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Abstract

Video action segmentation involves categorizing each
frame or short snippet of an untrimmed video into prede-
fined action categories. Despite notable advancements in
recent years, a considerable number of current approaches
still rely on frame-wise segmentation that tends to render
fragmentary results. To address it, we present an inno-
vative approach for video action segmentation, centered
around contextually refined temporal keypoints. Initially,
our method identifies a set of sparse, over-complete tem-
poral keypoints through non-local visual cues, with each
keypoint representing a potential action segment candi-
date. Subsequent enhancements to these initial keypoints
are achieved through iterative refining and re-assembling
operations. Driven by the notion that optimal temporal key-
points should collectively resemble the true ground-truth
structurally, we introduce a module that conducts graph
matching between the keypoint-derived graph and the ref-
erence graph constructed from accurate annotations. This
module effectively learns structural features used to fur-
ther refine the initial keypoints. Moreover, a set of pre-
defined rules is applied to re-assemble all temporal key-
points. The unfiltered temporal keypoints, resulting from
these operations, are harnessed to generate the final ac-
tion segments. We extensively evaluate our method across
three video benchmarks: 50salads, GTEA, and Breakfast.
Our proposed approach consistently demonstrates substan-
tial improvements over existing methods, establishing its su-
periority in video action segmentation. It achieves F'1@50
scores (one of the key performance metrics for this task) of
79.5%, 83.4%, and 60.5%, respectively, v.s. previous state-
of-the-art 78.5%, 79.8% and 57.4%.

1. Introduction

Understanding human actions from visual sensors has
been regarded as a long-standing crucial task in a variety
of real-world applications, such as surveillance video anal-
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Figure 1: Comparison of frame-wise classification meth-
ods and keypoints based segmentation methods. The
untrimmed video clip of making peanut butter bread con-
tains three actions. Specifically, the colors indicate different
categories of actions, while the white indicates background
and grey is for boundary point. Frame-wise classification
methods are prone to over-segmentation and boundary mis-
alignment, while keypoints based method effectively allevi-
ates these problems by refining keypoints using contextual
information.

ysis [4,[10/[11}/55]], human-robot interaction [11}/43], au-

tonomous driving, sports Analysis [50], etc. In the past
few years, researchers have made great efforts on segment-
ing human actions in a frame-wise classification manner.
Specifically, each frame of the video is densely labeled as a
pre-defined human action category, based on the complete
video stream, which is shown in Figurem However, exist-
ing methods under this manner are still suffer-
ing from several mis-classification problems, such as over-
segmentation or boundary-misalignment. We illustrate the
above problems in two aspects:

Frame-wise classification does not globally consider the
semantics of each temporal action segment. For the frame-



wise classification loss, the goal of the function is always to
assign the pre-defined categories to each video frame inde-
pendently, regardless of whether the arrangement or dura-
tion of temporal actions are semantically appropriate. For
example, in Figure [I] there is one frame mis-classified in
scoop since the effects of video motion blur or other noises,
which does not produce a large loss in frame-wise classi-
fication. Moreover, no matter where the mis-classification
occurs, the loss is always the same. However, the overall
meaning of the video changed considerably when the cen-
tral mis-classified frame occurs, because the long scoop is
split into three short actions (scoop, open, scoop). Although
the smoothing-based methods [22,48]] make great efforts on
dynamically voting the predictions on a local region to al-
leviate such errors (i.e., over-segmentation). However, due
to the varying duration of temporal actions, the range of
smoothness is often difficult to determine.

On the other hand, capturing long-term dependencies
frame-wisely is computationally expensive. As the com-
mon practice, existing methods use dilated convolution [22]
with a large dilation rate, or a local sliding-window based
self-attention module [51]], or casting multiple frames into
several high ordered embeddings for further refinement [/1].
However, the above methods either suffer from the size and
shape of the convolution kernel or sliding window [22,/51]],
or the inaccurate representation of video actions caused by
over-segmentation in frame-level classification.

