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Abstract

Skeleton-based human action recognition is becoming
increasingly important in a variety of fields. Most exist-
ing works train a CNN or GCN based backbone to extract
spatial-temporal features, and use temporal average/max
pooling to aggregate the information. However, these pool-
ing methods fail to capture high-order dynamics informa-
tion. To address the problem, we propose a plug-and-
play module called Koopman pooling, which is a param-
eterized high-order pooling technique based on Koopman
theory. The Koopman operator linearizes a non-linear dy-
namics system, thus providing a way to represent the com-
plex system through the dynamics matrix, which can be
used for classification. We also propose an eigenvalue nor-
malization method to encourage the learned dynamics to
be non-decaying and stable. Besides, we also show that
our Koopman pooling framework can be easily extended to
one-shot action recognition when combined with Dynamic
Mode Decomposition. The proposed method is evaluated
on three benchmark datasets, namely NTU RGB+D 60, 120
and NW-UCLA. Our experiments clearly demonstrate that
Koopman pooling significantly improves the performance
under both full-dataset and one-shot settings.

1. Introduction
Skeleton-based human action recognition is a crucial

task in many applications, ranging from video surveillance
to autonomous driving and human-robot interaction. With
the prevalence of deep learning, the rising of LSTM, CNN
and GCN has significantly improved the performance of ac-
tion recognition. Most existing methods [9,13,28,46,70,73]
use a CNN or GCN based backbone to extract complex
spatial-temporal features, and use temporal average/max
pooling to aggregate the information. However, vanilla tem-
poral average/max pooling contains only first-order infor-
mation and abandons higher-order statistical information.
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Figure 1. Most existing works use temporal average pooling to
aggregate the information along the temporal dimension (left), and
only first-order information is considered. Our proposed Koopman
pooling (right) instead focuses on the true latent dynamics of the
sequence in linear Koopman space, and learns a set of class-wise
Koopman dynamics matrices to represent the dynamics of each
class. The classification is achieved by dynamics matching.

To this end, recent works focus on second-order pool-
ing to capture second-order information of the feature se-
quences. Specifically, bilinear and covariance pooling is
widely used to extract second-order statistical information
from the feature sequence. Early works [14] use sim-
ple bilinear pooling to model the interaction of features
and aggregate temporal information. In recent years, re-
searchers proposed to use covariance pooling [22] to cap-
ture second-order statistical information, as covariance ma-
trix can model the interaction between features while main-
taining good geometrical structure [31]. However, the
skeleton sequence as well as the extracted feature sequence
has complex underlying dynamics in nature. Existing meth-
ods such as covariance pooling only exploit the feature in-
teraction between frames or channels, but they fail to dis-
cover the true dynamics of the sequence. Instead, we aim
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to directly focus on the temporal dynamics of the sequence
and conduct sequence recognition based on class-specific
dynamics.

A critical motivating idea of this work is the applica-
tion of Koopman theory [26]. The original Koopman the-
ory aims to re-formulate a non-linear dynamical system
to be a linear one. To this end, a Koopman operator is
required to lift the original features into some possibly
infinite-dimensional Hilbert space, wherein the evolution
of the dynamics becomes linear. Such a treatment is fa-
vored in numerous applications, including time-series anal-
ysis, since an arsenal of spectral-analysis tools can facilitate
the in-depth investigation of the model (such as the tempo-
ral stability property). In practice, identifying the optimal
Koopman operator of a specific dynamic system remains a
challenge. Besides conventional dynamic mode decompo-
sition (DMD) [6], recent years also witnessed the utilization
of black-box neural network for learning the Koopman op-
erator in differentiable fashion [1, 23, 38, 42, 61].

To our best knowledge, the proposed Koopman pooling
in this paper is the first work to leverage the power of Koop-
man theory to formulate a new high-order pooling method.
Unlike existing methods like covariance pooling which use
covariance matrix to model the temporal correlation of fea-
tures implicitly, we instead view the temporal evolution of
feature vectors as a dynamical system, and use the dynam-
ics itself to model the temporal correlation explicitly. As
shown in figure 1, the original trajectories are mapped to a
new embedding space where the temporal evolution is lin-
ear. The transition matrix of this linear system can therefore
be viewed as the signature of this sequence, which contains
rich high-order information. For the classification task,
our model learns the class-wise Koopman matrices which
represent class-specific dynamics, and conducts dynamics
matching to obtain the classification score. Based on our
observation of the learned dynamics, this paper highlight
the critical importance of the stability of learned dynamics
when tackling recognition tasks, and propose an eigenvalue
normalization technique to push the learned linear dynam-
ics to be stable and non-decaying. We also combine Koop-
man pooling and dynamic mode decomposition(DMD) to
formulate a new framework for one-shot action recognition,
which uses dynamics to match the sequence instead of the
common practice of computing distance in the embedding
space or conducting metric learning.

