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Abstract. This paper explores the spatio-temporal video grounding
(STVG) task, which aims at localizing a particular object correspond-
ing to a given textual description in an untrimmed video. Existing ap-
proaches mainly resort to object-level manual annotations as the su-
pervision for addressing this challenging task. Such a paradigm heavily
constrains the scalability of processing large-scale unlabeled data. To
this end, we present a novel framework that is capable of grounding the
target object relying only on the video-sentence correspondence. Specif-
ically, our model re-formulates the original STVG task as two cross-
modal alignment sub-problems: region-phrase and frame-sentence. Since
the absence of ground-truth alignments during the training stage, we
treat them as latent variables and learn to model the joint conditional
distribution by reconstructing the interactions of entities in the video.
The entire framework can be effectively optimized by the variational
Expectation-Maximization (EM) algorithm, which alternates between
two updating steps for progressively maximizing the likelihood of query
sentence, thereby approximating the real cross-modal assignment. Ex-
tensive experiments on two video benchmarks (VidSTG and HC-STVG)
further show the effectiveness of the proposed method.
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1 Introduction

Visual grounding aims at finding a specific region associated with linguistic
meaning in the visual modality, which serves as a fundamental block in the com-
plicated multi-modal system. In the video scenario, understanding how language
description relates to video content in spatial-temporal dimensions is paramount
for video surveillance [10], video question answering [18], etc. Recently, spatio-
temporal video grounding (STVG) was introduced in [43], which requires local-
izing a spatio-temporal tube (i.e., a sequence of bounding boxes) of the target
object described by language query from the untrimmed video (See Figure 1). In
contrast to prior grounding methods focusing on images, the STVG task poses
a greater difficulty as it involves discerning nuanced characteristic changes of
video instances based solely on textual semantics.
⋆ Corresponding Author.
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Fig. 1: The STVG task requires localizing the bounding box sequence and the temporal
boundary of the target object described by a query sentence. We factorize this task into
two sub-problems: region-phrase and frame-sentence alignments, which aim to match
the region to the textual phrase in the query sentence and identify which frames belong
to the target video segment, respectively.

To accomplish this complicated task, the prevalent approaches [16,33,38,42,
43] are heavily dependent on fine-grained human annotations such as temporal
boundaries and bounding boxes on each video frame. Despite achieving promis-
ing results, the labor-intensive process of annotation in each video frame makes
it challenging to scale these fully-supervised methods to large-scale datasets.
Accordingly, the utilization of weak supervision, where only video-sentence cor-
respondences are available during training, is considered to be more practical in
real-world applications. To this end, we focus on seeking an efficacious paradigm
for weakly-supervised spatio-temporal video grounding in this work.

Although weakly-supervised grounding in images has received significant re-
search attention [1, 11, 21, 36, 37], just a few works [8, 19] have explored this
challenging setting in the STVG task. The weakly-supervised STVG task invokes
several unique challenges associated with the lack of annotation and time-varying
video content. Firstly, the precise alignment of region and phrase is intricate due
to the existence of entities that share similar visual features or perform analogous
actions within a video frame. For example, given the query of “An adult pushes
a baby walker on the street” as in Figure 1, the absence of spatial supervision
exacerbates the difficulty in distinguishing the target “adult” since there are four
adults in the scene. In this regard, the accurate grounding of the target object
is contingent upon the explicit modeling of the visual relationship (e.g., “push”)
between entities (“adult” and “baby walker”) within the video. Secondly, unlike
in images where the visual relationships are static, the interactions in untrimmed
videos are dynamic and will change or disappear over time. However, the query
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sentence may only refer to a short-term state of the queried object, e.g. the action
“push” only occurs in a short video clip. It is of great significance to determine
the temporal boundary of the queried object tubes.