In this paper, we propose a video action segmenta-
tion framework via contextually Refined Temporal Key-
points (RTK), which treats actions as keypoints. Temporal
keypoint-based methods, as first explored and advocated in
this work, use sparse candidate points to represent actions,
which is a high-order semantic representation. In addition,
by constructing graph relationships between temporal key-
points, it is also easier to capture the long-term dependen-
cies between actions. RTK has three main benefits:

(i) Detecting temporal keypoints implies localization of
temporal actions, which implies that the model focuses on
discriminating the global-to-local location of each action,
rather than independently classifying each frames.

(ii) Detecting keypoints facilitates further exploration of
contextual information between actions. Compared to ana-
lyze video frame-level relations, analyzing keypoint-level
relations can provide higher-order semantic information,
which can also help save the cost of capturing long-term
dependencies. For specific, we construct the graph struc-
ture on sparse temporal keypoints while adopting a graph
matching module for assistance, in modeling fine-grained
action-level relationships in videos.

(iii) For the reason that boundary points are directly lo-
calized and optimized in the pipeline, RTK leads to precise
action boundaries and avoids boundary-misalignment prob-
lems, compared to frame-wise classification.

We evaluate the framework on three popular datasets for
temporal action segmentation: S50salads [38]], GTEA [8],
and Breakfast [14]] dataset. RTK utilizes a modi-
fied ASFormer [51] architecture with several extra mod-
ules(keypoints generatation heads, graph matching mod-
ules) and achieves 83.4% F1@0.50 scores on GTEA,
79.5% on 50salads, and 60.5% on Breakfast, which im-
proves the segmentation baselines by about 2 ~ 4% and
significantly alleviating the over-segmentation problems.

2. Related Work

Keypoints detectors. In past few years, keypoints based
methods have achieved impressive success in a plethora
of computer vision tasks, including human pose estima-
tion [30,41]], visual object detection [6,/15/{40]], human ac-
tion localization [26,27,39]], video action detection [24,/44],
skeleton-based action recognition [28},35]], or unsupervised
boundary detection [5]. However, the role of keypoint de-
tectors in dense labelling tasks including temporal human
action segmentation has not been fully explored. In our
proposed solution, we utilize temporal keypoints to repre-
sent actions, which also construct stronger prior constraints.
These temporal keypoints with global contextual relations
effectively remove the out-of-context actions and signifi-
cantly relief over-segmentation errors.

Fine-grained relations between temporal actions.
Studying the relationship between actions has always been
an important part of action segmentation tasks. Earlier
works have studied the hidden Markov model [19,/36] to
model the statistical dependences of actions. A few ex-
isting studies [[1,/21] have explored non-local correlation
among actions. However, fine-grained structural relation-
ships of temporal action keypoints, represented by sophisti-
cated structures such as keypoints graphs, still remains in-
adequately studied.

Deep graph matching on computer vision. Early deep
graph matching methods have been proved effective on ex-
tracting dedicated node / edge features or affinity models.
Researchers make great efforts 32154 to explore advanced
pipelines, where graph embedding [9}/45]52], graph con-
nectivity learning [53]], geometric learning [9,/56]. Most of
them uses a common technique refers to the so-called graph
convolutional networks (GCN) [49]]. In GCN, node fea-
tures are aggregated from adjacent neighbors and different
nodes with learnable parameters. GCN based graph match-
ing models [45,46] are developed for deep node / edge em-
beddings by exploiting high-order proximity jointly. There-
fore, deep embeddings in graph matching models are very
suitable for extracting contextual representations between
keypoints. For this reason, we adopt the graph matching
module behind the keypoints generator to refine the over-
complete keypoints candidates with structured embeddings.
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Figure 2: Overview of action segmentation by Refined Temporal Keypoints (RTK) pipeline. There are three main parts:
left: Temporal feature extraction and initial temporal keypoint generation. middle: Action candidates refinement via graph
matching module. right: Assembling refined candidates to final segmentation results guided by human-designed rules.