To verify the effectiveness of the proposed method, we
conduct extensive experiments on 3 skeleton-based action
recognition datasets, namely NTU RGB+D, NTU RGB+D
120, and NW-UCLA. The results demonstrate that Koop-
man pooling significantly improves the performance under
both full-dataset and one-shot settings.

To be summarized, the main contributions of this paper
are as follows:

• We proposed Koopman pooling, which is the first work
in the literature to design a plug-and-play high-order
pooling method based on Koopman theory that allows
eigenvalue manipulation and one-shot recognition.

• We emphasize the critical importance of learning a sta-
ble and non-decaying system for recognition tasks and
accordingly design an eigenvalue normalization tech-
nique based on control theory.

• Our comprehensive experiments based on various
backbones [9, 28, 68] on the commonly used bench-
mark datasets NTU RGB+D 60/120 and NW-UCLA
shows Koopman pooling significantly improves the
performance under both full-dataset and one-shot set-
ting.

2. Related work
2.1. Temporal Pooling Methods

Recently, there is a growing research interest in improv-
ing vanilla temporal average pooling by introducing higher-
order statistics. Some works [14, 25, 34, 35, 86] use bilinear
pooling to capture pairwise interactions among CNN fea-
tures of adjacent frames or different channels. Recently,
researchers tackle second-order pooling from a covariance
perspective and introduce covariance matrix as the second-
order pooled features. Spatial covariance pooling is suc-
cessfully applied to image classification task [18,22,30,31,
58, 59, 67, 76, 83]. For temporal pooling, Girdhar et al. [19]
introduce an attention module that is equivalent to a rank-
1 approximation of second-order pooling. Gao et al. [17]
proposes a temporal-attentive covariance pooling for gener-
ating powerful video representations. Dong et al. [15] inte-
grates the correlation computation and covariance pooling
to model high-order temporal features of videos.

2.2. Deep Koopman Model

Koopman operator [26] was originally introduced to
tackle non-linear dynamical systems in physics. Recently,
there is a growing research interest in the combination of
deep learning and Koopman theory [2,20,23,38,42,47,61].
Most existing works [1,2,38] adopt the auto-encoder frame-
work and use specially designed loss functions to ensure the
linear evolution of the system. However, they mainly fo-
cus on the task of sequence prediction, and few works look
into recognition tasks. Zhang et al. [81] design a Koop-
man model for gait recognition by constructing linear em-
beddings. Nevertheless, their model still adopts an auto-
encoder structure without an end-to-end trainable classifier,
which fails when generalized to other backbones or set-
tings (such as one-shot recognition). Instead, our proposed
Koopman pooling is an end-to-end trainable, plug-and-play
second-order pooling module that can be inserted into any
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spatial-temporal backbone, thus allowing eigenvalues ma-
nipulation and one-shot recognition. Also, our work is the
first to stress the need of a stable and non-decaying dynam-
ics for recognition and design an eigenvalue normalization
based on stability theory.

2.3. Skeleton-based Action Recognition

Traditional methods [3–5,43,44,48,49,63,75] for skele-
ton action recognition mainly use hand-crafted dynamic
features and geometric relationships to model the spatio-
temporal action sequence. Recently, with the success of
deep learning, deep neural network has been the main
workhorse for action recognition. Early works [32, 33, 55,
56, 62, 77, 80, 85] use recurrent neural networks(RNN) as
the backbone to extract the temporal information of the
time series of human joints. However, RNN is known
to suffer from gradient explosion and vanishing. Some
researchers [7, 21, 29, 66, 71, 78] propose to apply con-
volutional neural nets(CNN) to better extract the spatial
and temporal information from the skeleton sequence by
performing spatial-temporal convolution. Recently, GCN-
based methods are proposed to tackle the task by modeling
the skeleton sequence as a spatial-temporal graph. The idea
is straightforward as the skeleton itself is a graph in nature
and has its own topology. A large proportion of works fol-
low this track [9, 10, 13, 24, 28, 37, 46, 53, 54, 70, 72–74, 82].
For instance, CTR-GCN [9] proposes to dynamically model
channel-wise topologies in a refinement approach, and re-
form graph convolution to relax the strict constraints, which
leads to better representation capability.

