexity of O(pmn).
Recall that p � m, this complexity can be regarded as a
quadratic function for near-square matrices. As discussed
in Subsection 5.2, an sm× sn (s > 1) random matrix need
to be generated beforehand, which triggers O(mn) extra
memory compared with original R-PCA. Analysis of our
proposed bilinear projection version can be likewise done,
and omitted here for space limitation.

6. Experiments

Several corroborating experiments are presented, includ-
ing 1) simulation on synthetic data with varying dimension-
ality, which emphasizes the boosted efficacy brought by our
proposed projected nuclear norm, along with the accom-
panying accuracy loss; 2) two qualitative demonstrations
on facial artifacts (shadows and specularities) removal and
video background modeling; and 3) large-scale image tag
transduction conducted on the benchmark of NUS-WIDE-
270K, where we re-interprets the “error matrix” E to en-
hance image tag quality. All algorithms are implemented
in pure Matlab language without unmentioned accelerating
tricks and all statistics are collected based on a common PC
equipped with Intel Q9550 CPU and 8GB physical memory.

6.1. Simulation on Synthetic Data

We synthesize a low-rank matrix A ∈ R
m×m as a prod-

uct of two m× r (r is set to be 0.05m) matrices both drawn
from the normal distribution, and additively corrupt it with
sparse matrix E ∈ R

m×m, whose non-zero entries (10% in
proportion) are uniformly distributed in [−500, 500]. We
apply the original R-PCA and our proposed algorithms
(with either linear or bilinear projections) to recover these
two heterogenous sub-structures underlying D = A + E.
The detailed comparative results are reported in Table 1.

The reported time is the seconds of a single pass during
optimization (corresponding to lines 3-7 in Algorithm 1).
From Table 1 we can observe a dominating superiority
of projection-accelerated optimization in terms of efficacy.
For the linear projection version, the overall optimization
for m = 6000 is accomplished within 1.5 hours (CPU
times), while the original R-PCA is impractical due to
its slow optimization (estimated to be finished in more
than two days). As suggested in [8], stopping criterion is
‖D − A∗

k − E∗
k‖F /‖D‖F ≤ ε, where ε is a small positive

number (e.g., 10−7), and it typically requires hundreds of
passes until final convergence. In Figure 1 two curves are
plotted to depict the convergence tendencies of the original
and linear-projection based algorithms respectively, both of
which demonstrate a log-linear relationship coincided with
the analysis in [8] (Theorem 1 therein). The slightly slow
convergence for our proposed algorithm is supposed to stem
from the stochastic optimization with random matrices P
and Q.

2613



Table 1. Investigation on the simulated data. The variable m corresponds to the size of square matrices. For our proposed projection-based algorithms, the
reduced dimensionalities by random matrices P and Q are both set to be min(0.1 × m, 1000). Parameter λ is set to be 1√

m
, 1
4
√
m

and 1
4
√
m

in these
three variants without further tuning. In the accelerated versions, to gauge the quality of estimated matrix E, small absolute entries are set to zero so that
only those with top 10% magnitudes are kept. The value of ACC(E) denotes the number of correctly-predicted matrix elements given the ground-truth of
matrix E. Note that for m = 6000, the performance of original R-PCA is not reported since it is estimated to consume more than two days to converge
and thus beyond the scope of the practitioners. The reported time is measured using the Matlab built-in “cputime” function in the unit of second for a single
pass during the optimization (note that it is not equal to the physical time on our quad-core CPU). See text for more explanation.

