
Randomized Locality Sensitive Vocabularies for
Bag-of-Features Model?

Yadong Mu1, Ju Sun1,2, Tony X. Han3, Loong-Fah Cheong1,2, Shuicheng Yan1

1Electrical and Computer Engineering, National University of Singapore, Singapore
2Interactive & Digital Media Institute, National University of Singapore, Singapore

3Electrical and Computer Engineering, University of Missouri-Columbia, USA
Email: {elemy, idmsj, eleclf, eleyans}@nus.edu.sg, hantx@missouri.edu

Abstract. Visual vocabulary construction is an integral part of the pop-
ular Bag-of-Features (BOF) model. When visual data scale up (in terms
of the dimensionality of features or/and the number of samples), most
existing algorithms (e.g. k-means) become unfavorable due to the pro-
hibitive time and space requirements. In this paper we propose the ran-
dom locality sensitive vocabulary (RLSV) scheme towards efficient visual
vocabulary construction in such scenarios. Integrating ideas from the
Locality Sensitive Hashing (LSH) and the Random Forest (RF), RLSV
generates and aggregates multiple visual vocabularies based on random
projections, without taking clustering or training efforts. This simple
scheme demonstrates superior time and space efficiency over prior meth-
ods, in both theory and practice, while often achieving comparable or
even better performances. Besides, extensions to supervised and kernel-
ized vocabulary constructions are also discussed and experimented with.

1 Introduction

The bag-of-features (BOF) model (also known as the bag-of-words) has gained
much empirical success in producing orderless representations of feature-rich vi-
sion data. In this model, in order to obtain uniform representations for feature
sets of varying cardinalities, one performs feature quantization for each primi-
tive feature referring to a learnt “visual vocabulary”, and then summarizes each
set into histograms. Despite its simplicity, the BOF model has shaped the cur-
rent paradigms towards many high-level vision problems, e.g., object recognition
and content-based image retrieval (CBIR). In fact, state-of-the-art approaches
to object recognition are to first extract local descriptors such as SIFT [1] from
interest points (i.e., local extrema in scale space pyramid) in images, and then
devise Mercer kernels such as Pyramid Match Kernels (PMK) or Histogram
Intersectional Kernels (HIK) between pairwise feature histograms. Finally, so-
phisticated classifiers such as the Supporting Vector Machines (SVM) are used
for per-sample decision.

? Support of IDMPO Grant R-705-000-018-279 Singapore and NRF/IDM Program
under research Grant NRF2008IDMIDM004-029 are gratefully acknowledged.
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Visual vocabulary construction is critical to the BOF model. In ideal cases,
every visual word in the vocabulary bears concrete meaning, or semantic, in-
spired from the similar idea of bag-of-words models in text analysis. In practice,
however, quality of the vocabulary depends on numerous factors associated with
the vocabulary creation process, such as the source of samples, the number of
visual words specified, and the similarity metric. Hence, a practical criterion for
a proper visual vocabulary could be visual features near to the same visual word
bear some similarities. This in essence turns the vocabulary construction prob-
lem into partitioning the visual feature space according to a few data samples.
Numerous methods (as described in Sec-1.1) have been proposed to address this
partition problem.

Complications associated with vision data, however, stem from the typical
scale issue including huge amount and high dimensionality. For example, the
popular SIFT descriptor [1] used for local visual feature description has 128 di-
mensions, while a typical image at normal resolution can produce 1k ∼ 2k such
primitive feature descriptors. The complexity quickly explodes for real-world vi-
sion databases that usually consist of millions or even billions of such images.
Moreover, peculiarities with high dimensionality, such as concentration of dis-
tribution [2][3], show up frequently and deserve special investigations. Questing
into large-scale problems, most techniques that work nicely in low-dimensional
spaces with small amount of data may not healthily scale up. This calls for novel
solutions that are efficient and dedicate for large-scale data while producing ac-
ceptable levels of performance.