3. The Proposed Neural Koopman Pooling
3.1. Preliminary on Classic Koopman Theory

Let us first briefly review the classic Koopman theory be-
fore diving into the details of the proposed Koopman pool-
ing model. Suppose a discrete-time nonlinear dynamical
system can be described by

yk+1 = F (yk), Y ∈ M ⊂ Rd, (1)

where yk, yk+1 ∈ Y are state vectors on the state space M,
and F represents some state-transition function. For a par-
ticular choice of feature representation yk, the dynamics are
typically with high-level non-linearity. The Koopman the-
ory instead lifts yk into another higher-dimensional space,
wherein the evolution of the states is linear.

Formally, Koopman operator K acts on scalar functions
ϕ : M → R, which are elements of an infinite-dimensional
Hilbert space:

xk = ϕ(yk), (2)

where xk is a new (possibly) infinite-dimensional represen-
tation induced by ϕ. And the Koopman operator can be

defined as a composition:

Kϕ = ϕ ◦ F, (3)

which can be equivalently expressed as below:

Kϕ(yk) = ϕ(F (yk)) = ϕ(yk+1). (4)

One can view Koopman operator K as an evolution of
functions in the Hilbert space of all possible ϕ. However,
Koopman operator K is not tractable because it is infinite-
dimensional. We can use some finite-dimension matrix K as
an approximation of the Koopman operator, which results in
Eq. (5):

xk+1 = Kxk. (5)

Finite-dimensional approximation of Koopman operator
K is popularly realized by Dynamic Mode Decomposition
(DMD) [6, 50, 69]. Let X1:T−1 denotes [x1, x2, . . . , xT−1]
and X2:T denotes [x2, x3, . . . , xT ]. The DMD algorithm
seeks the best-fit linear operator K such that

X2:T = KX1:T−1 (6)

The best-fit mathematical solution is

K = argmin
K

∥X2:T − KX1:T−1∥F = X2:T X†
1:T−1, (7)

where ∥ · ∥F denotes the Frobenius norm and † denotes
pseudo-inverse.

3.2. Problem Formulation

In skeleton-based action recognition, an input X̂ con-
tains coordinates for V joints over T time-steps, namely
X̂ = (x̂1, x̂2, · · · , x̂T ). A feature extraction backbone F
(such as CNN or GCN) is applied to extract spatial-temporal
features from input X̂, resulting in feature sequence X =
F(X̂) = (x1, x2, . . . , xT ), where xt ∈ RC and C denotes
the feature dimension. In this paper, we focus on obtaining
the classification score from features X. Existing pooling
methods can be categorized as follows:

Vanilla Average Pooling. Temporal dimension is reduced
by average pooling, and a classifier such as fc-layer is then
applied to derive classification score:

score = FC

(
1

T

T∑
t=1

xt

)
. (8)

Covariance Pooling. The covariance matrix is used as
the feature. However, plain covariance pooling still aggre-
gates the features along temporal dimension orderlessly and
abandons temporal dynamics information.

score = FC

(
1

T

T∑
t=1

xtx
T
t

)
. (9)
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Figure 2. Overall architecture of the proposed Koopman pooling model. Skeleton sequence is first fed to the backbone to extract spatial-
temporal information. Then the feature sequence x1 ∼ xT−1 is evolved by each class-wise dynamics matrix Ki. L2 linear fitting error of
i-th class is calculated as

∑T
t=1 ∥xt −Kixt−1∥2. The opposite of linear fitting error is then used as the class activation score, therefore the

best-fit Ki indicates the classification result i. Class-wise dynamics matrix Ki is further processed by eigenvalues normalization, which is
described in Sec. 3.4.