3. Method

This section elaborates on the technical details of the
proposed Refined Temporal Keypoints (RTK). An overview
of the whole model can be found in Figure[2]

3.1. Initial Temporal Keypoint Generation (KG)

Rather than separately predicting the semantic category
of each video frame, we develop a temporal keypoint based
approach for detecting action segments. Suppose that A =
{ai,a2,...,an} is a series of actions of an untrimmed
video V with T' video frames (or snippets). It is crucial to
ensure the temporal keypoints are well-defined, both visu-
ally distinguishable to other points and informative for the
interested task. In our formulation, two kinds of temporal
points are defined: boundary points that correspond to the
starting or ending of an action, and action points that are
temporally middle points of a ground-truth action.

Boundary points. The category of a boundary point
is susceptible to the inherent ambiguity of action bound-
aries. Thus, we opt for a category-agnostic definition for all
boundary points. Probably the single most important dif-
ficulty to localize such points is the inherent variability of
a specific action’s transition into another. It is always chal-
lenging to localize the boundary points at a frame-wise level
of accuracy, even for a human annotator. Instead we set a
small neighborhood around a true boundary points to be all
true, and penalize a false prediction accordingly. Formally,

splating all ground truth points p onto a category agnostic
heatmap Y™ using a 1D Gaussian kernel e ="~ /257 where
op 1S an object size-adaptive standard deviation |]§|] It is
proportional to a hand-designed region length r,. If two
Gaussians of the same class overlap, the value will depend
on the element-wise maximum [2]. We adopt a focal loss
style objective [25]], formalized as following:

KZ{ 1*yt

where 9, is the predicted probability at time ¢ on the local-
ization heatmaps, and y; is the ground-truth heatmap aug-
mented with the un-normalize Gaussians. K is the number
of positive keypoints. «, (3, v are hyper-parameters that
control or balance the contribution of samples.

Action points. Similarly, sparsely annotating the mid-
point of an action segment tends to lead severe imbalance
among data. The mid-point is always a true action point.
Beyond that, in our implementation the temporal neigh-
borhood (say 30% of the action segment) around an ac-
tion point is also treated as positive. In addition, in or-
der to alleviate the overfitting problem caused by insuffi-
cient training data, the heatmap Y of action points is de-
vised to be decoupled into the product of two heatmaps: a
category-agnostic localization heatmap Y and a category-
probability heatmap yee, Formally we have:

1 _yt) log g ify; =1,

¢ log(1 — ¢¢) otherwise, M

V=YY, t=1...T,i=1...C. (2
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Figure 3: Comparison of existing methods (a-c) and our
proposed RTK (in (d)). The illustrated example of activ-
ity making fried egg is composed of five actions. Conven-
tional segmentation approaches [22|/51]] in (a) classify each
frame independently; HASR [1] and Br-prompt [21] shown
in (b) and (c) either recurrently harnesses historical context
or enforces the model to be non-local (such as the ordinal
prediction as in (c)). In contrast, our RTK in (d) exploits
even more fine-grained high-order relationship between ac-
tion segments represented by graphs.

The generating procedure of Y is similar to Y, while the
penalty of 1D Gaussian kernel is e~ 7’ */272 for each p that
YpCl = 1, where o, is another object size-adaptive standard
deviation which is proportional to corresponding length L;
of action a;. Following the definition, Y°¢ the same as the
logit-probabilities in frame-wise classification.

Putting all together, the loss function is a combination of
action points and boundary points:

‘CKG = (Al‘clcoc + )‘Q‘Cgat) + )‘3‘6?00 3

where L7, is the Focal loss [25] defined in the style Equa-
tion (1) for Y, while LS, is the Cross Entropy loss for yee
to determine the categories of action points. Similarly, E;’OC
is another Focal loss [25] for v, A1, Az and A3 are model
hyper-parameters to determine the contribution of different
losses.