1.1 Prior Work

There are intimate connections between the vocabulary construction and the
clustering/space partitioning problem, the latter of which is widely studied in
machine learning. Hence various unsupervised clustering methods have been ap-
plied to this particular problem, among which k-means clustering1 is the most
popular. Other methods include mean-shift [4], tree-based coding (e.g., tree in-
duced by hierarchical k-means) [5]. On the other hand, for problems where super-
vision or prior knowledge are available, e.g., labels or segmentations for images,
sparsity in representation, supervision is applied to partially guide the unsuper-
vised clustering (e.g., random forest [6] based methods such as ERC-Forest [7]),
or to learn informative vocabularies directly (e.g.,[8][9]). Nevertheless, most of
the supervised vocabulary learning techniques are very expensive and unlikely
to scale up nicely. Hence we will focus on unsupervised clustering techniques
(e.g. k-means) and extremely efficient and flexible supervised techniques (e.g.
the random forest family).

Sparse coding and its various applications [10] are perhaps the most inviting
work into high-dimensional spaces for vision research. In fact for clustering [2]
reveals that in high-dimensional spaces, clustering methods such as k-means tend

1 Hereafter we default k-means to the hierarchical k-means algorithm due to its effi-
ciency until otherwise stated.
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to return many similar centers to a query, which makes these methods rather
unstable. This is partially explained by the concentration of finite number of
samples as reported by many authors, e.g. [2][3]. In this case, aggregation of
distinct clustering results prove useful to enhancing the stability. This is the
underlying principle for the random forest method [6], which also inspires our
method.

Randomized algorithms have been widely studied and analyzed in algorithm
designs [11]. For large-scale problems, [3] has tried to contrast the random pro-
jection with the classic PCA technique. Moreover random vectors sampled from
the unit sphere have served as the hashing vectors for one family of LSH [12].
In this vein, there is fruitful research work on LSH theory (e.g.,[13]) and appli-
cations (e.g., image database indexing and search[14]). Our method build from
the idea of LSH.

1.2 Our Approach

We propose and empirically validate the idea of randomized locality sensitive
vocabulary (RLSV), which is inspired by both RF and LSH. Instead of build-
ing visual vocabularies by optimizing a global objective, our proposed method
generates visual words by applying a sequence of random linear bipartitions.
Assume all samples are originally embedded in a specific metric space (e.g.,
Hamming space, `p-normed space). For any sample pair, theoretic analysis of
LSH guarantees that their collision probability in the resulting vocabulary is
tightly related to the pairwise similarity or distance. Furthermore, to reduce the
inherent randomness, multiple random vocabularies are independently created
using the same method, and the final inter-sample distance or similarity is based
on the consensus of all vocabularies.

Compared with existing methods, the proposed RLSV has the following mer-
its: 1) No time-consuming training or clustering stage in RLSV. The major com-
putational cost comes from the random hash function generation and histogram
binning operations, which can be efficiently handled. 2) Noise resistance and
stability by exploiting the ensemble technique. RLSV generates an ensembles of
several vocabularies to mitigate the effect of randomness and noise. 3) As stated
above, nearest-prototype based methods (e.g., k-means) tend to suffer from the
so-called curse of dimensionality problem. In contrast, the performance of RLSV
is stable for high-dimensional data. 4) Compared to methods such as RF which
require supervision, RLSV is unsupervised in nature but can be readily extended
to supervised and kernerlized cases.

2 Randomized Locality Sensitive Vocabularies

In this section and the next we elaborate on the proposed vocabulary construc-
tion algorithm, and discuss its relationship to existing methods. We provide
theoretic analysis on the time and space complexity in contrast with k-means
and RF, and also present extensions to the supervised or kernelized cases.
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2.1 Preliminaries

A key ingredient to many visual recognition and retrieval applications is to
search k-nearest-neighbors (k-NN) for the query (or testing sample). In many
cases the performance of the whole system heavily hinges on the efficiency of
the k-NN procedure. In practice, exact k-NN is somewhat unnecessary, since
in many scenarios approximate nearest neighbors (ANN) results in nearly the
same performance. Several efficient algorithms are known for low-dimensional
cases (e.g., up to 10 to 20), such as the kd-tree [15] algorithm. However, for
high-dimensional cases, these methods often provide little improvement over
a linear scan algorithm, which is known to be the phenomenon “the curse of
dimensionality”. In recent years, various locality sensitive hashing (LSH) [16][13]
methods are proposed to tackle this problem.

