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Abstract

Video summarization has recently engaged increasing
attention in computer vision communities. However, the
scarcity of annotated data has been a key obstacle in this
task. To address it, this work explores a new solution for
video summarization by transferring samples from a corre-
lated task (i.e., video moment localization) equipped with
abundant training data. Our main insight is that the anno-
tated video moments also indicate the semantic highlights
of a video, essentially similar to video summary. Approx-
imately, the video summary can be treated as a sparse,
redundancy-free version of the video moments. Inspired
by this observation, we propose an importance Propaga-
tion based collaborative Teaching Network (iPTNet). It
consists of two separate modules that conduct video sum-
marization and moment localization, respectively. Each
module estimates a frame-wise importance map for indi-
cating keyframes or moments. To perform cross-task sam-
ple transfer, we devise an importance propagation module
that realizes the conversion between summarization-guided
and localization-guided importance maps. This way crit-
ically enables optimizing one of the tasks using the data
from the other task. Additionally, in order to avoid error
amplification caused by batch-wise joint training, we de-
vise a collaborative teaching scheme, which adopts a cross-
task mean teaching strategy to realize the joint optimiza-
tion of the two tasks and provide robust frame-level teach-
ing signals. Extensive experiments on video summarization
benchmarks demonstrate that iPTNet significantly outper-
forms previous state-of-the-art video summarization meth-
ods, serving as an effective solution that overcomes the data
scarcity issue in video summarization.

1. Introduction
In recent years, with the popularization of video-sharing

platforms, the number of videos that record activities of
daily living has witnessed an explosive growth. Techniques
that help people quickly browse videos and search the key
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Figure 1. The video summarization and video moment localiza-
tion models can be jointly optimized using the proposed cross-task
sample transfer.

information become a valuable research topic. Video sum-
marization [5, 20, 46], a technology that automatically ex-
tracts representative segments from untrimmed videos to
concisely depict the original video content, has attracted in-
creasing attention from both academia and industries.

The earlier work in video summarization mostly adopts
hand-crafted heuristics to attain certain properties of frames
(e.g., diversity, representativeness) [11, 31, 34, 42, 49, 52].
These modeling paradigms are recently less used since the
revival of deep learning techniques [2,30,50,53,56,75,85].
Specifically, the latest video summarization models have
been empowered by recurrent neural networks (RNN) [24,
86, 87, 93] and the attention mechanism [29, 46, 70], which
drastically advance the state-of-the-art.

Most of these methods employ a data-hungry super-
vised learning setting for training [24, 46, 93]. Despite the
performance gains achieved by these efforts, current re-
search has been still suffering from the scarcity of large-
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scale annotated video summaries, which require extensive
time and effort to construct. Some weakly-supervised ap-
proaches [5, 11, 31] have been proposed to alleviate this
problem. However, they not only require additional video
auxiliary information, but are still hard to achieve compet-
itive results. Heretofore, learning video summarization un-
der limited data remains an untapped problem.

To address this problem, this work explores the idea of
cross-task sample transfer from related tasks, particularly
the video moment localization task that aims to temporally
spot the video segments corresponding to an arbitrary sen-
tence query. The idea is illustrated in Figure 1. Note
that video moment localization is query-driven. We ob-
serve that the user-provided queries usually describe the key
events in the video, thus the task is essentially correlated
with video summarization. Considering the compactness
of video summaries, they can be approximately regarded
as sparse, redundancy-free version of the video moments,
which shed light on transferring the abundant annotations
in moment localization for helping the video summariza-
tion model. In light of this, we explore a collaborative op-
timization scheme for these two tasks. Nevertheless, it is
non-trivial to achieve cross-task sample transfer satisfacto-
rily. Overlooking the domain gap between the two tasks
will inevitably cause the learned model to suffer from col-
laborative signals with domain bias and lead to performance
degradation. Moreover, batch-wise joint training of the two
models makes the optimization susceptible to current batch
noise. This easily causes the error of one task to spread to
another task, resulting in error amplification and failure to
provide stable and robust collaborative signals.