3.2. Refinement via Graph Matching (GM)

During inference, the estimated heatmaps {Y?, Y} gen-
erate boundary or action keypoints via simple threshold-
ing. In specific, the heatmaps undergo a watershed algo-
rithm [42]]. All the locally maximal peaks that exceed a
certain threshold are marked as candidates of boundary or
action keypoints. However, these candidate points are in-
dependently predicted from each other. This implies that
the inter-point contextual information among the candidate
points is not adequately exploited. This motivates the addi-
tional graph matching procedure as described in this section
that further forges these initial temporal points.
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Figure 4: Example of graph matching during training.
Points colored in grey indicate boundary points. Target
graph is determined by the ground-truth segmentation se-
quence, while the nodes from source graph are sampled
from detected keypoints. The graph matching between the
source graph and the target graph means that all homolo-

gous points are clustered together and tightly connected by
the structural properties of the graphs.

point match

A few existing studies [}, [21] have explored non-
local correlation among actions. For example, Hierarchi-
cal Action Segmentation Refiner (HASR) [1]] sequentially
improves initial actions with recurrent neural networks
(RNNSs). The work in [21] crafts multiple text prompts (par-
ticularly, statistical prompt that counts the entire actions,
ordinal prompt that estimates the temporal position of each
action, and integrated prompt that demands holistic match-
ing between video / all text queries), thereby enforcing the
model to be context-aware. However, fine-grained struc-
tural relationships, represented by sophisticated structures
such as graphs, still remains inadequately studied. Figure[3]
graphically contrasts the pipelines for different methods.

Target graphs. Figure [] illustrates the proposed idea
of harnessing an auxiliary task (i.e., graph matching among
temporal points) for learning enhanced contextualized rep-
resentations. As seen, for each video a target graph is built
from manually-annotated points (i.e., boundary-points and
mid-points), while directed edges are defined among all
points. This way generates an effective representation of
fine-grained information upon action level.

Source graphs. During predicting boundary / action
points, we can always obtain an over-complete candidate
set by choosing proper threshold of confidences. Suppose
there are totally M points in the ground-truth annotation
for a video, we practically find that randomly sampling ex-
actly M points from the over-complete candidates gener-
ated from previous step can make the optimization more



tractable, without much performance sacrifice. Specifically,
we follow the definition of keypoints localization in Sec-
tion points on the source graph should match their cor-
responding regions. The failure that mis-detecting points in
the region is regarded as the bottleneck of over-completed
Keypoint Generation, rather than that to be solved by graph
matching module. When suffering this special case, the
source graph is constructed by a compromise strategy which
to sample the extra points to match the target points.

The idea underlying the proposed graph matching is to
treat the ground-truth “target” as a matching template, and
force the detected points to learn the formation of target
graphs. During the training, the graph matching module
makes efforts on finding the second-order similar graph
structure with ground-truth at the action level. At the same
time, Refinement Stages (RS) (shown in Figure [2)) exploits
the graph matching module as high-order contextual em-
beddings extractor, further for refining action candidates.
The graph matching module is supervised by the permuta-
tion loss [45] Lperm, which is described with details in the
supplemental material. However, due to the limitation of
computation and filling the quantitative gap caused by ran-
domly sampling, it is necessary to limit the number of ac-
tion candidates. In Table[d] we further analyze the influence
of the number of selected action candidates on performance.

Now we can describe the whole pipeline of Refinement.
Suppose there are N candidates selected from the keypoint
generator. The candidate embeddings of action candidates
are denoted by Z € RN and the higher-order contextual
embeddings from GCNs are denoted by G € RN d is
the dimension of embeddings. We adopt several stacked
convolutional layers A/ to aggregate embeddings:

G' = N'(cat(G,1)), 4)

where G’ is the refined embeddings, while cat indicates
concatenation operation. Finally, G’ are then used to re-
classify for further predictions by a cross-entropy loss Lo r.
The final loss function is a combination:

L= »CKG + »Cperm + 'CCR~ (5)
3.3. Refinement via Rule-based re-Assembling (RA)

This section describes a post-processing procedure of de-
tected points for precisely representing action segmentation
results. The idea is to alternately arrange boundary / ac-
tion points in chronological order. A single action point
represents the category of the action, while the boundary
point represents the position where action changes. To
satisfy this, a simple and effective approach is to merge
or remove over-complete points according to some hand-
designed rules, called Rule-based re-Assembling (RA).
Specifically, non-alternating points are merged into one
point by weighted average, while keeping the category with
the highest confidence score.