Temporal Bilinear Pooling. Temporal bilinear pooling is
capable of capturing the interaction between temporal fea-
tures by calculating weighted inner product:

score = FC

(
1

T − 1

T−1∑
t=1

xT
t Wxt+1

)
. (10)

3.3. Class-wise Dynamics based Koopman Pooling

The pooling methods mentioned in Sec. 3.2 either reduce
the temporal dimension by simple averaging operation or
just implicitly model the interaction through the inner prod-
uct. They cannot fully exploit the complex dynamics of the
feature sequences. Instead, we aim to directly focus on their
true dynamics. As a highly non-linear dynamical system is
difficult to tackle, inspired by Koopman theory, we hope
that in the feature space, the temporal dynamic of the se-
quence is linear:

xt+1 = Kxt (11)

where K is the linear transition matrix. K can therefore
be viewed as a kind of “pooled feature/signature” for the
sequence, as it summarized the temporal dynamics of the
whole sequence. K can be derived by DMD:

K = X2:T X†
1:T−1. (12)

In the classification task, as each class has its specific
dynamics, N learnable matrices Ki ∈ RC×C (where C de-
notes feature dimension and N is the number of classes)
is set to represent the linear dynamics of each class. Dur-
ing classification, when given a specific sample, its dynam-
ics matrix derived from Eq. (12) is compared with each Ki

and find the nearest one. A naive way of performing such
matching is to calculate ℓ2 distance between matrices:

c = argmin
i∈{1,··· ,N}

∥K − Ki∥F . (13)

However, the performance of this simple method turns out
to be poor, as gradient back-propagation through pseudo-
inverse in Eq. (12) is highly unstable. Instead, to compare
two dynamics, we propose to use the ℓ2 distance of 1-step
linear evolution on the feature X by K and Ki, namely

c = argmin
i∈{1,··· ,N}

∥(K − Ki)X1:T−1∥F . (14)

The advantage of choosing the above distance is its equiva-
lence to the linear fitting error of Ki which greatly stabilized
the training process:

∥(K − Ki)X1:T−1∥F = ∥KX1:T−1 − KiX1:T−1∥F
= ∥X2:T − KiX1:T−1∥F .

(15)

The above equation is derived from Eq. (12), as KX1:T−1 =
X2:T X†

1:T−1X1:T−1 = X2:T holds when the dimension of
feature (i.e., the dimension of K) is larger than temporal
dimension T , which is true in our case. Under such formu-
lation, the class activation score for i-th class is calculated
as

scorei = −∥X2:T − KiX1:T−1∥F . (16)

During training, the class-wise linear dynamics matrices
K1, · · · ,KN are learned in an end-to-end fashion together
with the feature extraction backbone. We use cross-entropy
loss to jointly train the backbone and dynamics matrices:

L = CE(score, y), (17)

where y is the ground-truth label. For a specific sample
from class i, the cross-entropy loss encourages the linear
fitting error of Ki to be low and the error of Kj , j ̸= i to be
high.
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3.4. Stability-assured Eigenvalue Normalization

Koopman methods enjoy better theoretical interpretabil-
ity compared to other time-series models such as RNN.
Specifically, the spectrum and eigenvalues of Koopman ma-
trix K are critically important for system dynamics evolu-
tion. Existing Koopman methods [1, 16, 45] mainly focus
on the stability of the system as it is a key issue in long-
term prediction and system evolution. However, few works
look into the impact of stability in recognition tasks. In
this section, we emphasize the vital importance of stability
in recognition tasks and propose an eigenvalue normaliza-
tion technique to push the learned dynamics to be stable and
non-decaying.

Suppose λ1, λ2, . . . , λC ∈ C are the eigenvalues of K
and v1, v2, . . . , vC ∈ Cn are the corresponding eigenvec-
tors, where C is the dimension of K. Then the Koopman
mode decomposition [41] can be written as:

Ktx1 = Kt
∑
j

αjvj =
∑
j

λt
jαjvj . (18)

From Eq. (18), we can see the modulus of λj determines
whether the j-th mode is decaying, static or divergent. An
eigenvalue with a modulus smaller than one will cause the
mode to eventually decay to zero over time, while an eigen-
value with a modulus greater than one will cause the system
to be unstable and divergent.