m
DATA DESCRIPTION ORIGINAL R-PCA LINEAR PROJECTION BILINEAR PROJECTION
‖A‖∗ ‖E‖0 ‖A‖∗ ‖E‖0 TIME ACC(E) TIME ACC(E) TIME

500 1.24 × 104 25, 000 1.24 × 104 25, 013 0.84 24, 283 0.11 24, 254 0.10
1000 4.92 × 104 100, 000 4.92 × 104 100, 022 4.01 96, 115 0.44 95, 958 0.35
2000 1.97 × 105 400, 000 1.97 × 105 400, 040 21.94 378, 428 1.82 377, 895 1.28
4000 7.90 × 105 1, 600, 000 7.90 × 105 1, 600, 111 171.49 1, 479, 590 8.19 1, 479, 507 5.83
6000 1.78 × 106 3, 600, 000 N/A N/A N/A 3, 275, 617 23.01 3, 276, 579 16.16
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Figure 1. Comparison of convergence speed between original R-PCA and
our linear projection based version. The optimization terminates when the
value of stopping criterion is below 10−7.
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Figure 2. Background modeling on two surveillance scenes, i.e., Lobby
(top) and ShoppingCenter (bottom). Each frame is of 64 × 80 pixels and
totally 500 frames are used for both tasks. The middle and right columns
present the restored background from the proposed linear-projection R-
PCA (reduced to 500-D) and corresponding sparse residuals.

6.2. Background Modeling and Facial Recovery

This subsection elaborates on qualitative demonstrations
on structured data such as aligned faces and surveillance
videos. Background modeling is a crucial operation for ac-
tivity detection in surveillance video. The problem is com-
plicated by both multiple moving objects and background

variations caused by illumination etc. Following the for-
mulation of R-PCA, we can reasonably postulate the back-
ground is controlled by few factors and hence exhibits low-
rank property. Foreground activity is detected by identi-
fying spatially localized sparse residuals. The idea is vali-
dated on a public surveillance database4. Figure 2 illustrates
the restored background for two different scenes using the
proposed linear-projection R-PCA. The results are obtained
by projecting original 5120-D frame onto 500-D Gaussian
random matrices.

A key observation in face recognition is that faces of the
same person captured under varying illumination approxi-
mately reside in a low-rank linear subspace known as the
harmonic plane [16]. However, real face data often suffer
from self-shadowing and specularity when captured under
directional illumination. These aforementioned factors can
be naturally mapped to the ingredients in R-PCA, which
enables shadow-free facial recovery by separating low-rank
matrix A from the original data matrix D. The idea is val-
idated on Extended Yale-B database, as shown at the left
of Figure 3. The original 32256-D face feature vectors (i.e.,
192×168 pixels) are reduced to 2000-D in the implementa-
tion of our proposed algorithm, which produces comparable
results to the original R-PCA. We also investigate the influ-
ence of parameter p (the reduced dimensionality after ran-
dom projection) on the right panel of Figure 3, from which
it is observed that increasing the value of p continuously ap-
proaches the “ground truth” generated by original R-PCA.

6.3. Large-Scale Image Tag Transduction

Finally we demonstrate the power of the proposed
method on the task of image tag transduction. Recent
tremendous accumulation of socially-sharing images and
personal albums has raised new challenges to tag-based se-
mantic image indexing and retrieval. Unfortunately, most
of Web images have no tags or are casually assigned noisy
tags. Image tag transduction refers to the effort of propa-
gating known tags (usually annotated by experienced vol-
unteers) on selected images to the rest un-annotated image
collections. We experiment on the large-scale dataset NUS-

4http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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Figure 3. Left: Removal of facial specularities and shadows on Extended Yale-B database. The original face size is 192× 168 pixels. Roughly 30 images
are used for each individual. Right: Study on the effect of reduced dimensionality in our proposed projection-based R-PCA. Close-up views of specific
patches are displayed to highlight the details.

WIDE-270K5 collected from Flickr, which is comprised
of 269,648 images accompanied with around 1K tags. A
group of volunteers are solicited to manually annotate the
groundtruth tags of each image on a subset of 81 tags, av-
eragely roughly 2 tags per image, which are used here for
evaluation. We randomly split the whole images into two
even subsets for training or testing respectively.

A large part of existing tag transduction algorithms fall
in a two-step paradigm, i.e., first tag propagation to obtain
the tag-image association confidences, and then tag infer-
ence from the real-valued confidence values. The former
step has gained extensive studies in past years, especially in
the context of graph-based modeling. Instead of contribut-
ing another tag propagation algorithm, our study focuses
on revisiting the strategies in the second step, where the
idea of R-PCA is used to promote adaptive tag inference.
For completeness, we present some details in implement-
ing tag propagation. We extract three types of features, in-
cluding 144-D color correlogram, 73-D edge direction his-
togram, and 225-D block-wise color moments, forming a
442-D global feature for each image, from which hashing-
accelerated �1-graph is efficiently built [4]. Known tags
on the training set are then disseminated to the rest images
based on the belief of inter-connection of visual appearance
and semantics. Specifically, Markov-style tag propagation
is employed. Let f(p) be the tag vector for image p, the
updating rule is f (t)(p) ← ∑

q=1...k ωpq · f (t−1)(q), where
ωpq denotes the pairwise affinity value in the �1-graph.