Formally, supposed that the sorted set of detected ac-
tion points is So = {(d1,¢1),- .., ([dng,cNg )}y di < dit1,
where d; and ¢; indicate coordinate and category respec-
tively. Similarly, the set of boundary points is S; =
{b1,...,bn,}, bi < b11, where b; indicates coordinate.
The confidence scores of points are omitted for conve-
nience. The objective can be formally written as below:

No+1= Ny, (62)
by=1,by, =T + 1, (6b)
b <d; <bip1 <dig1 <biya, i=1...Ng—1, (6c)

Ci%CH_l, Z'Zl...NofL (6d)

We simply decompose the RA into four steps:(i) Merge
action points between every two adjacent boundary points.
(ii) Merge boundary points between every two adjacent ac-
tion points. (iii) Iteratively merging adjacent actions to sat-
isfy Equation[6d] (i.e., removing boundary points between
two adjacent action points with same category, and remain-
ing the action point with higher confidence). (iv) Casting
the alternating action and boundary points to construct the
segmentation results. Since RA is non-differentiable and
parameters-free, it can be directly applied to the generated
keypoints to construct the final segmentation result.

4. Experiments
4.1. Implementation Details

RTK architecture. The experiments adopt a fixed I3D [3]]
network as the pre-trained feature extractor ¢. For bet-
ter generalizing keypoints heatmap, we adopted a modified
ASFormer [51]] backbone with its encoder layers and light-
weighted decoders. The classification and keypoints gen-
eration are integrated into one shared head for all encoder
and decoders. All the hyper-parameters not mentioned in
this paper are following the settings of their original pa-
per (i.e., ASFormer [51]], and PCA Graph Matching mod-
els [47]]) while the trainable parameters are randomly ini-
tialized and trained from scratch under the default setting
of Pytorch [33]] without pre-training any external dataset.
More details are found in the supplemental material.
Hyper-parameters settings.  Referring to the practice
of focal loss [25] on other tasks such as object detec-
tion [6,/15,/40], we choose a« = 2, 8 = 4, v = 0.75 in
L¢ _, while specially in £?  the hyper-parameter v = 0.8
is for balancing positive and negative boundary points. For
better performance, we set Ay = A3 = 100, Ay = 1. As for
keypoints generating, r, = 33,0y = 0.5, 7, = 0.81, 0, =
0.25r., where [ is the length of the corresponding action
segment. Moreover, the length of positive region of action
points is set to 0.32[. During the selection of candidates,
the threshold is 0.4 for action points and 0.2 for bound-
ary points in order to further reduce the over-segmentation
points due to ambiguity.



S0salads GTEA Breakfast

F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc
SCNN [18] 323 27.1 189 248 549 - -
IDT+LM [34] 444 389 278 458 487 - -
Bi-LSTM [37] 62.6 583 470 556 557 | 66,5 59.0 43.6 - 55.5 -
DTCN [17] 522 47.6 374 43.1 593 - -
ST-CNN [18] 559 49.6 37.1 459 594 | 587 544 419 - 60.6 -
TResNet [[12] 692 650 544 605 66.0 | 741 699 576 644 658 -
TRN [20] 70.2 654 563 637 669 (773 713 591 722 678 -
TDRN [20]] 729 685 572 660 681 | 792 744 627 741 70.1 -
ED-TCN [17] 680 639 526 598 64.7 | 722 693 56.0 - 64.0 - 43.3
BCN [48] 823 813 740 743 844 | 885 871 773 844 798 | 6877 655 550 662 704
ASREF [13] 849 835 773 793 845 | 894 878 798 837 773|743 689 561 724 67.6
HASR [1] 86.6 857 785 81.0 839 | 892 872 748 845 769 | 747 695 570 719 694
ETSN (23] 852 839 754 788 82.0 |91.1 90.0 779 862 782|740 69.0 562 703 678
G2L [10] 80.3 780 698 734 822|899 873 758 846 785|763 699 546 745 708
MS-TCN [7] 763 740 645 679 80.7 | 858 834 698 79.0 763 | 526 48.1 379 61.7 663
MS-TCN++ [22] | 80.7 78.5 70.1 743 837 | 888 857 760 835 80.1 | 641 586 459 656 67.6
ASFormer [51] 85.1 834 760 79.6 856 | 90.1 88.8 792 846 79.7 | 760 70.6 574 750 735
RTK 874 861 795 814 859 (912 906 834 879 803|769 724 60.5 761 733