In the above Koopman pooling formulation, since there’s
no explicit constraint on the norm of eigenvalues, the major-
ity of the learned eigenvalues have a modulus smaller than
one, causing the system to decay. Figure 3 shows some fail-
ure cases due to the decaying system. As shown, we visual-
ize the trajectories in the linear Koopman space by applying
PCA dimension reduction to embed the features into a 2-
dimensional plane for visualization. ’original’ denotes the
feature sequence X = [x1, x2, . . . , xT ], and ’i’ denotes the
1-step linear evolution of X by the i-th class-wise dynamics
matrix Ki, i.e. KiX = [Kix1,Kix2, . . . ,KixT ]. Ideally, we
have [x1, x2, . . . , xT−1] = [Kix2,Kix2, . . . ,KixT ] when i
equals to the ground-truth class of the action sequence. No-
tice that the 1-step linear evolution trajectories decay sig-
nificantly compared to the original trajectories. The key ob-
servation here is decaying system leads to imperfect linear
fitting and therefore class mismatch during classification,
which greatly lowers the recognition accuracy. Likewise,
an unstable system will face the same issue, as divergence
leads to imperfect linear fitting, too. To overcome this prob-
lem and further boost the recognition accuracy, we propose
an eigenvalue normalization technique to ensure the stabil-
ity and non-decaying of the learned dynamics.

For each class-wise dynamics matrix Ki, i = 1 . . . N ,
suppose the eigen-decomposition of Ki is Ki = UDU−1,
where D = diag{λ1, λ2, . . . , λC}. Our proposed eigen-

Data from Class ‘counting money’ Data from Class ‘drop’

Data from Class ‘pointing to something with finger’ Data from Class ‘touch head (headache)’

Figure 3. Visualization of original trajectories and their 1-step
linear evolution by the class-wise dynamics matrices Ki in fail-
ure cases. The ground-truth class name is annotated above each
figure as ’Data from Class x’ and the corresponding trajectory is
plotted in black. Ideally, the blue lines (original trajectories) and
the black lines (evolved trajectories by dynamics matrix of ground-
truth class) should coincide. As the norm of evolved trajectories
KiX is significantly smaller than original trajectories X due to the
decaying system, class mismatch is more likely to happen. Best
viewed in color.

value normalization is formulated as:

λ̂j = λj ∗
|λj |p

|λj |
, (19)

where p < 1 is the normalization factor. Then the normal-
ized dynamics matrix K̂i is calculated as K̂i = UD̂U−1,
where D̂ = diag(λ̂1, λ̂2, · · · , λ̂C). The key motivation of
designing the above normalization techniques is |λ̂j | > |λj |
for |λj | < 1 and |λ̂j | < |λj | for |λj | > 1. This ensures
that the normalization pushes the linear system to be non-
decaying and stable.

As the gradients of eigen-decomposition are numerically
unstable and computationally expensive, we proposed a 2-
stage training protocol. First, the class-wise Koopman dy-
namics matrices are optimized jointly with feature extrac-
tion backbone. Next, the learned dynamics matrices are
normalized and frozen. Only the feature extraction back-
bone is optimized to map the sequences to the linear space
governed by the normalized dynamics matrices.

3.5. Koopman Pooling for One-shot Recognition

Koopman pooling can be viewed as a kind of temporal
dynamics matching. With only one exemplar sample pro-
vided under one-shot setting, fully exploiting the informa-
tion of it for further matching becomes critical. Therefore, it
is straightforward to extend Koopman pooling to the task of
one-shot action recognition. In one-shot action recognition,
the testing set consists of novel classes that didn’t appear
in the training stage. One sample from each novel class
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Methods NTU-RGB+D 60 NTU-RGB+D 120 Northwestern UCLA (%)X-Sub (%) X-View (%) X-Sub (%) X-Set (%)

ST-GCN [72] 81.5 88.3 70.7 73.2 -
2s-AGCN [53] 88.5 95.1 82.5 84.2 -
SGN [79] 89.0 94.5 79.2 81.5 92.5
AGC-LSTM [55] 89.2 95.0 - - 93.3
DGNN [52] 89.9 96.1 - - -
Shift-GCN [12] 90.7 96.5 85.9 87.6 94.6
DC-GCN+ADG [11] 90.8 96.6 86.5 88.1 95.3
DDGCN [27] 91.1 97.1 - - -
MS-G3D [37] 91.5 96.2 86.9 88.4 -
MST-GCN [10] 91.5 96.6 87.5 88.8 -
EfficientGCN-B4 [60] 91.7 95.7 88.3 89.1 -
Dynamic GCN [74] 91.5 96.0 87.3 88.6 -