In this paper, we propose an importance Propagation
based collaborative Teaching Network (iPTNet), as shown
in Figure 2. It consists of four parts: the video summariza-
tion module (SM), the moment localization module (LM),
the importance propagation module (PM), and the collab-
orative teaching module (TM). To be more specific, SM
and LM do the job of video summarization / moment local-
izaiton respectively, under the supervision of correspond-
ing task-related data and annotations. The main function-
ality of PM is to connect the two frame-wise importance
maps generated by SM and LM. The collaborative teach-
ing module implements a cross-task mean teaching strategy
and enforces the soundness of our main assumption (i.e.,
the ground-truth video summaries can be approximately ex-
panded into video moments via some inter-frame propaga-
tions). The main contributions of this work are summarized
as below:

• To the best of our knowledge, this is the first work that
utilizes a second correlated task (i.e., video moment
localization) with sufficient training data to help the
training of video summarization. Through jointly opti-
mizing two models, it surmounts the obstacle of insuf-

ficient annotated video summaries without the require-
ment of additional annotations or any auxiliary video
information.

• To fully harness the ensembles of training data from
two tasks, we devise an importance propagation al-
gorithm, which realizes the conversion between the
summarization-guided and localization-guided impor-
tance maps and thereby accomplishes cross-task sam-
ple transfer during model optimization.

• To avoid the error amplification caused by batch-wise
joint training, we propose a collaborative teaching
scheme based on a cross-task mean-teaching strategy
for the modules SM and LM.

Extensive experiments conducted on video summariza-
tion benchmark datasets demonstrate that iPTNet signifi-
cantly outperforms the state-of-the-art methods. The code
and data of this work have been released to facilitate further
research1.

2. Related Work
Video summarization. Existing methods could be cast

into three categories: unsupervised approaches [14–16, 28,
41, 77, 94], weakly supervised approaches [5, 48, 52, 60],
and supervised approaches [20, 56, 57]. Recent unsuper-
vised methods can be divided into dictionary based [16, 41,
94], subset selection based [14, 15], reinforcement learning
based [96], and adversarial learning based [28, 77] meth-
ods. Weakly supervised approaches often harness auxiliary
information (e.g., web priors [11,31], video titles [60]). For
example, Song et al. [60] proposed to use title-based im-
age search results to find visually important shots. Super-
vised approaches learn to generate video summaries based
on manual annotations. Zhang et al. [86] firstly proposed
a supervised learning technique for summarizing videos
based on the annotated video summarization datasets such
as SumMe [21], TVSum [60], and OVP [12]. Some meth-
ods explored the use of RNN [87, 93] and attention mech-
anisms [46, 70] to capture long-range representations in
video sequences. Zhao et al. [93] proposed a structure-
adaptive approach and integrated shot segmentation and
video summarization into a hierarchical RNN. However,
these methods rarely addressed the issue of insufficient
summary annotations. Although weakly supervised meth-
ods can alleviate this problem to some extent, they still re-
quire auxiliary video information and are hard to achieve
competitive results.

Video moment localization. The moment localiza-
tion task aims to locate key events in the video speci-
fied by some natural language queries [1, 18, 33, 39, 40,

1https://code-website.wixsite.com/iptnet.
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Figure 2. Illustration of the proposed importance Propagation based collaborative Teaching Network (iPTNet) for video summarization. It
consists of four parts: the video summarization module (SM), the moment localization module (LM), the collaborative teaching module
(TM), and the importance propagation module (PM). See the main text for more details.

47, 65, 88, 95]. Previous methods could be roughly di-
vided into four categories: ranking-based [38, 73], anchor-
based [78, 82], reinforcement learning-based [67, 69], and
regression-based [45, 80]. Ranking-based methods adopt
the matching and ranking architecture to localize tempo-
ral moments [8]. Anchor-based methods generate multiple
anchors of different scales and select the anchor with the
highest confidence [66, 91]. Reinforcement learning-based
methods regard moment localization as a decision-making
problem and the agent with certain policies is utilized to
help moment localization [23]. Regression-based methods
can flexibly regress temporal boundaries of localized mo-
ments without proposal generation [7, 79]. Zeng et al. [80]
designed a regression network to regress the distance from
each frame to the start / end frame of the video segment de-
scribed by the query. Zhang et al. [89] proposed to model
the temporal moment relations by a 2D map. Different from
the previous work, we explore a new direction of moment
localization, i.e., joint training with the video summariza-
tion model to obtain informative cross-task assistance.