To cope with these unique challenges in the weakly-supervised setting, this
paper presents a novel framework for the STVG task. Specifically, given a video
and its corresponding language description, we parse the text to several noun
phrases that denote objects and extract a set of region proposals as candidates
in each video frame. Then, the STVG task can be interpreted as two cross-modal
alignment problems: region-phrase and frame-sentence. The former entails iden-
tifying the region that accurately represents the phrase, while the latter involves
determining which frames correspond to the video segment conveying the seman-
tics of the query sentence. Due to the absence of ground truth in the weakly-
supervised context, we regard them as latent variables and proceed to learn
the joint distribution conditioned on the correspondence between the video and
sentence. The entire framework can be efficiently optimized by the variational
Expectation-Maximization (EM) algorithm [26], which alternates between two
learning steps. In the E-step, we introduce a variational posterior distribution
to approximate the real assignment. In the M-step, we learn to reconstruct the
visual relationships between the entity phrases, based on the samples drawn
from the variational assignment distribution. Through multiple optimization it-
erations aimed at reconstructing the visual relationships between entities, the
model will progressively learn a more precise cross-modal alignment. The main
technical contributions of our work can be summarized as follows:

– This paper explores the STVG task in the challenging weakly-supervised set-
ting. Specifically, we innovatively bifurcate spatio-temporal grounding into two
distinct cross-modal alignment sub-problems and formulate them by effective
latent variables.

– We present a methodology that employs the variational Expectation Maxi-
mization algorithm to optimize the entire framework. Notably, the proposed
model successfully achieves fine-grained cross-modal alignment without man-
ual annotations during training.

– We conduct extensive experiments on two large challenging video benchmarks,
namely VidSTG [43] and HC-STVG [34]. The results indicate that our pro-
posed approach surpasses the existing weakly-supervised approaches by a sig-
nificant margin, thus proving its superiority.

2 Related Work

Fully-Supervised Video Grounding. The video grounding task can be di-
vided into two main categories: temporal and spatio-temporal grounding. In
the past few years, temporal grounding [6, 7, 25, 40] has emerged as a signif-
icant area of research interest and has garnered considerable attention from
scholars. Due to the computational complexity of spatial-temporal dimensions
in videos, the STVG task has been explored relatively less. The prevailing ap-
proaches [16, 33, 34, 38, 43] for STVG primarily investigate the fully-supervised
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paradigm. Zhang et al. [43] develops a spatio-temporal graph that facilitates
message passing across all frame regions. Lately, some approaches [16, 38] have
proposed a one-stage approach that directly generates the bounding box at each
frame and predicts the starting and ending timestamps. Notwithstanding, all
of these techniques are substantially dependent on the manual annotations for
both the temporal boundary and spatial bounding box in every video frame. In
contrast, this work is focused on a weakly-supervised setting where the models
solely rely on the video-sentence correspondence, without the annotations of the
temporal and spatial location.
Weakly-Supervised Video Grounding. In the video scenario, the primary
research still focuses on temporal grounding, while only a few studies [2,8,9,19,
23, 32] have devoted to the weakly supervised spatio-temporal grounding task.
The WSSTG [9] developed an attentive interactor that exploits the fine-grained
contextual information to match the pre-extracted object tubes. However, they
only pay attention to spatial grounding at each frame and ignore the temporal
grounding. Chen et al. [8] propose novel spatial and temporal multiple instance
learning frameworks for the untrimmed video grounding. Li et al. [19] devel-
ops a multi-modal decomposition tree to perform multi-hierarchy language-tube
matching. Most of the existing works do not account for fine-grained entity in-
teractions, thereby rendering them incapable of resolving semantic ambiguities
in the query sentence and distinguishing the target object.

3 Method

3.1 Problem Formulation

The Spatio-Temporal Video Grounding (STVG) task aims to identify a spatio-
temporal tube {bt}tet=ts in an untrimmed video V consisting of T frames, which
represents the target object described by a given query sentence S. Here, bt
denotes the bounding box in the t-th frame, while ts and te indicate the starting
and ending boundaries of the object tube being retrieved, respectively. In the
weakly-supervised setting, only global video-sentence correspondence (V, S) is
available and the model does not have any information regarding the spatio-
temporal location of the queried object during the training stage.