CTR-GCN [9] 92.4 96.8 88.9 90.6 96.5
CTR-GCN* [9] 92.4 96.4 88.9 90.4 96.5
CTR-GCN w/ Koompan Pooling 92.9 96.8 90.0 91.3 97.0

Table 1. Classification accuracy comparison of our method with CTR-GCN and some other existing models on the NTU-RGB+D
60, 120, and NW-UCLA datasets. X-Sub denotes cross-subject, X-View denotes cross-view and X-Set denotes cross-setup. CTR-GCN
denotes the reported performance in [9] and CTR-GCN* denotes the reproduced results by re-running the official codes from [9]. Our
CTR-GCN + Koopman Pooling model outperforms the original CTR-GCN model by a non-trivial margin.

is provided as the exemplar, and the model is required to
yield classification results on other samples from the novel
classes. Existing methods [8, 36, 65] mainly train a feature
extraction backbone on seen classes, and then use some
kind of matching techniques in the embedding space dur-
ing testing, such as ℓ2-matching. However, these matching
techniques still rely on temporal average pooling, which ig-
nores dynamical information of sequences. Instead, we aim
to fully exploit the dynamics information of exemplars and
match the sequences according to their dynamics.

Our proposed Koopman pooling framework can be read-
ily applied to one-shot action recognition when combined
with Dynamic Mode Decomposition (DMD) [6]. Dur-
ing training, we follow the same process with the full-
dataset setting. A feature extraction backbone is trained
on seen classes, which maps the original action sequences
into a linear space. Then during testing, the exemplar se-
quences from M novel classes are first fed to the back-
bone, resulting in feature sequences Xi = (xi

1, x
i
2, . . . , x

i
T ),

where i = 1, 2, . . . ,M . The class-wise dynamics matrices
K1,K2, . . . ,KM are calculated as

Ki = Xi
2:T (X

i
1:T−1)

†, i = 1, 2, . . . ,M. (20)

Ki summarizes the temporal dynamics of exemplar se-
quence and can be viewed as the class-specific linear dy-
namics prototype. For each given testing sample, suppose
its extracted feature is X = (x1, x2, . . . , xT ), the classifica-
tion result can be derived as

c = argmin
i∈{1,...,M}

∥X2:T − KiX1:T−1∥F . (21)

Such matching protocol fully exploits the dynamics infor-
mation of the exemplar and is better than the common

practice of calculating distance in the embedding space for
matching. Notice that under one-shot setting, the class-wise
dynamics matrices Ki do not need further eigenvalue nor-
malization, as Ki for each novel classes is calculated via
DMD in this case rather than learned from data.

4. Experiments
4.1. Data Description and Evaluation Protocol

NTU RGB+D [51] contains 56,880 skeleton action se-
quences which are categorized into 60 classes, performed
by 40 subjects. Each sequence is captured by three Mi-
crosoft Kinect v2 cameras. There’re two standard evalua-
tion protocols for this dataset: (1) cross-subject(CS), under
which the 40 subjects are split into 20 training subjects and
20 testing subjects. (2) cross-view(CV), under which the
training set contains sequences from cameras 2 and 3, and
the testing set contains sequences from camera 1.

NTU RGB+D 120 [36] is an extension of NTU RGB+D,
which contains 113945 skeleton action sequences of 120
classes, performed by 106 subjects. This dataset con-
tains 32 setups (location and background). There’re two
standard evaluation protocols for this dataset: (1) cross-
subject(CSub), under which the 106 subjects are split into
53 training subjects and 53 testing subjects. (2) cross-
setup(CSet): under which the training set contains se-
quences with even setup IDs and the testing set contains
sequences with odd setup IDs.

Northwestern-UCLA [64] has 1494 skeleton sequences
of 10 classes performed by 10 subjects. Each sequence is
captured by three Kinect cameras from different views. Fol-
lowing previous works, we use the sequences from the first
two cameras as the training set and the sequences from the
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Dataset Modality Model (%)
CTR-GCN Koopman E-Koopman

joint 84.9 85.6 85.7
NTU120 bone 85.7 87.1 87.2

Xsub joint motion 81.4 82.5 82.7
bone motion 81.2 83.0 83.1

joint 86.4 87.2 87.4
NTU120 bone 87.9 88.1 88.3

Xset joint motion 83.0 84.2 84.4
bone motion 83.0 84.1 84.1

joint 89.9 89.9 90.2
NTU60 bone 90.6 90.3 90.6
Xsub joint motion 88.1 88.4 88.5

bone motion 87.9 87.9 88.0

joint 94.5 94.9 95.2
NTU60 bone 94.7 94.5 94.7
Xview joint motion 93.1 93.1 93.3

bone motion 92.2 92.1 92.4

Table 2. Classification accuracy comparison of our models and
CTR-GCN on the four modalities of NTU RGB+D 60, 120.
In the table, “Koopman” denotes CTR-GCN + Koopman pooling
(without eigen-normalization). “E-Koopman” denotes CTR-GCN
+ Koopman pooling (with eigen-normalization).