Teacher-student models. They have been used for
knowledge distillation [3,9,10,35,59,64,71,97] and applied
in various vision tasks, such as object detection [4, 13, 62],
image segmentation [25, 26], video captioning [90], etc.
Mean teacher model [63] was proposed to average model
weights at different training iterations to form a target-
generating teacher model. Yang et al. [74] developed an
interactive form of self-training using mean teacher models
for object detection. However, existing mean teacher mod-
els are designed for the same task and could not be directly

used for cross-task joint optimization. To solve this prob-
lem, we propose a collaborative teaching mechanism that
promotes the performance of multiple tasks simultaneously.

3. The Proposed Approach
3.1. Task Definition

Let V = {vi}Ni=1 be the frame set of an untrimmed video,
where N is the number of frames in V . The video summa-
rization model primarily seeks for a representative set of
key frames as video summaries. Let S = {sj}Mj=1 denotes
the frame set of video summaries, where M is the number
of frames in S. Typically, M is below some pre-specified
length proportion (say, 15%) of N . The subset S can be ob-
tained by optimizing some objective functions that encode
the belief about a good video summary. For the moment
localization model, its goal is to precisely find the starting
/ ending timestamps for a semantic moment specified by a
natural language query.

3.2. Overview of Network Design

In this section, we introduce the architecture of the pro-
posed importance Propagation based collaborative Teach-
ing Network (iPTNet). As shown in Figure 2, the proposed
model is comprised of four modules, including the video
summarization module (SM), the moment localization mod-
ule (LM), the importance propagation module (PM), and
the collaborative teaching module (TM). SM is designed
for selecting keyshots based on the input video. LM takes
the video and the text query as input, and aims to local-
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ize the corresponding moments according to the query. Im-
portantly, both SM and LM will read all samples that are
annotated for either task. Yet only the samples for video
summarization activate the calculation of loss functions in
SM in the forward pass. Similar treatment for LM. In the
following sections, we describe each module in details.

3.3. Video Summarization Module (SM)

Given an input untrimmed video V = {vi}Ni=1, we first
extract the visual features of each frame vi. In our imple-
mentation, GoogLeNet [61] is adopted for frame feature
extraction that generates a 1,024-dimensional feature vec-
tor hi for frame vi. Other neural backbones (e.g., ResNet)
can be alternatively used. In addition, to further capture
long-range correlations, we use the multi-head attention op-
eration to enhance each hi. Let the final feature set be
H ′ = {h′1,h

′
2, ...,h

′
N}.

SM calculates an importance map I(Sum)(H
′) fromH ′

in order to generate the final video summary. Suppose the
importance map is calculated as follows:

I(Sum)(H
′) = F (I)(H ′), (1)

where F (I) denotes a feed forward network. Unless other-
wise clarified, configurations of all neural designs are post-
poned to the supplemental materials for space limitation.

We also predict the boundary offsetB and the centrality
scoreC of video frames [98] to help SM learn to locate key
segments, whereB is a 2D matrix that represents the offsets
of each video frame from the left and right boundaries of the
associated segment, and C is a 1D matrix that represents
whether each frame is at the center of the segment. Suppose
the calculations ofB and C are conducted via:{

B = F (B)(H ′),

C = F (C)(H ′),
(2)

where F (B) and F (C) denote some feed forward networks
for B,C, respectively. The loss function LSM for opti-
mizing SM is consistent with [98]. Non-maximum suppres-
sion is adopted to remove the predicted segments with large
overlaps or low confidences, and the 0/1 knapsack algo-
rithm is employed to generate video summaries.