Table 1: Evaluation results of action segmentation methods on three datasets with I3D [3] features. Score in bold indicates

the best performance.

Training process. The training process of RTK is step-by-
step, since the hierarchical dependencies between modules
in whole pipeline. There are two main dependencies: (a)
The Graph Matching (GM) depends on semantic features to
further learn structural information in keypoints graphs. (b)
The Refinement Stages (RS) depends on well-trained GM
module to further improve the keypoints quality. Therefore,
for total 120 training epochs, the first 80 only trains Key-
points Generator (KG), and then joins the GM module with
16 x batch size for 20 epochs, and the last 20 epochs jointly
trains all modules from end to end.

Datasets. The evaluation results are based on 3 popular
datasets: Georgia Tech Egocentric Activities (GTEA) [8],
50salads [38|] and the Breakfast dataset [[14].

Evaluation Metrics. For all the dataset, the following eval-
uation metrics are reported as in [[7,|16}/48]: frame-wise
accuracy, the segmental edit score, and the segmental F1
scores at temporal intersection over union (tloU) thresholds
of 0.10, 0.25 and 0.50, denoted by F'1@{0.10,0.25,0.50}.
In this paper, segmental F1 scores and segmental edit scores
are more important than frame accuracy. Because over-
segmentation errors are always reflected on these segmental
metrics, which is similar to the effect of mean average pre-
cision (mAP) in object detection. Furthermore, the mean
IoU scores (MIoU) is discussed to demonstrate that RTK
enables more accurate localization. Unlike the pixel-wise
MIoU in semantic segmentation [29,31]], one calculates
a segment-wise mean IoU score of a threshold(similar to
thresholds in F'1 scores) equals 0.0. This metric can intu-
itively show the overall IoU value of all actions, thus reflect-
ing the localization accuracy of all the actions.

4.2. Comparison of State-of-the-art Methods

Table[I]shows the comparison of the RTK to the state-of-
the-art methods on three challenging benchmarks: 50Sal-
ads, GTEA and Breakfast datasets with I3D features. RTK
performs better on all these metrics than modern methods,
especially the F'1@Q50 scores (RTK achieves the state-of-
the-art F'1 @50 scores of 83.4%, 79.5%, and 60.5% on three
datasets, respectively). Higher F'1@50 scores means that
RTK predicts more precise action segment boundaries and
categories, which results in a larger area of intersection with
the ground-truth actions.

4.3. Ablations on proposed modules

We perform ablation experiments to test the effec-

tiveness among all the proposed modules between the
frame-wise classification based methods and the proposed
method. Keypoints based methods have natural advantages
when dealing with over-segmentation and boundary mis-
alignment issues — by directly estimating the precise key-
points and utilizing contextual information of the keypoints.
To understand the contribution of multiple proposed mod-
ules, we specify the following baselines and RTK variants:
Keypoints based models. In this series of experiments,
the base models are replaced the frame-wise linear classi-
fication layers to the keypoints generators, along with post-
processing described in Section [3.3] to assemble the key-
points to the final segmentation results.
Refinement Stages. In original frame-wise classification,
RS effectively alleviates over-segmentation errors, while in
keypoints generators, RS acts as a cascade module to further
improve the performance of keypoints (seen in Table[6).