3.2 Overview

Given the video-sentence pair (V, S), we first generate M region proposals for
each video frame and parse the description S to a group of noun phrases and
relationships. Thus, the video V can be denoted by V = {bi,j |i ∈ [1, T ], j ∈
[1,M ]}. The query sentence S can be represented as (E,R), where E = {en}Nn=1

is a set of noun phrases that indicate the entities in the video and R = {rk}Kk=1

are the visual relationships that depict the interactions between entities. Then,
the STVG problem can be interpreted by two sub-problems: region-phrase and
frame-sentence alignment. The former seeks to map the entity phrases with their
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Fig. 2: The architecture of the proposed weakly-supervised spatio-temporal grounding
framework. Given an input video and a query sentence, it first extracts region proposals
from the video and parses the text to entity and relation phrases. Then, the feature
encoding modal is responsible for aggregating the contextual information among the
regions and phrases. The encoded features are then fed into the qϕ and pθ networks to
conduct the Variational Expectation-Maximization (EM) optimization process.

corresponding regions, while the latter concerns identifying the frames belonging
to the ground-truth video segment. Since the actual assignment is unobserved
during training, we model it as a latent variable Z = (zS , zT ), where zS =
{zSt }Tt=1 with zSt ∈ RN×M and zT = {zTt }Tt=1. These two latent variables have
the range of [0, 1], and denote the probability of spatial or temporal assignment.

Based on the above formulation, we propose to estimate the joint conditional
distribution pθ(R,Z|E, V ) in this work. Furthermore, the parameters θ can be
optimized by maximizing the log-likelihood of the observed visual relationship,
denoted as log pθ(R|E, V ). However, direct maximization of this log-likelihood
is not feasible due to the unavailability of real cross-modal assignment Z during
training. To this end, we instead pursue optimizing the evidence lower bound
(ELBO) of this log-likelihood as follows:

log pθ(R|E, V ) ≥ Eqϕ(Z|E,V )

[
log

pθ(R,Z|E, V )

qϕ(Z|E, V )

]
, (1)

where qϕ(Z|E, V ) is a variational distribution parametrized by ϕ that approxi-
mates the real posterior distribution pθ(Z|R,E, V ) and the equations holds only
when qϕ(Z|E, V ) = pθ(Z|R,E, V ). By maximizing this lower bound, the real
log-likelihood log pθ(R|E, V ) can be accordingly optimized.

Inspired by [3, 17, 28], this evidence lower bound is optimized via the varia-
tional Expectation-Maximization (EM) algorithm [26], which alternates between
E-step and M-step to update ϕ and θ, respectively. To be specific, in the E-
step, we fix θ and minimize the KL divergence F(ϕ) between qϕ(Z|E, V ) and
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pθ(Z|R,E, V ):

F(ϕ) =
∑
Z

qϕ(Z|E, V ) log
qϕ(Z|E, V )

pθ(Z|R,E, V )
. (2)

This step yields an approximation of the real cross-modal assignment. In the
M-step, we freeze ϕ and update θ to maximize the joint log-likelihood function
F(θ) as follows:

F(θ) = Eqϕ(Z|E,V ) [log pθ(R,Z|E, V )] . (3)

Through the M-step, the model acquires the ability to reconstruct the visual
relationships R and further refines the assignment Z. The insight behind is that if
the interactions between entities depicted by the query sentence can be recovered
perfectly, the model must learn to match the entity phrase with the regions
appropriately. Consequently, the above optimization procedures will contribute
to effective spatio-temporal grounding. The entire framework is illustrated in
Figure 2, which consists of two individual networks parameterized by ϕ and
θ. In the subsequent sections, we first present the technical details of feature
encoding and then elaborate on these two updating steps, respectively.

3.3 Contextualized Feature Encoding

We will commence the overall pipeline by introducing feature extraction and
context encoding. As shown in Figure 2, a pre-trained object detector [29] is
employed to extract M region proposals in each video frame. For per region bi,j ,
we use the RoI-Align [14] and global average pooling to obtain its region-level
representation, denoted by vij ∈ RD. Additionally, the global frame features
{ft}Tt=1 can also be obtained from the detector backbone. For each entity phrase,
its word-level embeddings are obtained from the Glove model [27] first. Then,
the linguistic representation wn ∈ RD for the phrase en is thus computed by
applying the average pooling to its word-level embeddings.
Video-Context Encoding. After extracting the feature vij for each region pro-
posal in the video, this module employs the multi-head self-attention layer [35]
to capture the contextual information among all regions. For the sake of com-
putational efficiency, the encoding of region context is factorized into spatial
and temporal dimensions, respectively. Specifically, spatial context encoding is
performed among regions within the same frame, thereby fusing local context
information. The temporal interaction is restricted at the tube level, where a
tube is a sequence of regions that may represent the same object. To obtain the
object tube, a linking score slink(bt,i, bt+1,j) is defined to establish the association
of regions between two consecutive video frames:

slink(bt,i, bt+1,j) = cos(vt,i, vt+1,j) + α · IoU(bt,i, bt+1,j), (4)

where cos(·) is the cosine similarity of the region features, IoU is the intersection-
over-union of two regions and β is the hyper-parameter that controls the impor-
tance of IoU metric. Based on the linking score, we can leverage the Viterbi
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Algorithm [13] to generate M tubes per video by gradually selecting the path
with the highest linking score. Through the message passing within the tube,
each vij absorbs the temporal dynamics of objects across the video. The overall
video context encoding involves alternant spatial and temporal interaction.
Language-Context Encoding. This module utilizes another multi-head self-attention
layer to integrate contextual semantics across all entities within the query de-
scription S. Finally, the resulting contextualized visual and linguistic represen-
tations are fed into the subsequent modules.

3.4 E-Step: Approximating the Alignment

The exact estimation of the actual posterior distribution is intractable, thus we
introduce a variational distribution qϕ(Z|E, V ) to provide the approximation
for the cross-modal alignment in E-step. Following the empirical practice in the
variational inference [5], we utilize the mean-field approximation that assumes
the independence of all the latent assignment variables to formulate qϕ(Z|E, V ):

qϕ(Z|E, V ) =

T∏
t=1

qϕ(z
S
t |E, V )

T∏
t=1

qϕ(z
T
t |E, V ). (5)

Specifically, the factorized spatial assignment qϕ(z
S
t |E, V ) and temporal assign-

ment qϕ(z
T
t |E, V ) can be parameterized by the following two modules.

Spatial Assignment qϕ(z
S
t |E, V ). The goal of this module is to estimate the

region-phrase alignment zSt ∈ RN×M in each video frame. For the sake of brevity
in the following discussion, we omit the subscript t of the variable zSt . Given the
contextualized region and phrase representations, two modality-dependent pro-
jection layers gV (·) and gS(·) are employed to map them into a joint multi-modal
feature space. Here, both gV (·) and gS(·) are implemented by fully connected
layers with ReLU activation. Let denote zSi,j as the assignment variable between
i-th phrase and j-th region in a video frame, the qϕ(z

S
i,j |E, V ) is computed by:

qϕ(z
S
i,j |E, V ) =

exp
(
gS(wi)

⊤gV (vj)
)∑M

j=1 exp (gS(wi)⊤gV (vj))
. (6)

Temporal Assignment qϕ(z
T
t |E, V ). The aforementioned spatial assignment re-

solves the box grounding at each frame, whereas this module endeavors to esti-
mate the probability of individual frames appearing in the ground-truth video
segment. Intuitively, since the temporal grounding requires determining the ac-
curate video segment corresponding to the semantics of description S, it is of
great significance to capture the interaction between global visual and textual
information. Therefore, following [41,45], the cross-attention layers are leveraged
to conduct multi-modal fusion between the frame features {ft}Tt=1 and sentence
features {wi}Ni=1. The resulting cross-modal global representation fcls is lever-
aged to produce the center c and width σ of the temporal boundary [ts, te] by a
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prediction layer, which is a linear mapping followed by sigmoid activation. Based
on c and σ, we model qϕ(zTt |E, V ) by a Gaussian distribution:

qϕ(z
T
t |E, V ) =

1√
2πσ

exp

(
− (t/T − c)2

2σ2

)
, t ∈ [0, T ]. (7)