The tag-propagation performance on the �1-graph mea-
sured by Mean Accuracy Precision (MAP) is 0.126 across
all tags, compared with 0.072 on traditional k-NN graph.
Although low performance at first glance, it approaches the
state-of-the-art [4] on this notoriously challenging dataset.
Standard tag inference from real-valued confidences is done
by selecting top-k confident tags for each image, denoted as
NaiveThres hereafter. Such a scheme is vulnerable to unbal-
anced annotations between different tags and tends to keep
abundantly-annotated tags. The continuous distributions of
propagated confidences (see the right one of Figure 4) fur-
ther complicate determining the optimal k, and arbitrary k

5http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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270K. Note that our proposed algorithm results in adaptive distributions
unlike NaiveThres. Right: Top-20 tag confidences after propagation on the
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Figure 5. Illustrative sketch of the proposed image tag assignment
scheme. The initial tag-confidence matrix is supposed to contain a low-
rank component and a sparse image-tag assignment matrix. Each tag is
displayed in different colors and darker color indicates higher confidence.
Better viewing in color mode.

uniformly applied to all images ignores the fact of uneven
tag assignment numbers across image collections. See Fig-
ure 4 for corroborating statistics.

We propose a novel scheme that adaptively determines
the tag number and assignment for each image. Denote the
tag matrix after propagation as D ∈ R

n×t, where n, t cor-
respond to the image and tag numbers. The key idea of our
proposed scheme is to decompose it into a low-rank matrix
A and a sparse matrix E using R-PCA techniques. The in-
tuition behind the decomposition is illustrated in Figure 5.
Aforementioned combinative propagation for each tag re-
sults in a near-flat confidence distribution across all images
along with a bunch of spiky ones (optimal candidates for
final tag assignment). As shown in Figure 5, the low-rank
matrix A can be useful for mode identification, and matrix
E conveys sparse tags violating the low-rank assumption,
rather than destructive noises as in the prior applications.

The final tag assignments are decided by setting the en-
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however, such a k value is unreasonable for real-world image tags.
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Figure 7. Exemplar tag transduction results on NUS-WIDE-270K.

tries of matrix E above a specific threshold to be 1, other-
wise 0. To learn this threshold, all non-zero entries in E are
sorted in descending order. The threshold is chosen so that
averaged tag assignments per image equal k, therefore we
equivalently use parameter k to balance precision and re-
call rate (the implication of k is intrinsically different from
that in NaiveThres). Figure 6 illustrates the performance un-
der varying k for both NaiveThres and R-PCA based tech-
niques, in terms of F-score. The peak performances of origi-
nal R-PCA and our linear-projection accelerated version are
0.150 (achieved at k = 2.6) and 0.144 (achieved at k = 1.7)
respectively, compared with 0.094 by NaiveThres (achieved
at k = 17). Such a simple scheme enhances the tag quality
to a salient extent compared with the standard NaiveThres.
Considering the popularity of propagation-based method in
tag transduction, we believe the proposed scheme could be
plugged in and promote other relevant algorithms. Proof of
image-adaptive selection of tag numbers can be found on
the left of Figure 4 and exemplar image tagging results are
found in Figure 7.

7. Conclusion and Future Work
This paper demonstrates the power of projected ma-

trix nuclear norm by reformulating R-PCA. The proposed
method brings tremendous speedup in optimization by
avoiding large-scale SVD, meanwhile the performance loss
is controllable. Theoretic analysis on its bounding prop-
erty, extensions to other random and hashing matrices and
complexities is also provided. Finally we present both qual-
itative and quantitative evaluations on various datasets, in-

cluding one large-scale image tagging databases. Here it is
worthy to highlight that the projected nuclear norm is a gen-
eral tool and immediately applicable to many other nuclear
norm oriented formulations.
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