KP RS GCN GM  FI@{102550}  Edit Acc
834 817 719 771 787

v 882 857 765 824 794
v v 908 887 829 86.6 80.1
o vV 90.7 887 829 865 802
v 90. 888 792 846 1797

v oV 80.7 874 786 825 793

v v v 99 881 793 836 795

v v v 7 912 9.6 834 879 803

Table 2: Ablation study on GTEA dataset. “KP” means
that whether adopts keypoint-based architecture; “RS” in-
dicates the Refinement Stages, while “GCN” means that
whether adds GCN features to Refinement Stages; “GM”
indicates whether GCN features are supervised under the
graph matching permutation loss.

E.D. type F1@{10,25,50} Edit Acc
CIE[52] 809 80.1 72.1 764 735

v CIE[52] 813 808 745 79.6 175.7
PCA [45] 90.7 884 786 829 785

v PCA [45] 912 90.6 834 879 803

Table 3: Ablation studies of the specific graph matching
module for RTK on the GTEA dataset. E.D. indicates the
embeddings used in GM is whether detached during the
backward.

Graph matching modules. We study the influence of
GCN layers and permutation loss in RTK. Experiments
have proved that the structural information between key-
points is helpful for better performance of keypoints.

In Table 2] we show the main ablation results, which in-
dicate that keypoints based methods and the extra modules
make positive contributions to the final performance in all
the settings, which is consistent to our claims.

4.4. Ablations in Graph Matching modules

In our design, we tried two graph matching methods:
CIE [52]] model (which use proposed Hungarian Attention
mechanism to consistent with the strategy used in the testing
stage) and PCA [45] model (an embedding-based method).
Table [3] shows the quantitative results, which indicates that
PCA model make positive contributions to the final perfor-
mance. It is reasonable because CIE focuses on the cross
information fusion of source and target graphs rather than
extracting embedded information independently. However,
the simple GCN framework in PCA is more suitable for the
settings of extracting contextual information without tar-
get graph. Furthermore, we also study the influence of the
gradients of graph matching module to the previous key-
points generator and feature extractor. As shown in Table[3]
the gradients of graph matching module have adverse in-
fluence on the features for generating keypoints. This may
be attributed to the fact that the graph matching module is
more biased towards the global structural information and

a F1@{102550}  Edit Acc
0001 835 80.7 746 785 813
001 889 863 817 832 794
01 912 90.6 834 879 803
10 914 902 827 865 804

Table 4: Impact of the number of selected over-complete
candidates(x «) to Refinement Stages for RTK on GTEA.

#params FLOPs GPU Mem.
ASFormer [51]  1.134M  6.80G ~3.5G
RTK 0.779M 741G ~2.9G

Table 5: Comparison of RTK and ASFormer with respect to
the number of parameters, FLOPs and GPU memory cost of
a video input length = 3000.

method RS | action Acc/Rec | boundary Acc/Rec
ASFormer [51] v | 81.5 88.1 39.5 48.8
+ASREF [[13] v | 833 88.5 539 67.6
RTK 88.4 92.6 86.3 80.7
RTK v | 905 90.7 92.1 71.1

Table 6: Keypoints quality evaluation between the baselines
and keypoints detection methods on 50salads [38] dataset.
RS. indicates that whether uses Refinement Stages. Acc in-
dicates accuracy while Rec indicates recall.

the clustering information of each action, rather than the
patterns and localizations that distinguish different kinds of
actions.

4.5. Ablations on maximum number of candidates
in RS

In our experiments, the maximum number of candidates
Nipaz = oT is proportional to the number of video frames
T. Table |4 shows the impact of different number of candi-
dates on GTEA. When the number of candidates drop down,
the performance drops sharply, which means the absence
of candidate points is fatal for action segment prediction.
However, when the number of candidate points increases to
a certain extent, most of the candidate points will be merged
or deleted in post-processing, so it does not have much im-
pact on the final prediction result. But the increase of can-
didates brings a huge computational cost on graph match-
ing module. Therefore, we choose oo = 0.1 as the optimal
choice.

