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Abstract

Crowd counting is a new frontier in computer vision with
far-reaching applications particularly in social safety man-
agement. A majority of existing works adopt a methodology
that first estimates a person-density map and then calcu-
lates integral over this map to obtain the final count. As
noticed by several prior investigations, the learned density
map can significantly deviate from the true person density
even though the final reported count is precise. This implies
that the density map is unreliable for localizing crowd. To
address this issue, this work proposes a novel framework
that simultaneously solving two inherently related tasks -
crowd counting and localization. The contributions are
several-fold. First, our formulation is based on a crucial
observation that localization tends to be inaccurate at high-
density regions, and increasing the resolution is an effective
albeit simple solution for improving localization. We
thus propose Recurrent Attentive Zooming Network, which
recurrently detects ambiguous image region and zooms it
into high resolution for re-inspection. Second, the two
tasks of counting and localization mutually reinforce each
other. We propose an adaptive fusion scheme that effectively
elevates the performance. Finally, a well-defined evaluation
metric is proposed for the rarely-explored localization task.
We conduct comprehensive evaluations on several crowd
benchmarks, including the newly-developed large-scale
UCF-QNRF dataset and demonstrate superior advantages
over state-of-the-art methods.

1. Introduction

Nowadays surveillance cameras are densely mounted
around many cities, which motivates the recent research en-
thusiasm about visual analysis for crowd scenes. This work
targets the task of crowd counting in images [5, 30, 49, 15,

, 38, 9] or videos [46], which is typically accomplished
by generating and calculating integration over high-quality
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(d) True person localization
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Figure 1. Illustration of the local inconsistency issue in density-
based counting. Counting-oriented density map is clearly unsuit-
able for precisely localizing humans in congested scenes.

crowd density maps. Deep neural networks have become
the de-facto standard for solving this challenging task, and
a large number of such effective deep models have been
developed. Key major hurdles in developing precise crowd
counting algorithms include annotation errors, background
clutter, camera angles, complex illumination, intra-crowd
occlusions and density variation caused by crowd’s varying
distances to the camera etc.

A few recent research [16] have argued that only sum-
marizing counting numbers for congested scenes are not
enough for real-life applications. Knowing accurate crowd
density (rather than merely people count) is critical for
spatially identifying high-risk regions and making correct
decisions in applications such as crowd monitoring and
traffic control. Unfortunately in a majority of existing
methods, although the reported crowd count may be a good
hit, the learned density map can significantly deviate from
the true density. To illustrate it, we show an example in
Figure 1(a)-(c). For the congested scene in sub-figure (a), a
typical treatment is to generate a ground-truth density map
by defining a normalized Gaussian distribution around each
annotated person, the standard deviation of which can be
determined either as a constant or by local crowdedness.



It is shown in sub-figure (b). Importantly, the integral
of the ground-truth density map equals to the true count.
To train a deep network used for crowd counting, pixel-
wise loss function is popularly utilized, which usually
gauges the MSE (mean squared error) or MAE (mean
absolute error) between the estimated and true densities. A
typical density map generated by a learned deep model is
found in sub-figure (c). As seen in sub-figures (b-c), the
estimated density map does not always ensure the equality
of true / estimated counts in an arbitrary sub-image, which
essentially stems from the objective used during optimizing
the crowd counting model.

In this paper, we propose a novel approach to simulta-
neous crowd counting and precise localization of people
in a crowd image. We would emphasize that counting has
traditionally been the central focus of current research, and
precisely localizing each individual person has seldom been
considered. As seen in Figure 1(b) and (d), though counting
provides weak information about location of each person,
accurate inference of localization through sharpening the
density map is still generally infeasible. Tackling localiza-
tion together has several noteworthy benefits, particularly
rectifying counting errors and enabling some localization-
dependent applications (such as human tracking that takes
the output of localization as its initialization). In general,
the results of counting alone are insufficient for general-
purpose crowd analysis. An efficient and effective precise
localization algorithm is particularly desired. Our technical
contributions can be briefly stated as:

1) We develop a novel deep model for precise localiza-
tion. Motivating our localization model we consider several
desiderata: first, localization results are very sparse. Each
dot location specifies a unique individual. Conventional
MSE loss used in counting is thus not suitable. It is
important to adopt some sparsity-encouraging loss for
learning the localization model. In this work, we propose
to use a normalized variant of binary cross entropy loss
for this task, which is not considered in prior studies.
Secondly, counting primarily only concerns the people
count across entire image. It is empirically verified by
us that reducing image resolution (e.g., to 1/8 of original
resolution) indeed improves the counting accuracy. In
contrary, using high resolution is key for precise crowd
localization. In many highly congested scenes, we observe a
significant localization performance gap in different regions
with varying crowd density. In some image region, the high
local crowd density brings serious challenge for spatially
separating two nearby persons. An effective albeit simple
solution is to selectively increase the local image resolution
and re-feed the resized sub-image to the deep model for a
second-pass processing. Guided by this intuition, we devise
a network branch that learns an attention model, which hints
the most likely image regions that need being zoomed and

re-inspected. The procedure is recurrent until no further
local zooming operation is required.

2) Our proposed deep model solves counting and local-
ization in a mutually reinforced manner. Counting returns
a density map which weakly implies the location of each
person. And aggregating localization results naturally leads
to a crowd count. The proposed model is multi-branched,
with separate branch target counting / localization respec-
tively. The final crowd count is computed as a consensus
between the counting and localization branches. In practice,
we propose to use scene-adaptive fusion weight, and the
final count is obtained by averaging two counts according
to the fusion weight. This way enforces strong consistency
between counting and localization, and proves to elevate the
accuracy of both tasks.

3) The evaluation protocol for crowd localization has not
been comprehensively discussed and clearly stated in the
literature. The only relevant study we found is conducted by
Idrees et al. [16]. However, the evaluation protocol in [16]
is problematic. It does not penalize multiple detections.
Specifically, among all localized persons returned by an
algorithm, multiple detections can be very close to an
annotated person. According to [16], the closest one will be
picked for further evaluation and others are simply ignored
without receiving any penalty. This makes it difficult
to compare two localization results with different counts.
Moreover, crucial details (such as the way to rank all
returned locations) are also unfortunately missing in [16].
Inspired by the treatments in human keypoint detection [44,

, 27, 4, 7] and object detection [13, 12, 32, 20], we
clearly define an evaluation metric for this task, with all due
considerations to the complications in evaluating a crowd
localization result.

The rest of the paper is organized as follows. Section 2
reviews related work. We present the proposed approach for
simultaneous crowd counting and localization in Section 3.
The experimental evaluations are detailed in Section 4,
followed by concluding remarks in Section 5.

2. Related Work

This section briefly surveys crowd counting [24] and
localization techniques. The relevant works can be roughly
cast into the following categories:

Detection based methods: Detection-by-classification (or
known as sliding window method) [10] is very popular
in object detection owing to its conceptual simplicity and
empirical high performance. These methods utilize highly
discriminative local feature such as HOG feature [8] and
can also detect partial objects (e.g., deformable parts based
model [11]). For crowd scenes with few occlusions and low
density, using well-trained detectors can lead to accurate
count. The work of DecideNet [2 1] adopt human detectors
for amending the (often over-estimated) counting in low-



density areas.

Density based methods: A thrust of early developmen-
t [6, 15] deploy regression-based method to extract visual
features from images and then regress the number of
interested objects. More recent years have witnessed a
burst of applying end-to-end deep neural networks to crowd
counting [2, 29, 51]. The optimization of these deep models
often boils down to learning a density map that locally
approximates true crowd density. In particular, the scale
variation issue has received much emphasize along this line
of research. Earlier works adopt multi-scale image pyramid
for boosting the accuracy in high-density areas [4 1, 48, 17].
Recent developments have considered spatial locality [22]
cross-scale aggregation [3], and scale-adaptive [50]. The
work in [37] enforces the predicted counts at different
image scale as consistent as possible. [23] uses the ordinal
relation between inclusive image regions for effectively
augmenting the training data from unlabeled data. The
idea of assembling multiple branches with different target
also proves very effective, including Switch-Net [36] and
Divide-and-Grow Net [35]. In [51], authors introduce
a multi-column CNN for the counting purpose, defining
different kernel sizes for tackling varying density. [34]
includes a top-down branch to correct the initial prediction
of the CNN. Other insights include the key role of large re-
ceptive field by CSRnet [19] where the authors experiment
with a sequence of dilation convolutions, and the utilization
of human body structure [ 14].