last camera as the testing set.
One-shot evaluation protocol. We also conduct one-

shot action recognition experiments on NTU RGB+D 120
and NW-UCLA dataset. For NTU RGB+D 120, following
prior works [8,36,39,40,65,84], the dataset is split into aux-
iliary set and evaluation set. The auxiliary set contains all
sequences from 100 classes, and the evaluation set contains
20 novel classes. For each evaluation class, one sample is
selected as the exemplar and the remaining are used for test-
ing. For NW-UCLA, sequences from 10 classes are used as
the auxiliary set, and the remaining are used for evaluation.

4.2. Implementation Details

The evaluations mainly adopt CTR-GCN [9] as the base
model, a modern representative GCN-based recognition
model that inspired many follow-up works [13, 28, 46, 73].
Nonetheless, we would emphasize that the proposed Koop-
man pooling method is a generic plug-and-play module.
By substituting the last temporal average pooling layer, it
can be inserted into most spatial-temporal recognition back-
bones. Tab. 4 also briefly presents the benefits brought by
Koopman pooling + other GCN variants. To ensure fair
comparison, we use the same hyperparameters as the orig-
inal implementation of CTR-GCN [9] (learning rate, opti-
mizer, weight decay, data preprocessing, etc.). The normal-
ization factor p in Eq. (19) is set to 0.25. Random seed is
set to 1, following [9].

Eq. (12) is not the unique solution of Eq. (11), as the di-

Methods NTU120 (%) UCLA (%)
APSR [36] 45.3 -
SL-DML [40] 50.9 -
Skeleton-DML [39] 54.2 -
JEANIE [65] 57.0 -
ALCA-GCN [84] 57.6 -
Part-aware [8] 65.6 83.3
ST-GCN+ProtoNet [57] 61.1 79.8
MS-G3D+ProtoNet [57] 59.5 81.2
CTR-GCN+ProtoNet [57] 58.8 80.7
CTR-GCN+Koompan Pooling 68.1 89.9

Table 3. Oneshot classification accuracy comparison against
state-of-the-art methods on the NTU RGB+D 120 and NW-
UCLA datasets.

mension of solution space for this linear equation is C − T
(C is the feature dimension). CTR-GCN embedding is
256-dimensional. Larger temporal length T will lead to a
smaller solution space and more stable recognition. Thus
We increase its temporal length to 64 (originally 16) by re-
moving the stride in temporal convolutions. Following prior
practice, experiments are conducted on 4 different modali-
ties (joint, bone, joint motion, and bone motion), and clas-
sification result is obtained by ensembling. For overall re-
sults, as the original CTR-GCN model realized by tem-
poral average pooling contains first-order information and
our Koopman model contains high-order dynamics infor-
mation, we obtain the results by fusing them through en-
sembling the classification score of them.

4.3. Quantitative Evaluations

Full-dataset setting. Tab. 1 presents the experimental
results on all three datasets. As observed, the proposed
Koopman pooling elevates the accuracy of CTR-GCN by
a non-trivial margin. To further demonstrate the effective-
ness of Koopman pooling, we compare the performance of
the original CTR-GCN and our methods on each modality
in Tab. 2. In the table, “Koopman” refers to CTR-GCN +
Koopman pooling, and “E-Koopman” refers to Koopman
pooling with eigenvalue normalization. As shown, after re-
placing the temporal average pooling layer of CTR-GCN
with the proposed Koopman pooling, the performance on
nearly every modality has improved. For example, on the
large-scale dataset NTU RGB+D 120, for most modalities
the performance has a gain larger than 1%. The effect of
eigenvalue normalization is also demonstrated, and for most
cases the improvement is around 0.2-0.3%, which is not sig-
nificant but very consistent.