4.6. Quantitative results of keypoints

To reveal the reason behind RTK’s improvement, we
design to evaluate the MIoU gain over baseline about the
length of actions. Similar to F'1 scores, the calculation of
MIoU is based on averaging the IoU of all matched actions
less than a certain length. Specially, in Figure [5al RTK
performs well on the actions around 30 to 100 frames on
GTEA dataset. While in Figure [5b] the main gains of RTK
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Figure 5: The curve of Mean IoU Scores v.s. an Action Segment Lengths Threshold on GTEA and 50salads dataset. Each
point on the curve represents the average intersection-over-union (IoU) with the ground-truth actions of all actions below the
action segment length threshold. Compared with baseline ASFormer methods, RTK performs better on actions at all scales.

F1@{10,25,50}  Edit Acc F1@{102550}  Edit Acc
ASFormer 94.1 920 830 916 812 HASR 904 888 793 853 785
RTK 949 938 878 928 844 RTK 912 90.6 834 879 803

Table 7: Complementarity of RTK using Br-prompt [21]]
features on the GTEA dataset.

come from the actions larger than 1000 frames on 50salads
dataset. These results reveal that RTK improves MIoU on
all scales of actions, which strongly support our claims.

Moreover, we evaluate the quality of keypoints on 50sal-
ads [38]] dataset. The evaluation metrics of the action points
and boundary points are defined as following: (a) Action
points are regarded to be correct only if the category of the
action segment is correct. (b) Boundary points are consid-
ered correct only if the points are covered over a radius of
5 frames by any ground-truth boundary points. The met-
ric (b) is reasonable under 50salads [38]] because there are
few actions with a total duration less than 10 frames. There
are several baseline methods to be considered: (1) Vanilla
frame-wise classification based methods ASFormer [51]]
extract keypoints from frame-wise predictions. (2) AS-
Former+ASRF [13]] directly uses cross-entropy loss to train
the classifier of boundary points. (3) Keypoints Generator
(KG), with or without the Refinement Stage (RS) via graph
matching module. As in Table[6] KG achieves better per-
formance than cross-entropy based ASRF [13] and vanilla
baselines. The significantly improved quality of keypoints
means that RTK predicts and refines precise boundaries of
temporal actions, consistent to the analysis in Section
Some of the over-complete keypoints will be deleted by RS,
which slightly damages the recall of keypoints. However,
the keypoint accuracy gains significant improvement in the
overall result, which is also under an accuracy-recall trade-
off.

4.7. Comparision with existing methods

As shown in Figure E} RTK is better than HASR [1]
and Br-prompt [21]] in modeling the structural relation-

Table 8: Complementarity of RTK and HASR [1]] using AS-
Former [51]] on GTEA dataset.

ships between temporal actions. In Table [§] HASR [1]] and
RTK (both using ASFormer [51]] backbone) both model the
action-level relationships and RTK performs better with all
metrics. Moreover, RTK can be further improved with Br-
prompt [21] high-level features, which is shown in Table

4.8. Learnable Parameters and Computational Cost

Due to the simplified Decoders in ASFormer [51]] back-
bone network and shared keypoints generation heads, the
parameters and computational complexity of RTK are com-
parable to the baseline method, shown in Table E} As a
result, the memory cost of RTK is also smaller than AS-
Former [51].

5. Conclusion

This paper describes a temporal segmentation frame-
work via refined temporal keypoints to address a suite of
research challenges in human action segmentation. Our
technical solutions intrinsically segment actions as multi-
ple keypoints and leverage the contextual embedding of
the sparse keypoints from graph matching models to ef-
fectively guide the action segmentation process, which
improve the accuracy and increase fine-grained structural
awareness. Extensive experiments on several challenging
datasets, as well as comprehensive quantitative evaluations,
have demonstrated the superior performance of our method.
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