Localization in congested scenes: Ostensibly, one can
naturally consider person localization by sharpening a
crowd density map. However, the heavy inaccuracy of
density map was extensively reported in prior studies.
Ma et al. [26] develop a two-step method: first estimate
density map using sliding windows, and then use integer
programming to finally localize all objects of interest in an
image. [33] devises a density-aware person detector, using
density map as a regularizer when optimizing the detector
to ensure the predicted density map more salient around
true locations. Idrees el al. [16] propose a composition loss
for simultaneously doing counting, density map estimation
and localization in congested scenes. A so-far largest
benchmark for this aim, called UCF-QNRF dataset, was
also established. Another relevant work [ 18] predicts blobs
in crowd images. Thinking beyond crowd, the localization
technique can also be applied to localize objects in other
domains. For example, Sirinukunwattana et al. [42] target
cancer nuclei in the domain of medical imaging.

Limitations: State-of-the-art crowd counting approaches
rarely emphasize on precise localization, mainly concerning
the accuracy in terms of entire crowd count. This motivates
our research on devising a novel solution for joint count-
ing and person localization, as well as establishing solid
evaluation metrics for benchmarking different localization

algorithms.

3. The Proposed Approach

This section describes the proposed deep model that en-
ables simultaneous crowd counting and precise localization,
followed by details about learning network parameters.

3.1. Network Design

The deep network architecture can be found at Figure 2

and detailed configuration is deferred to the supplemental
material due to space limit. As seen, the model is comprised
of a Main Net and Recurrent Attentive Zooming (RAZ) Net.
While the two nets have almost identical network layers
and configurations, they do not share parameters with each
other. For clarity let us first explain Main-Net and then
emphasize the differences of RAZ-Net. The core of Main-
Net are two branches which solve density based counting
and precise localization respectively. These two are fused
with data-adaptive weights. A third branch in the Main-
Net is responsible for finding the optimal regions that can
elevate the localization accuracy after being zoomed and re-
processed by the RAZ-Net.
Counting Branch: Following the practice in [2, 19],
we use truncated VGG-16 [39] as the backbone for both
Main-Net and RAZ-net. The backbone essentially extracts
discriminative features from the input image for further
use by all branches in the network. Specifically, we
decapitate the original VGG-16 by discarding all except for
the first 13 convolutional layers. The output size of this
truncated VGG-16 is 1/8 of the input image’s resolution.
Keeping more convolutional and pooling layers will obtain
shrunken output, which seems not a reasonable choice
for the localization branch. Such a shallow pre-trained
backbone has already demonstrated strong transfer ability
for crowd analysis.

Inspired by CSR-Net [19], in the counting branch we
stack a number of dilated convolutional layers (dilation
rate is set to 2 in all experiments) after the backbone. As
verified by [19], larger receptive field is critical for crowd
analysis, which inspires our use of a dilation rate of 2 in
all convolutions. No size-changing layers (such as pooling
or convolutional layer with > 2 stride) are inserted. This
way the final output size remains 1/8 of the input size. To
generate a “true” continuous density map at each image
position, we follow [51] to impose a Gaussian convolution
around each annotated person. Assume x be an image pixel
location and ay, . . ., an specify where N annotated person
heads locate. The ground truth density at @ is defined by

~ 1 9, o ) -
o(x) = Zi:l Z exp (—[lz — a;]|*/07) , with o; = Bd,;.
where d; indicates the average spatial distance of k nearest
persons (we use k = 4) and tends to be large at sparse areas.
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Figure 2. Illustration of our proposed network architecture for joint crowd counting and precise localization. Better viewing in color mode.

o is a parameter that defines a geometry-adaptive Gaussian
kernel and Z; ensures the sum to 1. We empirically set 3 =
0.1 without further tuning.