3.4. Moment Localization Module (LM)

Given an input untrimmed video V = {vi}Ni=1 and the
text query W = {wq}Lq=1, where wq represents a word in
the query and L is the total number of words. LM aims to
locate the video segment corresponding to the query. Simi-
lar to the video summarization module, we first extract the
I3D feature [6] (which is the most widely-used feature in
the moment localization literature) around each frame vi
and GloVe [51] for each word wq . Both are fed into an

Algorithm 1 Importance Propagation Algorithm

Input:
The input video features,H ′;
The importance map before propagation, I(Sum)(H

′);
Half of the scan range for propagation, s;

Output:
The importance map after propagation, J (Sum)(H

′);
1: for each i ∈ {1, 2, ..., N} do
2: χ

(l)
i = max(0, i− s);

3: χ
(r)
i = min(i+ s+ 1, N + 1);

4: Υ
(l←r)
i = {h′j |χ

(l)
i ≤ j < χ

(r)
i ∧ h

′
j ∈H

′};
5: O(l←r)

i = SimFunction(Υ
(l←r)
i ,h′i);

6: Ii ←
(∑

j:j∈{χ(l)
i ,...,χ

(r)
i }

Ij · Oji
)/(

χ
(r)
i − χ

(l)
i

)
;

7: end for
8: for each i ∈ {1, 2, ..., N} do
9: %

(s)
i = {Ij |max(0, i−s) ≤ j < min(i+s+1, N+

1), Ij ∈ I};
10: %̃

(s)
i = arg maxi(%

(s)
i );

11: ∆ ∼ Gaussian(min(s, i)− %̃(s)i );
12: Γ ∼ FeedForwardNetwork(H ′);
13: J i ← Ii ·∆ + Γ;
14: end for
15: J (Sum)(H

′) = {J i|i ∈ {1, 2, ..., N}};
16: return J (Sum)(H

′)

additional feature encoding sub-network with convolutional
layers and multi-head attention operations, which contextu-
alizes both features. Denote the encoded visual features as
H̃ = {h̃i}Ni=1 and textual features as W̃ = {w̃q}Lq=1.

Next, we employ the cross-modal attention module [55,
72, 76] that attends to visual and textual features simul-
taneously and captures the interactions between different
modalities. The QGH module [83, 84] is adopted to cal-
culate the importance map I(Loc)(H̃). The prediction and
optimization of LM essentially follow the practice in [83].
We omit more details regarding the network design and op-
timization since designing novel moment localization mod-
ule is not the main scope of this work.

3.5. Importance Propagation Module (PM)

As stated earlier, the main belief underlying our work is
that the importance maps generated by SM and LM approx-
imately correspond to the same set of semantic events, yet
at different levels of compactness and redundancy. Guided
by such belief, it is extremely important to establish con-
nections between these two kinds of importance maps, such
that collaborative teaching can be enabled. To this end,
we craft an importance propagation algorithm for realiz-
ing the conversion between the summarization-guided and
localization-guided importance maps, implemented by the
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Figure 3. Illustration of the importance propagation process. Note
that the process densifies the SM-guided importance map, return-
ing a new map more amenable for video moment localization.

importance propagation module (PM). It takes the impor-
tance map I(Sum)(H

′) as input, and outputs J (Sum)(H
′)

after propagation. The process is detailed in Algorithm 1.
For each frame i in the video, we first determine its

scan range during importance propagation, controlled by a
hyper-parameter s. As shown in lines 2-3, according to s
we calculate the left endpoint χ(l)

i and right endpoint χ(r)
i of

the scan range respectively. Next, we select the frame fea-
ture set Υ

(l←r)
i required for importance propagation based

on the obtained χ(l)
i and χ(r)

i (line 4). In order to calculate
the weighting factor in the importance propagation process,
we adopt some similarity functions (e.g., cosine) to calcu-
late the similarities O(l←r)

i between the visual feature h′i
of the i-th frame and the feature h′j (χ

(l)
i ≤ j < χ

(r)
i ) in

the set Υ
(l←r)
i (line 5). Afterwards, we perform importance

propagation within the scan range of frame i according to
the obtained weighting factors O(l←r)

i , as shown in line 6,
and then update Ii with the propagation results of the first
stage.