Let H be an LSH family defined on metric space Rd. For any x, y ∈ Rd, the
following relationship holds2:

∀h ∈ H, P r[h(x) = h(y)] = κ(x, y), (1)

where κ(·, ·) denotes the similarity measure between samples x and y. In other
words, x and y’s collision probability (i.e., being mapped to the same hash
bucket) is monotonically increasing with their similarity value, which is known
as the “locality sensitive” property. Several LSH families have been developed
for various distances (or similarities). Here we list some representative work:
Arccos distance: for real-valued feature vectors lying on hypersphere Sd−1 =
{x ∈ Rd | ‖x‖2 = 1}, an angle-oriented distance can be defined as Θ(x, y) =
arccos

(
x·y
‖x‖‖y‖

)
. Charikar et al. [12] proposes the following LSH family:

h(x) =
{

0, if ρ>x < 0
1, if ρ>x ≥ 0 (2)

where the hashing vector ρ is uniformly sampled from the unit hypersphere Sd−1.
The collision probability is Pr[h(x) = h(y)] = 1−Θ(x, y)/π.
`p distance: for linear vector spaces equipped with the `p metric, i.e.,D`p(x, y) =(∑d

i=1 |xi− yi|p
) 1

p

, Datar et al. [16] proposes a hashing algorithm based on lin-
ear projections onto a 1-dimensional line and chopping the line into equal-length
segments, as below:

h(x) =
⌊
ρ>x+ b

W

⌋
, (3)

where the hashing vector ρ ∈ Rd is randomly sampled from the p-stable distri-
bution and b·c is the flooring function for rounding. W is the data-dependent
window size and b is sampled from the uniform distribution U [0,W ).

2 Note that other definitions of LSH exist, such as the one in [17]. However, they are
fundamentally equivalent to the current.
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We employ the arccos distance family in the current work, and the locality
sensitivity property will be key to ensuring that our hashing vectors properly
partition the feature space such that near neighbors are grouped together with
high probability.

2.2 Overview

K-means is probably the most popular due to its empirical success. The goal
of k-means is to seek K prototypes (or cluster centers) that minimizes a pre-
specified functional value. These prototypes constitute a Voronoi diagram per se
and each sample is assigned to its nearest prototype according to some specific
distance metric. Despite its popularity, for an input feature set of size n, the
classic k-means requires O(Knd) operations per iteration and typically costs
tens of iterations before convergence, which is computationally forbidden for
massive data source, high dimensional feature spaces and large vocabulary sizes.
Tree structured vocabulary [5][7] requires shorter training time compared with
k-means, yet consuming exponentially increasing memory space (w.r.t. the tree
depth) to store the splitting information (random dimension, threshold etc.) of
inner tree nodes.

Compared with these aforementioned structures, the proposed RLSV method
is superior in terms of both memory requirement and training time. The major
weakness is the inferior discriminant ability of single vocabulary resulting from
the intrinsic randomness in visual word generation. To mitigate it, a straight-
forward solution is to collect an ensemble of independent random vocabularies,
similar to the idea in ERC-Forest [7].

2.3 RLSV Construction

The algorithmic pipeline for RLSV can be described in three consequent steps
as follows:

Step-1: visual word generation Assume the similarity between any two sam-
ples p, q ∈ Rd can be measured by κ(p, q). Previous studies (see [18] for a brief
survey) reveal the existence of LSH families for many well-known metrics or sim-
ilarities such as `p. Formally, letH be an LSH family such that for any hash func-
tion h ∈ H : Rd → {0, 1}, the locality-sensitive property holds. Suppose B hash
functions are independently generated from H, obtaining H = 〈h1, h2, . . . , hB〉
after direct concatenation. We proceed to give a formal definition for “random
visual word” as below:

Definition 1. (random visual word): there is a bi-mapping between any vi-
sual word wi and valid permutation πi from {0, 1}B. Any two samples p, q ∈ Rd
belong to the same visual word if for any i ∈ {1, . . . , B}, there is hi(p)⊕hj(q) = 0,
where ⊕ denotes the XOR bit operation.

In ideal case, B hash functions are able to produce at most 2B unique vi-
sual words. However, in practice the evolutionary curve of visual word count
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seldom demonstrates such an exponentially growing tendency. The phenomena
can be geometrically understood, since it is almost impossible for the hyper-
plane induced by a hash function intersects with all other polyhedrons produced
by other hash functions. Since the relationship between B and the number of
valid vocabulary entries cannot be accurately determined, practically we main-
tain the record of vocabulary sizes and continue adding new hash functions until
a pre-defined vocabulary size M is reached.