Given an input image of size m X n, the loss of counting
branch can then be defined as the sum of pixel-wise density
discrepancy:

ak,n(z):s.\/%z

where o(x;), gg(m@) denote the estimated density value
(output of counting branch’s last convolutional layer) and
the ground truth at image position x; respectively.

Localization Branch: The results of the localization
branch are generally expected to be sparse, only concerning
points close to the annotations. However, in high-density
areas, annotations are so dense that the annotated persons
are just several pixels away from another nearest one. The
spatially-varying sparsity brings severe challenges to the
network design. We adopt binary cross entropy (BCE),
which is sparsity-encouraging, as the loss function in the
localization branch. Let us first describe the way to convert
an image with labeled heads to a ground truth map. For
each head position in the annotation set Z = {a1,...,ay},
we introduce a delta function §(x — a;) at & and compute

~ 2

(m/8)x(n/8)
o(xi)| . (1)
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where ® denotes the convolution operator and K
[010;111;010]isa3 x 3kernel. The label Y (x) at
pixel x in the localization map is set to 1 if ¥(x) > 0,
otherwise 0. Note that the adopted kernel K encourages
a very small neighborhood of each annotated head to be
classified as positive.

The input to the localization branch is sized 1/8 of
original image resolution. It goes through 3 de-convolution
layers, each doubles the feature map’s spatial resolution.
The final output thus has the same size to the input image,
and approximates t(-). Let it be )(-).Given an input image
of m x n, the loss of localization branch can then be defined
as the sum of pixel-wise discrepancy:

LS ),

bioe1) = mn

where (z;) = — - Y (x;) - log(d(@:)) — (1 - Y(x,)) -
log(1 — ¢ (x;)). We use a large constant y (set to 100 in all
experiments) to compensate the heavy imbalance between
positives / negatives in the localization map. N

To compute precise person head locations from (-),
we first apply an average pooling (with a size of 3 x 3
and stride 1) for enlarging the value of true peaks and
suppressing noises. Next, all local peak responses are
picked out, and non-maxima suppression (NMS) operation
is locally performed for avoiding over-close detected points.

3
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Figure 3. On the training data in ShanghaiTech-A, we plot the true
counts in y-axis and the predicted counts in x-axis. Left / right
sub-plots are for the counting / localization branch respectively.

In practice, the second step can be efficiently accomplished
via a k X k max-pooling (we use k = 3) followed by pixel-
wise comparison based peak identification, which ensures
that any two points are at least k pixels away. This finishes
the peak-finding job.
Two-Stream Fusion for Counting: Once properly fused,
conventional counting and our proposed localization pro-
cess can complement each other when calculating crowd
count. Our adopted fusion scheme is inspired by an
empirical insight in [21]: detection (which is essentially
more precisely-bounded localization) reliability drops when
crowd density increases, underestimating counts in those
areas. To explore an optimal fusing scheme, we partition
each training image into 4 X 4 non-overlapping sub-
images, and contrast the estimated counts v.s. ground-truth
counts for counting / localization branches respectively in
Figure 3. Both density-based method and localization-
derived counting degrade when the true density becomes
dense, but the localization branch performs relatively worse,
which is consistent to [21]. In other words, for high-density
area, density-based estimation is more reliable and should
dominate the count fusion.

To mitigate aforementioned estimation bias, we devise a
fusion scheme that operates on a 4 x 4 image grid. For each
of 16 sub-images indexed by g = 1...16, let CJ_ and

den

C7} . be the counts returned by the counting / localization

branch respectively. The final count after two-stream fusion
CY,, <oq 18 determined via

fuse

ClentCloe
CYrsed = Clens o > 05 4)
Juse (CP . +C9..)/2, otherwise

where two cases corresponds to oy = 0, 0.5 respectively.
The final count for the entire image is computed via the sum
Crused = ij:l Cfsea- We do not choose to learn more
fine-grained fusion weight o, from data, since the crowd
counting benchmarks are not sufficiently large-scale (e.g.,
ShanghaiTech-A contains only 482 images) to combat over-
fitting. In practice we empirically estimate the parameter 6
for each grid from all training data.