Considering that the process of importance propagation
is not only affected by the frame visual features, but also by
the relative distance between different frames. In light of
this, we find the position %̃(s)i of the maximum frame impor-
tance %(s)i in the scan range Ij , j ∈ [max(0, i−s),min(i+
s+ 1, N + 1)) centered on video frame i, and calculate the
relative distance offset between %̃(s)i and frame i in the scan
range (lines 9-10). Since the Gaussian distribution can ap-
proximate the attenuation of the influence of adjacent video
frames with increasing distance, we perform Gaussian sam-
pling based on the relative distance offset and obtain the
sampling result ∆ (line 11). In addition, we also include
a learnable feedforward network to calculate the shift term
Γ based on the video feature H ′. Γ is added to the scaled
frame importance map Ii · ∆ to generate the propagated

importance map, as shown in lines 12-13. In this way, we
return J(Sum)(H

′) as the final result. Figure 3 presents an
example of importance propagation.

3.6. Collaborative Teaching Module (TM)

Once we have obtained I(Sum)(H
′) and I(Loc)(H̃)

from SM and LM respectively, the next challenge is how
to effectively combine these two modules to achieve cross-
task joint optimization. Direct batch-wise joint training is
susceptible to the noises in current batch and numerically
unstable. This easily causes the error of one task to spread
to the other task, resulting in error amplification and failure
of convergence.

We mitigate this issue using the mean teacher mecha-
nism. Existing mean teacher methods [19, 63] propose to
average the student model weights at different training it-
erations to form the teacher model, which continuously ag-
gregates and updates the distilled knowledge from students.
However, these methods are limited to the same task and
not directly applicable for cross-task joint optimization. As
shown in Figure 2, we propose a collaborative teaching
module (TM) over the video summarization and moment
localization modules, which enables the teacher model of
one task to transfer the distilled knowledge to the student
model of the other task through importance maps, thereby
achieving collaborative training. For video summarization,
let its teacher / student network be Π

(T )
Sum, Π(S)

Sum respec-
tively. Likewise we introduce the notations Π(T )

Loc, Π
(S)
Loc for

moment localization. The parameters of Π(T )
Sum are deter-

mined by:

E(t+1)
[
θ
(
Π

(S)
Sum

)]
= γE(t)

[
θ
(
Π

(S)
Sum

)]
+(1−γ)θ

(
Π

(S)
Sum

)
,

(3)
where E(t+1)

[
θ
(
Π

(S)
Sum

)]
and E(t)

[
θ
(
Π

(S)
Sum

)]
denote the

parameters of model Π(T )
Sum in the iteration t + 1 and t,

respectively. θ
(
Π

(S)
Sum

)
indicates the parameters of model

Π
(S)
Sum in the iteration t+1 and γ is the ensembling momen-

tum. Likewise, we can also define the updating formula for
Π

(T )
Loc, which is omitted for saving space.
Following the previous description, we denote the impor-

tance map generated by Π
(S)
Sum and Π

(T )
Sum as I(S)Sum(H ′)

and I(T )
Sum(H ′), respectively. The importance map gener-

ated by the student network should be as close as possible
to the map generated by the teacher network, so we measure
the difference between I(S)Sum(H ′) and I(T )

Sum(H ′) by:

D(I
(S)
Sum(H ′

∣∣θ(Π
(S)
Sum)), I

(T )
Sum(H ′

∣∣E[θ(Π
(S)
Sum)]))

= E
h′∼I(S)

Sum(h′)

[
logI

(S)
Sum(h′)− logI

(T )
Sum(h′)

]
.

(4)

The calculation of the difference between I(S)Loc(H̃) and
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I
(T )
Loc(H̃) is similarly defined as follows:

D(I
(S)
Loc(H̃

∣∣θ(Π
(S)
Loc)), I

(T )
Loc(H̃

∣∣E[θ(Π
(S)
Loc)]))

= E
h̃∼I(S)

Loc(h̃)

[
logI

(S)
Loc(h̃)− logI

(T )
Loc(h̃)

]
.

(5)

When we use the LM data (i.e., samples from the mo-
ment localization task, more details in Sec. 3.7) for collab-
orative teaching, LM could generate more trustworthy im-
portance maps than SM. Therefore, we make Π

(S)
Sum learn

from Π
(T )
Loc and measure the difference between J (S)

Sum(H̃)

(obtained by I(S)Sum(H̃) from PM) and I(T )
Loc(H̃) as:

D(J
(S)
Sum(H̃

∣∣θ(Π
(S)
Sum)), I

(T )
Loc(H̃

∣∣E[θ(Π
(S)
Loc)]))

= E
h̃∼J(S)

Sum(h̃)

[
logJ

(S)
Sum(h̃)− logI

(T )
Loc(h̃)

]
.