Step-2: visual word filtering In Fig. 1 we plot the sample counts correspond-
ing to distinct visual words. It can be seen that it roughly follows a power-law
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Fig. 1. Illustration of the typical distribution of features (left, sorted descend-
ingly) and Shannon entropy of labels (right, sorted descendingly) for a 1024-
word visual vocabulary in a multi-class problem. Empty words are omitted. Non-
informative bins of the vocabulary can be filtered out accordingly by throwing
away low-frequency bins.

distribution and thus part of the vocabulary can be trimmed without notable
information loss. Moreover, in the supervised (or semi-supervised) settings (dis-
cussed in Sec-3.2), we can also abandon the visual words that have weak discrim-
inating power. For multi-class problems, useful statistics can be calculated based
on the entropy of class-label distribution for each valid visual word. In Fig. 1 we
plot the entropy distribution on the data set of Caltech-101 (vocabulary size M
= 1000). In the above two cases, a simple threshold-based visual word filtering
will benefit outlier removal and yield more compact representations.

Step-3: histogram binning and normalization In practice, we maintain
L independent random vocabularies to ensure the stability and enhance the
performance. After vocabulary construction, each feature bag can be transformed
into uniform histogram representations by casting its elements into visual words
and then perform counting and normalization. For each feature, the binary hash
bits H = 〈h1, h2, . . . , hB〉 determine a unique decimal value in [0, 2B ]. Recall
that there are actually no valid visual words corresponding to most decimal
values, we maintain a word-key mapping table T : {0, 1}B → {1, . . . ,M} for the
purpose of efficient binning.
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2.4 Complexity Analysis

Here we provide theoretic comparisons amongst RLSV, ERC-Forest (ERCF),
and Hierarchical k-means (HK), in terms of the vocabulary construction time
complexity, storage requirements, and the query complexity (i.e., a new vector
gets assigned to one of the bins in the vocabulary). Table 1 presents these results
in Big-O notation. Here we assume all tree-structures are with splitting factor
of 2, and D for feature dimension, N for total number of available samples, K
number of desired cluster centers. For simplicity, we further assume K = 2d,
where d+ 1 will be the tree depth for binary splitting trees as we have assumed.
Note that c is an undetermined constant in (1, 2), accounting for the empty

Table 1. Comparison of time and space complexity of different methods.

Algorithm Construction Time Space Complexity per Word Query Complexity

RLSV O(D logcK) O( logc K
K D) O(D logcK)

ERCF O(
√
DN log2K) O(K−1

K D) O(log2K)
HK O(2DN log2K) O( 2(K−1)

K D) O(2D log2K)

buckets that have been generated and trimmed after random projections. For
the time complexity, RLSV is independent of N , so it can scale up nicely even
when the data set is huge. For the storage requirement, KLSH approaches 0 for
space per word as K goes up, whereas the other two methods remain constant
for large K. It is unfortunate that the query complexity of RLSV is not as low
as the ERCF, which could be hurt for very high-dimensional data.

3 Extensions

The algorithm presented in subsection 2.3 targets unsupervised cases in finite-
dimensional linear feature spaces. However, both kernel tricks and supervision
information are ubiquitous in computer vision databases. For the former, the
pairwise similarity is gauged via the inner product in reproducing kernel Hilbert
space (RKHS) [19]. While for the latter, supervision information from manual
labeling or annotations is available to regularize the constructed visual words.
Both of them are common scenarios in real-world applications. In this section
we discuss the extensions to these cases.

3.1 Kernelized RLSV (K-RLSV)

Note that choice of an LSH family in an application depends on the underly-
ing metric in the feature space. Here we focus on `p distance when p = 2 and
Arccos distance. Recall that in both cases LSH is feasible based on sampling
from standard Gaussian distribution which belongs to the p-stable distribution.
Generally, sampling in RKHS is difficult owing to the lack of explicit feature
representation. However, we have the following observation (similar to the the-
oretic results in [14] yet no zero-centered assumption on the Gram matrices
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here), which reveals that sampling from Gaussian distribution in Hilbert space
is feasible:

Theorem 1. (`2-keeping projection in RKHS) Denote κ(·, ·) as the inner
product in Hilbert space K. Given an m-cardinality data set X and corresponding
Gram matrix G, the `2-metric keeping projection can be expressed as p(x) =∑m
i=1 ω(i)κ(x, xi), where ω(i) only relies on G.