Zooming Region Proposal Branch: It is difficult for

Scale 1

Scale 2

Figure 4. [llustration of multi-scale multi-ratio anchors for search-
ing sub-images on the attention map.

the Main-Net to perfectly tackle crowds in all spatial
scales. The high-density areas particularly suffer from
low localization accuracy. Inspired by recent progress on
attentive fine-grained recognition [47, 43, 52], we propose
the idea of zooming a small number of sub-images guided
by a learned attention map, which is implemented by the
inclusion of a third zooming region proposal branch in the
Main-Net, as seen in Figure 2.

To reduce network complexity, the input directly bor-
rows and concatenates the last rich feature maps from the
counting / localization branches that supposedly comple-
ment each other. Note that the feature map from the
counting branch has 1/8 of the original image resolution.
To enable a valid concatenation, it need to first go through
an up-sampling layer to become 8 times larger. Ideally,
the ground-truth attention map for this branch is expected
to reflect spatial crowdness, and high attention is given to
high-density areas. To this end, we adopt k-d tree [1] for
efficiently finding 3-nearest heads for pixel ¢ in the image
and calculate the averaged spatial distance as d;. The true
attention value for ¢ is then computed via a non-linear
transform v; = exp(—d?/202), where we empirically set
0, = 3 to de-emphasize low-density pixels.

To solicit near-optimal sub-images to be zoomed and re-
checked, we adopt an exhaustive search scheme in order
escalate the difficult combinatorial optimization problem.
The core data structure in our proposed method are a set of
multi-scale, multi-ratio anchors, inspired by its analogues
in Faster R-CNN [32]. The process is illustrated in Figure 4.
Several hundred interest points p1, pa, . . ., Py (yellow dots
in Figure 4) are first randomly sampled from the attention
map. Around each interest point, we apply all pre-defined
anchors, each of which defines a sub-image centered at
this specific point. All sub-images are then ranked in
descending order according to their mean attention values.
Those with a mean value below 6, is abandoned and



others will undertake a standard non-maximum suppression
(NMS) [, 12, 32]. In particular, if two anchor-derived
sub-images have a high intersection-over-union (IoU) [I 1],
say 0.5 in our implementation, the one with lower mean
value will be removed. At most k, sub-images are chosen
eventually. In all practice, we use m = 200, 6, = 0.01 and
k. = 10. The anchors we used have three height-to-width
ratios (1:1, 1:2, 2:1) and two spatial scales (one of them is
twice larger than the other). In the smaller scale, the anchor
with 1:1 ratio is sized by 1/3 of shorter edge of the image,
and we ensure anchors at the same spatial scale yet with
other ratios occupy the same image area.

Recurrent Attentive Zooming (RAZ) Net: For simplicity,
the chosen sub-images are zoomed uniformly by 2x. They
are then fed into the RAZ-Net as shown in Figure 2.
Different from the Main-Net, counting branch is removed
since it is not the focus of RAZ-Net. Accordingly, the
input to the attention branch now becomes only the feature
map from the localization branch. All branches have the
same network configurations to the Main-Net and copy the
parameters from the Main-Net for initialization. The data
used for training the RAZ-Net are fully comprised of sub-
images solicited by the Main-Net. We omit the details of
learning RAZ-Net since it is almost identical to that of
the Main-Net. Importantly, RAZ-Net can be recurrently
trained and used. For example, the attention map generated
by the first RAZ-Net can infer a number of sub-images
which are still over-dense and need additional zooming.
After collecting those sub-images, we can further learn a
second RAZ-Net with the same network architecture yet
different data distribution / network parameters. However,
to avoid over-fitting to the increasing smaller set of sub-
images, we copy the parameters of the first RAZ-Net to all
other recurrent ones without more fine-tuning.

3.2. Implementation Details

Joint learning the Main-Net and RAZ-Net is infeasible
since the latter needs to wait for sub-images collected by
the former net. We therefore train the two nets sequentially.
Ostensibly one can learn the Main-Net in an end-to-end
manner. However, we find this strategy often leads to heavy
effort before convergence and very sensitive to initializa-
tion. We instead adopt a scheme of sequentially performing
counting branch — localization branch — zooming region
proposal branch.