Optimization. With the above formulation, the parameter ϕ can be optimized by
fixing θ and minimizing the function F(ϕ). When θ is frozen, the log pθ(R|E, V )
is the constant, and minimizing F(ϕ) is equivalent to maximizing the evidence
lower bound (the expectation term in Eq. 1). By substituting the mean-field
formulation in Eq. 5 into the ELBO and taking the derivative with respect to
each component zSt or zTt , the optimal distribution qϕ can be obtained by the
coordinate ascent update rule:

qϕ(z
S
t |E, V ) ∝ exp

(
E−zS

t
[log pθ(z

S
t |R,E, V,−zSt )]

)
, (8)

where −zSt indicates all the latent components except zSt . The detailed proof is
presented in the appendix. Based on the independence assumption for Z, the
optimal solution satisfies qϕ(zSt |E, V ) ≈ pθ(z

S
t |R,E, V ). Here, we only draw one

sample from pθ(·) as the pseudo-label in the implementation. Take zS as the
example, the parameter ϕ can be updated by the cross entropy loss:

LzS ,ϕ = −
∑
t

pθ(z
S
t |E,R, V ) log qϕ(z

S
t |E, V ). (9)

Moreover, we also introduce a contrastive objective, which leverages the video-
sentence alignment as the supervision to further optimize the parameter ϕ. Con-
cretely, the region-phrase matching score between the i-th phrase and the j-th
region in the t-th frame can be obtained by st,i,j = gS(wi)

⊤gV (vt,j). Then the
similarity score between video V and sentence S is calculated by:

smatch(V, S) =

T∑
t=1

N∑
i=1

zTt max
1≤j≤M

st,i,j . (10)

The contrastive loss Lcontra,ϕ is defined on all the matched and unmatched video-
sentence pairs in a training batch:

Lcontra,ϕ = −
B∑
i=1

log
exp(s(Vi, Si)/τ)∑B
j=1 exp(s(Vj , Si)/τ)

, (11)

where τ is the temperature parameter and B is the batchsize.

3.5 M-Step: Reconstructing the Relationship

The objective of the M-step is to maximize the joint log-likelihood F(θ) in Eq. 3.
Following [28, 30], the optimization of F(θ) can be further formulated by the
pseudolikelihood function [4]:

F(θ) ≈ Eqϕ(Z|E,V ) [log pθ(Z|E, V,R) + log pθ(R|E, V, Z)] . (12)
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Algorithm 1: The optimization of our framework.
Input: The training dataset D with only the correspondence of video-sentence

{Vi, Si}
Output: The learned parameters for the qϕ and pθ.

Initialize both ϕ and θ randomly.
while ϕ, θ has not converged do

// Conduct the E-Step
for (Vi, Si) in D do

Compute pθ(Z|E,R, V ) based on the current θ;
Update ϕ based on LZ,ϕ and Lcontra,ϕ;

// Conduct the M-Step
for (Vi, Si) in D do

Compute qϕ(Z|E, V ) based on current ϕ;
Update θ based on LZ,θ and Lrec,θ;

Predict the grounding result using qϕ and pθ.

It consists of two conditional probability pθ(Z|E, V,R) and pθ(R|E, V, Z) that
estimate the distributions of cross-modal assignment and the relationships be-
tween entities.
Optimization of Assignment. This learning objective is to maximize the first
term in Eq.12. Here, we adopt the network implementation similar to qϕ to
formulate pθ(Z|E, V,R). The difference is that pθ is also conditioned on the
relationships R. Therefore, unlike qϕ that only utilizes entity features, the es-
timations of zS and zT integrate the representations of all entity and relation
phrases. Finally, zS and zT yielded from qϕ are treated as the targets to update
θ with a loss function analogous to Eq. 9.