One-shot setting. Tab. 3 shows the performance of
our proposed methods against existing one-shot methods
on NTU RGB+D 120 and NW-UCLA datasets. In the ta-
ble, the performances of CTR-GCN,MS-G3D, ST-GCN w/
ProtoNet [57] are from [8]. As shown, Koopman pool-
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Models joint (%) bone (%)
CTR-GCN [9] 84.9 85.7
CTR-GCN w/o stride 84.6 86.2
CTR-GCN w/ Koopman Pooling 85.7 87.2
HD-GCN [28] 85.3 86.7
HD-GCN w/ Koopman Pooling 85.7 87.3
TCA-GCN [68] 85.1 86.8
TCA-GCN w/ Koopman Pooling 85.3 87.4

Table 4. Ablation study on NTU RGB+D 120 cross-subject
dataset. CTR-GCN w/o stride denotes the baseline model that
removes the stride in the temporal convolution of CTR-GCN. w/
Koopman Pooling denotes our method that substitutes the last tem-
poral average pooling layer with proposed Koopman pooling.

ing achieves outstanding performance compared to existing
methods for its advantage of exploiting temporal dynamics.

4.4. Ablation Study

To demonstrate that the performance improvement
comes from Koopman pooling, we design two ablative ex-
periments. As mentioned in 4.2, the stride in the temporal
convolution of CTR-GCN is removed to prolong the tempo-
ral dimension, thus a baseline of CTR-GCN without stride
is added to ensure the improvement doesn’t come from this
removal. Also, as Koopman pooling is a plug-and-play
module that applies to any spatial-temporal backbones, we
wish to further prove its effectiveness across various back-
bones. To this end, two recent works HD-GCN [28] and
TCA-GCN [68] are adopted, which are GCN-based skele-
ton action recognition frameworks. The results on NTU
RGB+D 120 cross-subject are shown in Tab. 4, which prove
the generality of Koopman pooling.

4.5. Visualization

To demonstrate that the learned dynamics matrix K̂i in-
deed represents class-specific linear dynamics, we visualize
the trajectories in the linear Koopman space using the same
method as in Figure 3. Apart from the ground-truth class,
we set i to be 10, 20, 30, 40, 50 and visualize the trajec-
tory evolved by K̂i as a comparison. As shown, the trajec-
tories of 1-step linear evolution by the dynamic matrix of
ground-truth class manifest similar patterns with the origi-
nal sequence, while the trajectories of 1-step linear evolu-
tion by the dynamic matrix of other classes seem random.
This indicates that the learned dynamics matrix K̂i indeed
contains class-specific temporal dynamics information.

Another key observation is that the trajectories of the
same class exhibit highly similar patterns. For instance,
the trajectories of two samples from class 18 share analo-
gous shapes, norms and positions. This implies that with
Koopman pooling, the backbone itself can map the action
sequences of each class into corresponding class-specific
linear space. Also, when comparing Figures 3 and 4, one

Data from Class ‘clapping’ Data from Class ‘clapping’

Data from Class ‘wear on glasses’ Data from Class ‘wear on glasses’

Data from Class ‘take off glasses’ Data from Class ‘take off glasses’

Figure 4. Visualization of original trajectories and their 1-step
linear evolution by the class-wise dynamics matrices K̂i. The
ground-truth class name is annotated above each figure as “Data
from Class x” and the corresponding trajectory is plotted in black.
Best viewed in color and see the main text for more explanation.

can see that after eigenvalue normalization, the problem of
norm decaying is greatly alleviated, leading to better linear
fitting and more accurate dynamics matching.

5. Conclusion
This work presents a plug-and-play parameterized high-

order pooling module called Koopman pooling. Unlike av-
erage/max pooling which abandons higher-order informa-
tion, this work instead focuses on the true dynamics of the
sequences. Koopman operator is deployed to ensure linear
evolution of the temporal dynamics. The system is repre-
sented by the dynamics matrices which can then be used
for classification. An eigenvalue normalization technique
based on stability theory is proposed to ensure stable and
non-decaying dynamics to further improve recognition per-
formance. The proposed Koopman pooling method com-
bined with Dynamic Mode Decomposition (DMD) can also
be readily applied to construct a new one-shot action recog-
nition framework. Extensive experiments demonstrate that
Koopman pooling attains remarkably better performance
under both full-dataset and one-shot settings.
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