(6)

Similarly, when the SM data is used for collaborative
teaching, SM could generate more trustworthy importance
maps than LM2, so we make Π

(S)
Loc learn from Π

(T )
Sum and

calculate the difference between J (T )
Sum(H ′) and I(S)Loc(H

′):

D(J
(T )
Sum(H ′

∣∣E[θ(Π
(S)
Sum)]), I

(S)
Loc(H

′∣∣θ(Π
(S)
Loc)))

= E
h′∼J(T )

Sum(h′)

[
logJ

(T )
Sum(h′)− logI

(S)
Loc(h

′)
]
.

(7)

Regardless of which task data is used, we can always
make Π

(S)
Loc and Π

(S)
Sum learn from each other. The reason

lies in when the SM data is used, Π(S)
Sum can help Π

(S)
Loc

learning; otherwise, Π(S)
Loc can help Π

(S)
Sum learning. Take

the use of the LM data as an example, we calculate the dif-
ference between J (S)

Sum(H̃) and I(S)Loc(H̃) as follows:

D(J
(S)
Sum(H̃

∣∣θ(Π
(S)
Sum)), I

(S)
Loc(H̃

∣∣θ(Π
(S)
Loc)))

= E
h̃∼J(S)

Sum(h̃)

[
logJ

(S)
Sum(h̃)− logI

(S)
Loc(h̃)

]
.

(8)

The optimization function of TM needs to be discussed
in two situations, namely when the LM data is used for col-
laborative teaching and when the SM data is used. When
the LM data is used, the optimization function is drawn by:

LTM LL = D(I
(S)
Loc, I

(T )
Loc) + LLM (9)

LTM LS = D(J
(S)
Sum, I

(T )
Loc) +D(J

(S)
Sum, I

(S)
Loc) (10)

where LLM represents the loss of LM itself, LTM LL is the
total optimization function of LM in the presence of the LM
data, and LTM LS is the optimization function of SM in the
presence of the LM data. When the SM data is used, the
optimization function is drawn by:

LTM SS = D(I
(S)
Sum, I

(T )
Sum) + LSM (11)

2In this situation, LM only takes video features as input to calculate the
importance map and does not localize moments, since the SM data does
not have query-moment annotations.

LTM SL = D(J
(T )
Sum, I

(S)
Loc) +D(J

(S)
Sum, I

(S)
Loc) (12)

where LSM represents the loss of SM itself, LTM SS is the
total optimization function of SM in the presence of the SM
data, and LTM SL is the optimization function of LM in the
presence of the SM data.

Note that the teacher network does not perform gradient
back-propagation, calculate or store gradients. Thus it does
not significantly increase the computational complexity and
memory usage.

3.7. Data Flows during Model Learning

The data used in training is an ensemble of annotated
samples from two tasks. It is thus critical to understand the
data flows in our model. The data flows of our framework
can be divided into two parts: the data flow of the LM data
and the data flow of the SM data. When the LM data is used,
it only activates the loss functions LTM LL and LTM LS to
update the parameters. Similarly, when the SM data is fed,
it activates LTM SS and LTM SL. Importantly, all samples
will be fed into both SM and LM, whatever sources they
are from. This way, a video originally annotated for mo-
ment localization can also help refine the parameters of the
video summarization module, through optimizing the loss
in TM, and vice versa. This treatment is key for the realiza-
tion of cross-task sample transfer between the two tasks and
overcoming the problem of insufficient video summarizes.

Considering the severe imbalance of the SM and LM
data, we adopt a non-mixing sampling strategy in practice.
The optimization starts from training SM for several epochs
(e.g., 20) purely with SM data, and then starts the collabora-
tive teaching that first reads only the LM data to update both
modules and then samples only the SM data. Once a fixed
number of epochs are reached, it will exit the collaborative
teaching and repeat the above process until convergence.