Optimization of Reconstruction. The second optimization term of Eq.12 is obliged
to reconstruct the relationships R between entities E given the cross-modal
assignment Z predicted by qϕ. Here, a visual relationship is denoted by the
triplet (es, r, eo) that represents the interaction between subject es and object
eo. Specifically, based on the estimated zSt ∈ RN×M and zTt , the entity-relevant
representation H is calculated by:

H = {zTt ⊙ h̃t}Tt=1, h̃t = zSt v
t ∈ RN×D, (13)

where vt ∈ RM×D is the contextualized visual features of M regions in the t-th
frame and zSt serves as the gate function that modulates each h̃t to weaken the
features of irrelevant frames. Then, the feature used to reconstruct the relation-
ship r is obtained by:

hr
t = Wr[h

es
t ;heo

t ] + br, (14)

where hes
t and heo

t are the representations for subject and object entities, respec-
tively. As illustrated in Figure 2, the generated {hr

t}Tt=1 in the overall video will
be fed to a standard transformer decoder [35] with the causal self-attention layer
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for recovering the relation r in an autoregressive way. This transformer decoder
is optimized by the cross-entropy loss on the words of r:

Lrec,θ = −
L∑

i=1

log pθ(ri|r<i, E, V, Z), (15)

where ri is the i-th word in the relation r. This design facilitates the grounding,
as the model can only reconstruct the relationship between the subject and
predicate by correctly aligning them with the relevant region (zS) and attending
to the corresponding video segment (zT ).

3.6 Training and Inference

Training. The overall optimization algorithm is summarized in Algorithm 1. It
alternates between E-step and M-step to progressively update qϕ and pθ until
convergence. In the E-step, θ is frozen, and we update ϕ by LZ,ϕ and Lcontra,ϕ.
In the M-step, ϕ is frozen, and parameter θ is optimized by LZ,θ and Lrec,θ.
It is worth noting that, during the E-step, qϕ is updated based on pθ using
LZ,ϕ, which brings the knowledge acquired through relation construction into
qϕ. Similarly, in the M-step, pθ is updated with qϕ using LZ,θ, which injects the
knowledge gained through contrastive learning into pθ. Consequently, these two
steps work synergistically during the optimization process.

Inference. At inference, our framework produces the bounding boxes and the
starting and ending probabilities based on the prediction of both qϕ and qθ. In
detail, we can generate the estimated assignment variable Z by:

Z = βZqϕ + (1− β)Zpθ
. (16)

The bounding box prediction at each frame is obtained by selecting the region
proposal with the maximal assignment score between the queried object phrase
and all M regions based on zS . The temporal boundary of the object tube is
determined by selecting the segment with the highest zT .

4 Experiments

4.1 Datasets and Metrics

We conduct extensive experiments on two widely-adopted spatio-temporal video
grounding benchmarks, dubbed as VidSTG [43] and HC-STVG [34]. Both
these two datasets comprise manual annotations for the spatio-temporal tubes
concerning a query sentence. For instance, the VidSTG contains a total of
44,808 video segments annotated with 99,943 sentences. The other dataset HC-
STVG consists of 5,660 raw video files depicting scenes with multiple people
in the movie, where each video has been annotated the sentence to identify a
relevant human with a specific attribute or interaction with the surrounding
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objects. We adopt the same dataset split for training and text following the
previous works [34, 43]. To perform a quantitative evaluation of the grounding
performance, we adopt the criteria proposed in [43], including m_VIoU and
VIoU@R. VIoU score is calculated by: VIoU = 1

|Su|
∑

t∈Si
IoU(b̂t, bt), where Si

and Su represent the intersection and union of the predicted and ground-truth
video segments. And IoU(b̂t, bt) indicates the IoU score between the predicted
b̂t and ground-truth bounding box bt at frame t. The m_VIoU score denotes
the mean value of the VIoU scores across all testing videos and VIoU@R quan-
tifies the proportion of samples in the testing subset whose VIoU score exceeds
a specific threshold R.

4.2 Implementation Details

Consistent with the previous methods, the input video frames are first sampled
at the rate of 5 fps. To handle the overlong videos, we conduct uniform sam-
pling to select at most 200 frames throughout the video. Then, for each frame,
a Faster-RCNN object detector pre-trained on MS-COCO [20] with ResNet-
101 [15] backbone is leveraged to extract 10 regions as the candidate proposal,
where each region is associated with an RoI align pooled feature. And the rep-
resentation of each video frame is derived from the C4 block in the ResNet-101.
In regards to the query sentence, we borrow the Stanford CoreNLP tools [24]
to parse a set of entities and relationships. All the representation dimensions in
the model are set to D = 256. Additionally, both the context encoder and re-
construction decoder have two transformer blocks with 8 heads in the attention
module. We empirically set the hyper-parameters in this paper with α = 0.5 and
β = 0.3. The whole framework is trained for 20 epochs with a batch size of 32
using AdamW [22] optimizer on 4 NVIDIA V100 GPUs, where the learning rate
is warmed up to 5e-5 and then decayed linearly in the remaining iterations.