The proposed algorithm is implemented in PyTorch and
experimented on a private cluster with about 30 Titan X
GPUs. Standard momentum is utilized with a parameter
0.95. The learning rate is initially set to 10~* and halved
after the validation performance is stuck in some plateau
for many iterations.

Dataset | Images | Count | Resolution
ShanghaiTech_A [51] 482 501 589 x 868
ShanghaiTech B [51] 716 123 768 x 1024

WorldExpo [49] 3980 56 576 x 720
UCF_QNREF [16] 1535 815 2013 x 2902

Table 1. Summary of benchmarks used for evaluations.

4. Evaluations
4.1. Dataset Description

We demonstrate our proposed approach in four dif-
ferent public benchmarks for crowd analysis. The key
information is sketched briefly in Table 1. Particularly,
the newly-introduced UCF_QNRF [16] is known as the
dataset most qualified and challenging for experimenting
with crowd localization, owing to its high-resolution images
and tremendous annotations (over 1.25M annotated heads).

4.2. Evaluation Protocol

Let us first introduce the evaluation metrics. For the
crowd counting task, we use the widely-adopted Mean
Absolute Error (MAE) and (Root) Mean Squared Error
(MSE). If the predictedAcount for image ¢ is C; and the
ground truth count is C;, the MAE and RMSE can be
computed as (n is the image number):

2

MAE:%E\@-Q  MSE = %g”&i—@

As argued in prior section, precise crowd localization
is a relatively unexplored task, and its evaluation metric
has not been firmly established in the literature. The only
relevant work in [16] proposes 1-1 matching / ranking
based scores for precise localization. Unfortunately, a
close investigation will find that the metric in [16] leads to
optimistic estimation. The key issue essentially stems from
not penalizing over-detection: if multiple points closely
match with a true person head, the nearest one will be
kept and others are simply ignored without receiving any
penalty. This fails it to serve as a widely-acknowledged
metric for fair comparison.

Inspired by the evaluation metric used in the keypoint
detection task of MS-COCO [20], we propose to assess
a localization algorithm as follows: 1) all predicted head
points are ranked according to their confidences returned
via the model (the localization branch in our approach);
2) from the top-ranked points to the least confident ones,
we sequentially classify each point as either true positive
or false positive. A point under investigation will first be
matched to a nearest true person. Only when this true
person has not be matched by some higher-ranked points
and their affinity is above some pre-defined threshold, it



Method ShanghaiTech_A | ShanghaiTech B WorldExpo UCF_QNRF
MAE | MSE MAE | MSE S1 | S2 | S3 | S4 | S5 | avg. | MAE | MSE
Zhang et al. [49] 181.8 277.7 32.0 49.8 98 | 14.1 | 143 | 222 | 3.7 | 129 - -
MCNN [51] 110.2 173.2 26.4 41.3 341206 | 129 | 13.0 | 81 | 11.6 277 426
Cascaded-MTL [40] | 101.3 152.4 20.0 31.1 - - - - - - 252 514
Huang et al. [14] - - 20.2 35.6 4.1 | 21.7 | 119 | 11.0 | 35 | 10.5 - -
Switch-CNN [36] 90.4 135.0 21.6 33.4 44 | 157 [ 100 | 110 | 59 | 94 228 445
CP-CNN [41] 73.6 106.4 20.1 30.1 29 [ 147 | 105 | 104 | 58 | 8.9 - -
CSRNet [19] 68.2 115.0 10.6 16.0 29 [ 115 86 | 16.6 | 3.4 | 8.6 - -
SANet [3] 67.0 104.5 8.4 13.6 26 | 132 | 9.0 | 133 | 3.0 | 8.2 - -
Idrees [16] - - - - - - - - - - 132 191
RAZ _density 67.5 109.5 9.6 154 25 113 | 95 | 134 | 47| 83 126 208
RAZ localization 75.2 133.0 13.5 25.4 20| 139 | 9.1 | 445 | 32 | 14.6 135 246
RAZ localization+ 71.6 120.1 9.9 15.6 20 [ 139 | 9.1 | 323 | 32| 125 118 198
RAZ _average 66.5 111.5 8.6 14.2 20 [ 123 | 88 | 282 | 32| 109 117 195
RAZ fusion 65.1 106.7 8.4 14.1 20| 11.8 | 9.0 | 13.6 | 3.3 | 8.0 116 195

Table 2. Experimental results for crowd counting on all four benchmarks.

converge. See main text for more explanation.

is marked as a true positive, and the matched true person
will be marked as matched accordingly. With this ranked
point list with binary true / false classification, standard
Average Precision (AP) and Average Recall (AR) score can
be efficiently computed.