Proof. Denote the implicit Hilbert mapping function as ψ. The geometric mean
can be computed as µψ = 1

m

∑m
i=1 ψ(xi). For a t-cardinality subset S ⊂ {1 . . .m},

let z = 1
t

∑
i∈S ψ(xi) and z̃ =

√
t(z−µψ). According to the central limit theorem,

z̃ is distributed as Gaussian Φ(0, Σ), where Σ is the covariance matrix of X .
Further applying a whitening transform, we can obtain the desired hash vector
in K, i.e. r = Σ1/2z̃. For any datum x, h(x) = ψ(x)>Σ1/2z̃.

Given Gram matrix G = Ψ>Ψ , where each column of Ψ corresponds to a
feature vector in data set X . It is easily verified that

z̃>Σ1/2ψ(x) = z̃>(ΨQ)(QGQ)−
1
2 (ΨQ)>ψ(x) (4)

where Q = I − 1
mee

>. Substituting z̃ =
√
tΨ( 1

t δS −
1
me)

>, where δS is a binary
indicator vector for subset S. Finally we get

p(x) =
[√

t(
1
t
δS −

1
m
e)GQ(QGQ)−

1
2Q>

]
Ψ>ψ(x) (5)

Let ω ,
[√

t( 1
t δS −

1
me)GQ(QGQ)−

1
2Q>

]
, thus the conclusion holds. ut

The complexity of the above procedure is low sincem� n where n is the sam-
ple count of the whole database (e.g., m = 200 ∼ 1000 and n is probably on the
order of million or billion). From the property of p-stable distribution, for samples
x, y, projection difference |p(x)−p(y)| =

∣∣∑m
i=1 ω(i)κ(x, xi)−

∑m
i=1 ω(i)κ(y, xi)

∣∣
sustains their distance in the implicit RKHS induced by κ(·, ·), which makes the
LSH algorithms mentioned in Section 2.1 feasible.

3.2 Discriminative RLSV (D-RLSV)

Denote the ensemble of all feature bags as B = {bi}, where each bag bi =
{xi1 , . . . , xin}. In the supervised case, a unique label yi is assigned to bag bi. For
tractability, we adopt the same assumption to [7], i.e., assuming all features in
a bag share the same label. Recall that the scheme in subsection 2.3 is totally
random. A possible improvement is to sequentially select an optimal hashing
vectors from a candidate pool according to pre-specified label-oriented crite-
rion, which motivates the Discriminative RLSV (D-RLSV) here. The proposed
method works as follows: suppose k hashing vectors have been generated and
denote the resulting visual words as Vk = {wi, i = 1 . . . nk} (nk is the vocabulary
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size). To choose the (k+ 1)-th hashing vector, for each candidate h̃ we calculate
a score based on the Shannon entropy as suggested in [20], defined as:

Sk+1(h̃) =
1
nk

nk∑
i=1

2 · Ii(h̃)

HC(ωi) +HS(h̃, ωi)
, (6)

where HC
i (h̃) denotes the entropy of the class distribution in the i-th visual

word. Note that adopting h̃ will split each of the existing visual words into two.
HT
i (h̃) describes the split entropy of the i-th visual word. Formally,

HC(ωi) = −
∑
l∈L

nl
n

log2

nl
n
, and HS(h̃, ωi) = −

2∑
p=1

np
n

log2

np
n
. (7)

The maximum of HT
i (h̃) is reached when the two partitions have equal size.

Based on the entropy of a given visual word, the impurity can be calculated by
the mutual information of the split, i.e.,

Ii(h̃) = HC(ωi)−
n+

n
HC(ω+

i )− n−
n
HC(ω−i ), (8)

where ω+
i , ω−i are the split of ωi by h̃, and n+, n− denote the number of features

belonging to each new visual word respectively. Finally, the optimal hashing
vector for the (k+1)-th iteration can be determined via h∗ = arg maxh̃ Sk+1(h̃).