4.3 Performance Comparison

To fully demonstrate the advantage of the proposed framework, this section pro-
vides extensive quantitative comparisons with the existing weakly-supervised
grounding approaches. Here, we consider the following types of methods as the
competitors. (1) Object Similarity. This type of approach predominantly em-
ploys the semantic similarity between the region label predicted by the detec-
tor and the subject phrase in the query sentence to generate the target object
tube. Essentially, this is the process of grounding by utilizing the knowledge
distilled from external pre-trained object detectors. (2) Factorized Ground-
ing. Since the STVG problem is a compound task, an intuitive way to settle
this problem is to handle the spatial and temporal sub-grounding, respectively.
To this end, we first leverage the weakly-supervised image grounding meth-
ods (e.g., GroundeR [31], MATN [44], RAIR [21]) to predict the bounding-box
at each video frame, and then resort to weakly-supervised temporal grounding
techniques (e.g., LCNet [39], CPL [45]) to yield the predicted video segment.
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Methods Declarative Sentences Interrogative Sentences
m_VIoU VIoU@0.3 VIoU@0.5 m_VIoU VIoU@0.3 VIoU@0.5

Object Similarity 3.41 2.78 1.31 2.87 2.95 0.98

GroundeR [31]+LCNet [12] 7.85 7.96 3.02 6.43 6.58 2.92
MATN [44]+LCNet [12] 8.16 8.03 3.59 6.97 6.64 3.05
GroundeR [31]+CPL [12] 8.28 8.35 3.68 7.16 7.28 3.23
RAIR [21]+CPL [12] 8.67 8.72 4.01 7.68 7.71 3.58

WSSTG [9] 8.85 8.52 3.87 7.12 6.87 2.96
ADWS [8] 8.96 7.86 3.10 8.57 6.84 2.88
Vis-Ctx [32] 9.34 7.32 3.34 8.69 7.18 2.91
WINNER [19] 11.62 14.12 7.40 10.23 11.96 5.46
Ours 14.45 18.57 8.76 13.25 16.74 7.66

Table 1: Performance comparisons of different methods on the VidSTG test set (%).

Methods m_VIoU VIoU@0.3 VIoU@0.5

Object Similarity 3.25 2.17 0.32

GroundeR [31]+LCNet 4.17 3.28 1.05
MATN [44]+LCNet 4.41 3.53 1.12
GroundeR [31]+CPL 5.23 4.18 1.25
RAIR [21]+CPL 6.88 4.87 1.36

WSSTG [9] 6.52 4.54 1.27
ADWS [8] 8.20 4.48 0.78
Vis-Ctx [32] 9.76 6.81 1.03
WINNER [19] 14.20 17.24 6.12
Ours 14.64 18.60 5.75

Table 2: Performance comparisons of different methods on the HC-STVG test set (%).

(3) Video Grounding. Only a few works have explored the weakly-supervised
video grounding. We compare with them: Vis-Ctx [32], WSSTG [9], ADWS [8],
WINNER [19] on the two STVG benchmarks.

For a fair comparison, all these baselines adopt the same backbone to extract
features. The detailed comparisons are presented in Tables 1 and 2 for two video
benchmarks, respectively. It can be seen that the grounding performance of our
approach surpasses all the competitors on the VidSTG benchmark and achieves
the best results in terms of evaluation metrics: m_VIoU and VIoU@0.3. Fur-
thermore, simply grounding the target object based on the category-phrase simi-
larity will lead to unsatisfactory results. This is mainly because there are usually
multiple objects with the same category in a video scene. The model must figure
out the complicated interactions between these objects to finally identify the
target. The factorized grounding approaches settle the STVG task separately,
which ignores the correlations between the spatial and temporal contextual in-
formation and thereby achieves inferior grounding performance. In our work,
the spatial and temporal assignment works collaboratively to recover the subtle
visual relationships between the entities in the video. Moreover, the proposed
method also outperforms most of the existing weakly-supervised video grounding
methods by a large margin. Although they consider the spatio-temporal context
clues throughout the whole video with the attention mechanism by leveraging
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Lcontra,ϕ Lrec,θ m_VIoU VIoU@0.3 VIoU@0.5