4.3. Results Analysis

Crowd Counting: We first reiterate the significance
of this work compared with the state-of-the-art for the
counting task. Table 2 presents all quantitative results.
We have included several strong competing algorithms
(such as CSR-Net and SANet) when this work is done.
We denote our own algorithmic variants using the prefix
“RAZ”. Among them, RAZ density, RAZ localization are
results of counting / localization branch in the Main-Net
respectively. RAZ_localization+ is an enhanced version
of RAZ_localization since it amends the count of localized
person heads by feedbacking the zoom-and-localize results
in the RAZ-Net. Both RAZ_average and RAZ fusion are the
results obtained by fusing counting / localization branches.
Differently, RAZ_average naively averages the two and
RAZ fusion adopts our proposed fusing scheme.

Some facts can be observed in Table 2. First, RAZ-
Net significantly improves the accuracies of the localiza-
tion branch (see the gap between RAZ_localization and
RAZ localization+). Secondly, fusing the counts returned
by our two branches is almost always beneficial, even using
a blind uniform fusion. Since our proposed fusion scheme
empirically considers the source of prediction errors, it fur-
ther elevates the performance in most cases. This provides
strong evidence that the two tasks of counting / localization
are closely inter-related and arguably complementary. Last,
though we did not utilize sophisticated tricks such as multi-
scale kernels as in [3], our proposed approach still predict
the most accurate crowd counts in a majority of cases.
Person Localization: Table 3 presents the localization

‘-> denotes either no reported results or the model does not

results evaluated in our proposed metric. Around each an-
notated person head, we impose an un-normalized Gaussian
function parameterized by o. A predicted point will be
regarded as a true positive only if the Gaussian function
(when taking this point as an input) returns an output greater
than 0.50 when evaluating the performance at AP.50, and
0.75 at AP.75. In Table 3, we report performances at three
different accuracy levels, which establishes a reasonable
baseline for further comparison with other algorithms. In
addition, some representative localization results are shown
in Figure 5. It can be seen that even for very dense crowds,
the proposed method still generates precise localization.
Effect of Resolution: We also investigate a key problem in
crowd analysis: how the resolution of feature map affects
the performance? For tasks of localizing human joints /
heads, Xiao et al. [45] have conducted a very comprehen-
sive study and proved the key role of high resolution, which
explains our choice of using full-sized feature map for the
localization branch. There exist prior works that consider
the resolution issue in crowd counting. For example, [31]
presents a two branch architecture, where the first branch
generates a low resolution density map, and the second
branch incorporates the low resolution prediction and fea-
ture maps from the first branch to generate a high resolution
density map. However, no strong evidence about the benefit
of high-resolution map is given therein. To clarify the
effect of resolution, we separately train the counting branch
using the same backbone on ShanghaiTech_A. We tune
the number of de-convolution layers such that the feature
map resolutions increases as 1/8 — 1/4 — 1/2 of input
size. Interesting, the MAE scores on the test set vary as
67.5 — 70.5 — 81.4, which justifies our design of the
counting branch.