4. Experiments

4.1. Experimental Settings

Datasets. We evaluate our iPTNet framework on two
benchmarks: SumMe [21] and TVSum [60]. The former
is a collection of 25 user-generated videos and covers mul-
tiple types of scenes (e.g., cooking), with each video having
frame-level importance scores annotated by 15 − 18 users.
TVSum consists of 50 YouTube videos annotated by 20
users, belonging to 10 categories (e.g., parades). Follow-
ing the previous approaches [54, 92], we use the additional
Open Video Project (OVP) [12] and YouTube datasets [12]
to perform experiments under the augmented and transfer
settings. More details of the datasets are shown in Ta-
ble 1. If only frame-level importance scores are provided,
we follow previous methods to convert them into keyshot-
based summaries for evaluation [86]. For LM, we adopt
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Table 1. Statistics of the SumMe [21], TVSum [60], OVP [12], and YouTube [12] datasets, including the number of videos, the number of
annotations, and the durations of videos in the datasets.

Dataset Num of Videos Num of annotations Avg Duration Min Duration Max Duration

SumMe [21] 25 15-18 2min 26s 32s 5min 24s
TVSum [60] 50 20 3min 55s 1min 23s 10min 47s

OVP [12] 50 5 1min 38s 46s 3min 29s
YouTube [12] 39 5 3min 16s 9s 9min 32s

Table 2. Overall performance comparison (in terms of F-score %)
on SumMe and TVSum datasets under the canonical setting.

Method SumMe Dataset TVSum Dataset

Video MMR [37] 26.6 –
LiveLight [94] – 46.0
ERSUM [36] 43.1 59.4

MSDS-CC [44] 40.6 52.3
vsLSTM [86] 37.6 54.2

dppLSTM [86] 38.6 54.7
SUM-GAN [43] 41.7 56.3

A-AVS [27] 43.9 59.4
M-AVS [27] 44.4 61.0
SASUM [68] 45.3 58.2
DR-DSN [96] 42.1 58.1
TS-STN [24] 46.1 60.0

SUM-FCN [54] 48.8 58.4
VASNet [17] 49.7 61.4

DSNetanc based [98] 50.2 62.1
DSNetanc free [98] 51.2 61.9

RSGN [92] 45.0 60.1
iPTNet (Ours) 54.5 63.4

Charades-STA [18, 58] with 12, 408 and 3, 720 sentence-
moment pairs for training and testing, respectively.
Evaluation protocol. Following previous work [54, 85],
we evaluate the proposed method under the canonical, aug-
mented, and transfer settings. In the canonical setting, we
randomly divide the dataset into 5 splits, using 80% of the
dataset for training, and the remaining for evaluation. In the
augmented setting, for a given dataset, we randomly select
20% data for evaluation, and the rest 80% of the dataset aug-
mented with the other three datasets are used for training.
In the transfer setting, for the given dataset, the model is
trained on other three datasets and evaluated on the remain-
ing dataset. In all settings, we run the models five times and
report the averaged results [98].

We adopt F-score to measure the matching degree of the
generated summaries Si and the ground-truth summaries
Ŝi for video i. The precision and recall according to
the temporal overlap between Si and Ŝi are calculated by
Precision = |Si∩Ŝi|

|Si| , Recall = |Si∩Ŝi|
|Ŝi|

, and the F-score is

calculated by 2×Precision×Recall
Precision+Recall . For videos with multiple

user-annotated summaries, we follow [22, 86] to calculate
the metrics.
Implementation details. In SM, we follow the previous

work [22, 86, 92] to extract 1024-dimensional visual fea-
tures from the poo5 layer of GoogLeNet [61] pre-trained
on ImageNet. In LM, we use 3D ConvNet to extract the
visual features [81, 83]. The learning rates of SM and LM
are set to 0.00001 and 0.0005, respectively. γ is set to 0.3
in TM. s is set to 10 in PM. The number of heads in the
multi-head attention layer is 8. The hidden size of the video
summarization model is set to 128. Adam [32] optimizer is
adopted to update our model.

4.2. Performance Comparison

We compare the proposed method iPTNet with previous
methods on SumMe and TVSum. Table 2 shows the perfor-
mance comparison under the canonical setting. We observe
that iPTNet achieves the best performance on both datasets.
Compared with previous methods, such as RSGN, DSNet,
VASNet, and SUM-FCN, our method considers employing
the moment localization model to help the training of video
summarization, which demonstrates that the idea of joint
training facilitates the model performance. In addition, the
distilled knowledge obtained by the proposed collaborative
teaching mechanism provides helpful teaching signals for
SM in the joint learning process, thereby further improving
the performance.