✓ 10.83 13.24 5.36
✓ 12.87 16.32 7.93

✓ ✓ 14.45 18.57 8.76

Table 3: Ablation of different network combinations on the test set of VidSTG bench-
mark (declarative sentences).

Spatial Temporal m_VIoU VIoU@0.3 VIoU@0.5

✓ 13.16 17.15 7.93
✓ 14.12 18.21 8.25

✓ ✓ 14.45 18.57 8.76

Table 4: Ablation of different context encoding layer on the test set of VidSTG bench-
mark (declarative sentences).

the multiple instance learning framework, the lack of explicitly modeling the fine-
grained interactions between entities makes them fail to distinguish the semantic
ambiguities in the query sentence.

4.4 Ablation Study

In this section, we perform various ablations on the VidSTG benchmark to gain
deeper insights into the contributions and design decisions made regarding the
individual components of the proposed framework. More ablation results can be
found in our appendix.

Effect of different components. In the network optimization E-step and M-step,
the contrastive loss Lcontra,ϕ and reconstruction loss Lrec,θ are leveraged to su-
pervise the parameters of qϕ and pθ, respectively. For inference, both the pre-
dictions of qϕ and pθ are responsible for producing the final grounding results.
To explore the effectiveness of these two networks, we designed experiments for
different combinations on the VidSTG benchmark. Based on the quantitative
ablation results presented in Table 3, one can observe that canceling either qϕ
or pθ will weaken the grounding performance. Notably, the network pθ brings a
more significant performance boost compared to the qϕ. This is basically intu-
itive since the pθ aims to recover the specific interactions between the grounding
target and other context objects. While the qϕ network only utilizes the global
correspondence of video-sentence and can not benefit from the fine-grained se-
mantics in the description. Nevertheless, the cooperation of these two networks
achieves the best grounding performance.

Effect of the video context encoding. In the contextualized feature encoding mod-
ule, the spatial and temporal context modeling layers are adopted to capture the
global dynamics of regions across the whole video. We thus design an ablation
experiment in Table 4 to investigate the function of these two layers for the sub-
sequent grounding. From the presented comparison, we can observe a distinct
performance drop without either of these two layers, which further validates the
effectiveness of the spatial and temporal context encoding layer.
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Ground-truth

Query:  An adult in a hat is above an elephant.

Prediction

Ground-truth

Query: A child in yellow holds hand of another child in pink in a room.

Prediction
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Query: An adult with watch holds a dish at the stall.

Prediction

adult
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child
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Fig. 3: Some illustration examples of the spatio-temporal video grounding predictions
produced by our model on the VidSTG benchmark.

4.5 Visualization Analysis

In this section, we visualize some grounding results on the VidSTG benchmark
to provide a qualitative analysis of the model performance. As illustrated in
Figure 3, the left section displays the predicted sequence bounding boxes for the
target object, while the right section presents the interactions among entities
in the video. From the shown visualizations, one can clearly observe that our
framework can rightly attend to the desired instance depicted by the textual
description. It is worth noting that, even for the hard sample (the second one),
where several instances similar to the target exist in one scene, the model can
still distinguish the queried entity.

5 Conclusion

In this work, an effective framework is proposed for addressing the weakly-
supervised spatio-temporal video grounding task. Specifically, we innovatively
formulate the STVG task to two cross-modal alignment sub-problems. To cope
with the absence of fine-grained ground-truth annotation, the assignments be-
tween phrase-region and frame-sentence are treated as latent variables optimized
with the variational EM algorithm. Moreover, extensive experimental results on
two video benchmarks further validate the superiority of our approach.
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