Recurrence Depth: It is interesting to know whether
recurrently zooming the attended sub-images helps. To this
end, we conduct more experiments on three benchmarks



Method - Results of Localization Branch in Main Net Results of Main Net + RAZ Net

AP50 | AP.75 | mAP | AR50 | AR.75 | mAR | APS0 | AP75 | mAP | AR50 | AR.75 | mAR
ShanghaiTech_ A | 40 | 0.739 | 0.702 | 0.687 0.836 0.811 0.803 | 0.745 0.699 | 0.691 0.847 0.820 | 0.812
20 | 0.670 | 0.597 | 0.576 | 0.791 0.746 | 0.729 | 0.667 | 0.601 | 0.584 | 0.799 0.753 0.741
5 0.308 | 0.120 | 0.147 | 0.529 0.326 | 0.331 | 0360 | 0.205 | 0.197 | 0.409 0.579 | 0422
ShanghaiTech B | 40 | 0.742 | 0.695 | 0.692 | 0.833 0.804 | 0.809 | 0.753 0.716 | 0.710 | 0.857 0.834 | 0.831
20 | 0.673 0.622 | 0.598 0.793 0.761 0.746 | 0.687 0.649 | 0.634 | 0.820 0.794 | 0.784
5 0.356 | 0.156 | 0.181 | 0.575 0.375 | 0374 | 0456 | 0.281 | 0.280 | 0.661 0.516 | 0.492
WorldExpo 40 | 0.756 | 0.707 | 0.695 0.878 0.850 | 0.840 | 0.762 | 0.704 | 0.692 | 0.872 0.840 | 0.829
20 | 0.674 | 0.593 | 0.555 0.828 0.771 0.741 | 0.669 | 0.580 | 0.546 | 0.815 0.753 0.724
5 0.195 | 0.060 | 0.086 | 0.428 0230 | 0.252 | 0.187 | 0.057 | 0.083 | 0.409 0.216 | 0.239
UCF_QNRF 40 | 0.558 | 0.458 | 0.449 | 0.692 0.624 | 0.604 | 0.573 | 0.481 | 0.462 | 0.719 0.652 | 0.636
20 | 0390 | 0.252 | 0.250 | 0.570 0452 | 0438 | 0414 | 0.287 | 0.284 | 0.602 0.497 0.483
5 0.047 | 0.017 | 0.021 | 0.178 0.092 | 0.100 | 0.079 | 0.031 | 0.037 | 0.242 0.143 | 0.148

Table 3. Summary of localization performance on four crowd benchmarks in terms of standard AP/AR used in MS-COCO [20]. mAP is

computed via averaging from AP.50 to AP.95, with a stride of .05. More explanation about the metric is in the supplemental material.

Figure 5. Representative localization results on some testing images. The red / green blobs denote true and predicted person heads

respectively. Better viewing if enlarging the images.

Method ShanghaiTech_A | ShanghaiTech.B | UCF_QNRF
MAE | MSE | MAE | MSE | MAE | MSE

density 67.5 109.5 9.6 154 126 208
loc_1 75.2 133.0 13.5 254 135 246
loc_2 71.6 120.1 9.9 15.6 118 198
loc_3 70.5 120.8 9.4 133 120 200
loc_4 71.4 124.2 9.6 14.6 120 201
average 2 | 66.5 111.5 8.6 14.2 117 195
average.3 | 65.8 111.5 8.5 135 118 196
average 4 | 66.4 113.4 8.6 13.7 119 197
fusion_1 66.1 108.4 9.5 15.2 123 203
fusion.2 | 65.1 106.7 8.4 14.1 116 195
fusion_3 64.7 106.6 8.5 135 118 195
fusion4 | 65.3 108.8 8.5 134 119 198

Table 4. Investigation of recurrent depth. See text for more details

and the results are shown in Table 4. density denotes the
performance merely based on the counting branch. For
all methods, we use the suffix to imply the number of
recurrently using the RAZ-Net. loc_*, average_*, fusion_*
represent the localization branch and two variants of fusing

counting / localization branches respectively. We clearly
observe a non-trivial improvement when recurrently using
RAZ-Net twice. However, the effect quickly decays with
more recurrence.

5. Conclusion

This paper investigated jointly estimating counts and

precise localization in congested scenes. Our main insight is
that sparsity-encouraging loss function and high resolution
are key for the rarely-explored task of precise localization.
We also show that density-based counting and localization
can collaboratively boost the accuracy of prediction. An
evaluation metric is well-defined for comparing different
localization algorithms. Our future work includes extending
this approach to other domains, such as cells or bacteria
from microscopic images.
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