4 Evaluation

In this section, we evaluate the proposed RLSV and its extensions on real-world
data sets under three different task settings, i.e., action recognition in video,
object recognition, and near-duplicate video detection. Our main concerns in-
clude: 1) time used to construct visual vocabularies. 2) memory storage used to
keep vocabulary-related information. 3) performance in terms of accuracy. All
the experiments are conducted on our common PC with Due-core 3.0Ghz CPU
and 8GB physical memory. We choose two representative methods, i.e., Hierar-
chical K-means and ERC-Forest [7] for comparison. For the former, we adopt
a tree branching factor of 2. All statistics are obtained by averaging multiple
independent runs.

Experiment-1: KTH Video Database

The KTH video database was developed by Schuldt et al. [21] in 2004 and is one
of the popular benchmarks for human action recognition. It contains six differ-
ent actions captured with appearance variations and mild camera motions such
as zooming in and zooming out. The actions are performed by 25 subjects in 4
different scenarios. Each video clips are segmented into 4 sub-clips, resulting in
2400 video sequences in total. See Fig. 2 for the illustration of KTH video clips.
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Fig. 2. Top: Example frames from KTH video database. Bottom Left: Av-
eraged recognition rates. Bottom Right: Storage cost for each visual word.
RLSV can consistently achieve comparable performance (with little deviation)
with ERC, while consuming less memory. By comparison, k-means is worse in
both performance and space efficiency. Please refer to the color pdf for better
view.

We use the same dataset splitting as in [21], which contains a training set (8
persons), a validation set (8 persons) and a test set (9 persons). For local fea-
ture descriptors, we describe each video segment using Space-time interest points
(STIP) as in [21], around which histogram of gradient (HOG) and histogram of
flow (HOF) features are extracted. Both of the counts of independent vocabu-
laries in RLSV or trees in ERC-Forest are set to be 50. Recognition accuracies
are presented on the bottom left of Fig. 2. RLSV algorithm family demonstrates
comparable discriminating ability to ERC-Forest, but both are obviously better
than K-means. D-RLSV reaches a peek performance of 91.4% with around 4000
visual words, which is in sync with the setting and results reported in [22]. In
the bottom right of Fig. 2, we illustrate the averaged memory storage for the
vocabulary-related information per visual word, which well validates our previ-
ous complexity analysis.

Experiment-2: Caltech-101

Caltech-101 is constructed to test object recognition algorithms for semantic cat-
egories of images. The data set contains 101 object categories and 1 background
category, with 40 to 800 images per category. As pre-processing, the maximum
dimension of each image is normalized to be 480-pixel. Most objects contained
in the images are of similar scale and orientation. However, considering the large
inter-category variation on appearance, lighting and occlusion, the recognition
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task on Caltech-101 is still challenging and well suitable to testing various local
features and visual vocabularies.

For fair comparison between different vocabularies, we guarantee that they
share the same type of features, and any post-processing on them. Specifically,
we extract 3000 SIFT descriptors from each image. Unlike the traditional dense
sampling strategy on a uniform 2-D image grid, we determine both the locations
and scales of each SIFT feature in a random way [23], ignoring more complex
and effective sampling schemes such as [24]. However, the experimental results
for such a simple scheme are amazingly good, as shown in Fig. 3.
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Fig. 3. Left: Performance with 15 training samples per category. Our RLSV
family shows consistently (with little deviation) comparable or even better per-
formance than the other methods. Right: Vocabulary sizes under varying num-
ber of hashing vectors in RLSV or tree depth in ERC-Forest. Please refer to the
color pdf for better view.

We test the proposed method in two settings, either with 15 or 30 training
samples per category. Here we only present the former due to the space con-
straint and also the observation that the latter case concurs with the former in
terms of algorithmic behaviors as compared to other methods. The peak perfor-
mance (41.4% for 15 training samples per class) appears with roughly 700 visual
words. The performance drastically decreases with extremely smaller or larger
vocabularies, which is consistent with previous study in computer vision and our
experimental settings. For parameter setting, we use 20 independent visual vo-
cabularies for RLSV and its extensions, and 20 trees for the ERC-Forest. In the
classification stage, we regress the histogram feature of the testing sample on the
column space spanned by all the training samples in each category, and measure
the distance with the regression residue. The overall distance is computed as the
summation over individual visual vocabularies or random trees. Classification
methods like SVM or NN produce similar yet slightly worse results. As seen in
Fig. 3, the accuracies produced by RLSV-related methods and ERC-Forest are
comparable, and all are superior to hierarchial K-means. Moreover, it is also
observed that the vocabulary sizes roughly linearly increase with respect to the
number of hashing vectors in RLSV and tree depth in ERC-Forest or K-means,
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although the increasing rate of RLSV-related methods are much smaller than
others.