We further conduct experiments under the augmented
and transfer settings on SumMe and TVSum along with
additional OVP and YouTube datasets, as illustrated in Ta-
ble 3. We observe that iPTNet still outperforms the previous
work under the two settings. This shows that the proposed
cross-task sample transfer endows our model the compet-
itive ability and helps the model maintain superior perfor-
mance under different experimental settings.

4.3. Ablation Investigation

In this section, we study the effectiveness of each
component of the proposed method by comparing iPTNet
with several variants (i.e., iPTNet-P, iPTNet-T, iPTNet-L).
Specifically, in iPTNet-P, we remove the proposed impor-
tance propagation algorithm in PM. In iPTNet-T, we re-
move the proposed collaborative teaching mechanism and
do not employ the teacher network for knowledge distil-
lation and model teaching. As for iPTNet-L, we do not
use the moment localization model to help the training of
video summarization. Figure 4 reports the performance
comparison of iPTNet, iPTNet-P, iPTNet-T, and iPTNet-
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Figure 4. Performance comparison of different model variants on SumMe dataset under the canonical and augmented settings.
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Figure 5. Effectiveness analysis of the proposed method to the video moment localization model.

Table 3. Performance comparison (in terms of F-score %) on
SumMe and TVSum under the augmented and transfer settings.

Method
SumMe TVSum

C A T C A T

vsLSTM [86] 37.6 41.6 40.7 54.2 57.9 56.9
dppLSTM [86] 38.6 42.9 41.8 54.7 59.6 58.7

A-AVS [27] 43.9 44.6 – 59.4 60.8 –
M-AVS [27] 44.4 46.1 – 61.0 61.8 –

DR-DSN [96] 42.1 43.9 42.6 58.1 59.8 58.9
SUM-FCN [54] 48.8 50.2 45.0 58.4 59.1 57.4

DSNeta base [98] 50.2 50.7 46.5 62.1 63.9 59.4
DSNeta free [98] 51.2 53.3 47.6 61.9 62.2 58.0

RSGN [92] 45.0 45.7 44.0 60.1 61.1 60.0
iPTNet (Ours) 54.5 56.9 49.2 63.4 64.2 59.8

L on the SumMe dataset in terms of Precision and Re-
call. We observe that iPTNet-L performs the worst, indi-
cating the effectiveness of our idea of employing LM to
help SM training. iPTNet-T performs better than iPTNet-
L, but worse than iPTNet-P. It shows that our collaborative
teaching mechanism is significant and the distilled knowl-
edge provides helpful teaching signals for SM in the joint
training process. In addition, compared with iPTNet, the
performance degradation of iPTNet-P verifies the effective-
ness of the proposed importance propagation algorithm.

4.4. Study the Effect of iPTNet to LM

In this part, we study the effect of iPTNet on LM learn-
ing. We train the moment localization model separately un-

der the setting of using and removing the proposed joint
training method, and observe the performance. Figure 5
summarizes the experimental results, wherein LM-T indi-
cates independent training of LM. We repeat multiple exper-
iments and calculate the mean and standard deviation of the
experimental results. LM∼UB and LM∼LB represent the
upper and lower bounds of the experimental results of LM.
We observe that LM with the proposed method achieves
lower loss and higher performance (i.e., in terms of mIoU,
Rank@1, IoU=0.3, and Rank@1, IoU=0.7), which demon-
strates that iPTNet also provides beneficial information for
LM training and helps LM perform better.

5. Concluding Remarks
We address the data scarcity issue in video summariza-

tion, i.e., employing the moment localization model to help
the training of video summarization. We devise a new
framework iPTNet, which adopts a collaborative teaching
scheme to perform cross-task mean teaching and provide
robust teaching signals. An importance propagation al-
gorithm is designed to deal with domain gaps and real-
ize cross-task sample transfer. Extensive experiments on
video summarization datasets demonstrate the effectiveness
of iPTNet.
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