An interesting comparison is between k-means and random projection (into
a 60-dimensional lower space) followed by k-means (RP-kmeans). The random
projection is meant to be a lightweight replacement of the PCA for dimensional-
ity reduction as suggested in [3]. And the simple scheme consistently outperforms
the simple k-means for all vocabulary sizes. This can be partially explained by
the property of reduced eccentricity exhibited by the random projection dis-
cussed in [3]. Nevertheless, there are still significant performance gaps between
RP-kmeans and RLSV or ERC-Forest methods. Moreover, there is no funda-
mental change in the time and space complexity.
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Fig. 4. Left: Performance evolution curve with respect to the number of hash
tables in RLSV. Right: Time spent to construct visual vocabularies for various
approaches.

A random vocabulary as in RLSV or ERC-Forest is very easy to generate,
but yet a single one typically performs inferiorly even as compared with k-means
in the classification phase. However, we argue that the ensemble of independent
“weak” vocabularies significantly outperforms a single elaborately-designed vo-
cabulary, in the same spirit to the bagging algorithm developed in machine
learning. We plot the performance evolution curve w.r.t. the number of hashing
vectors for RLSV on the left of Fig. 4. As can been seen, the performance of
RLSV ensemble hikes rapidly and overruns k-means with only a small number
of weak vocabularies.

Fig. 4 (right) also provides an illustration of the time cost for vocabulary con-
struction consumed by various methods. Time spent on vocabulary construction
roughly follows a log-linear rule. Among them, RLSV and K-RLSV are order-
of-magnitude faster as compared to others.

Experiment-3: Near-Duplicate Video Detection

We also validate the proposed RLSV method for detecting near-duplicate video
clips. Being intrinsically unsupervised, ERC-Forest and D-RLSV are not suit-
able. For such applications, RLSV beats K-means owing to its fast speed and
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high flexibility. The near duplicate video benchmark is provided by Wu [25]. The
benchmark comprises 12876 video clips, divided into 24 sets. The groundtruth
of each video set is manually labeled, and the most relevant video is treated as
the query video. The task is to distinguish near-duplicate videos to the query
among each video set.

Video
#1744

Video
#3779

Fig. 5. Selected video clips from Wu’s near-duplicate detection database.

Table 2. Comparison of different approaches on near-duplicate video detection.

K-means RLSV K-LSV

Mean Average Precision (MAP) 0.9280 0.9411 0.9442

Time for vocabulary construction (in second) 7.76 2.29× 10−4 1.53

Time for code generation (in second) 1.85× 10−2 3.4× 10−3 2.09× 10−2

We adopt a key frame based approach. Each video is first segmented and one
key frame is taken from a segment, resulting in 30 key frames per video clip on
average. We extract a simple HSV color histogram from each key frame. The 24
dimensional HSV color histogram is concatenated with 18 bins for Hue, 3 bins
for Saturation and 3 bins for Value as described in [25]. As seen in Figure 5,
the HSV histogram can greatly vary among different key frames, thus the bag-
of-feature model well fits this scenario. We test the Mean Average Precision
(MAP) over all 24 queries, and together provide a comparison between time
spent on vocabulary construction and code generation of each video clip. A K-
RLSV method is also included in the experiment, where the Chi-Square kernel
is applied. Table 2 indicates RLSV is a good tradeoff between MAP and speed.

5 Conclusion

We have presented a simple yet effective algorithm for visual vocabulary con-
struction combining the idea of LSH and RF. It avoids the severe problems oc-
curring in most existing methods, such as the slow training (e.g., in K-means),
or huge storage (e.g., in ERC-Forest). The proposed method strikes a good bal-
ance between accuracy and efficacy, and is supposed to be applicable to many
real-world applications in computer vision. Moreover, extensions to kernerlized
and supervised cases are also presented. We plan to extend the work to on-
line settings. Moreover, currently our method is not advantageous in terms of
query complexity. This motivates us to investigate the possibility of synergizing
construction and query process towards higher efficiency.
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