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ABSTRACT

Cross-modal hashing for efficient visual-text search has at-
tracted much research enthusiasm in recent years. The main
argument of this work is that existing hashing methods mainly
exploit a multi-label matching paradigm, ignoring various
fine-grained semantics (high-order relationships, object at-
tributes, etc.) in the multi-modal data. This paper explores
cross-modal hashing from two rarely-explored aspects: first,
we propose an efficient two-step hashing scheme that quickly
screens irrelevant samples with global feature and then gener-
ate fine-grained feature guided by high-order concepts to re-
rank the survived candidates. Secondly, the robustness of the
cross-modal hashing model, particularly under subtle tamper-
ing of fine-grained queries, is formally investigated. We pro-
pose a rephrase and adversarial training strategy for obtaining
better performance and robustness. Comprehensive experi-
ments and ablation studies on two large public datasets (MS-
COCO and Flickr30K) demonstrate the proposed method’s
superiority in terms of both efficiency and accuracy.

Index Terms— Cross-modal Retrieval, Hashing, Adver-
sarial Learning, Fine-grained Search

1. INTRODUCTION

With the popularity of Internet and social media, differ-
ent kinds of large-scale multimedia data have become om-
nipresent on the Internet. Meanwhile, to mine the potential
value in data and improve search engine’s efficiency, cross-
modal retrieval (CMR) has become a compelling topic in
recent years. CMR aims to search semantically similar in-
stances in one modality using a query from another modality
(e.g., image to text). Since different modality instances come
from heterogeneous data sources with different distributions,
it has posed new challenges to efficiently and effectively unify
different modalities and bridge their semantic gaps.

This work mainly focuses on efficient cross-modal re-
trieval of text and images with complex and fine-grained se-
mantics. A common practice is to bridge the modality gap
via representation learning. Specifically, the goal is to learn

∗Corresponding author.

Fig. 1. Illustration of the drawbacks of existing cross-modal hash-
ing methods that essentially follow a multi-label matching paradigm.
They tend to over-rate images that contain key objects mentioned in
the queries (see the column of False Result), yet failing to capture
fine-grained attributes or high-order relationships.

optimal projections for different modalities into a common,
modality-agnostic embedding subspace where the similarity
between two samples can be directly calculated via simple
metrics (e.g., cosine similarity or Euclidean distance) [1].
Profiting from recent advance of deep learning, modern cross-
modal retrieval methods have been characterized by the use
of CNN for image and RNN for text [2, 3, 4]. Attention
mechanism was also widely tailored into this task in some
recent works [5, 6]. However, these methods are often heavy-
weight in computations, and the attention must be executed in
the runtime, which makes data indexing infeasible and brings
slow response in a large-scale retrieval system.

To solve that, a large number of hashing methods [7, 8, 9]
have been proposed in recent years. By representing instances
as binary hash codes and using Hamming distance to mea-
sure the semantic similarity, hashing-based retrieval systems
can use bit operations to efficiently calculate the similarity
between instances in a large-scale candidate set, consuming
much smaller storage space. Existing cross-modal hashing
methods either harness human-annotated semantic labels (e.g.
80 class labels in MS-COCO dataset) as in [10, 11], or uti-
lize co-occurrence information of the input image-text pair as
in [12]. Essentially, they represent the textual modality by
some multi-label format and cast cross-modal hashing into
a paradigm of multi-label matching. We strongly argue that
this widely-adopted paradigm is incapable of capturing the
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fine-grained semantic information in the multi-modal data.
Figure 1 illustrates several complex natural language queries.
As shown, simple multi-label setting tends to lose the high-
order relationships between objects (e.g., man-ride-horse in
the third example) and the attribute or numeral information
(e.g., green-shirt and a-woman in the second example), which
may lead to sub-optimal results.

This work represents the first attempt of its kind on fine-
grained cross-modal retrieval in the hashing field. We ar-
gue that existing hashing methods essentially rely on match-
ing a pre-specified set of tags (i.e., objects), thus failing to
capture most fine-grained semantics in the images and texts.
To ensure the retrieved results consistent with human cogni-
tion, one may expect fine-grained high-order semantics (such
as attributes and object-predicate-subject type information)
can also be preserved during cross-modal indexing and re-
trieval. However, rich information means longer codes and
lower retrieval efficiency. To attack such issues, we design a
two-step cross-modal hashing method, consisting of prelim-
inary screening and fine-grained re-ranking. Specifically, a
shorter hash code is first generated based on coarse global
features, quickly filtering out semantically irrelevant candi-
dates from large reference sets and leaving a shortlisted set
of high-confident candidates. After that, transformer encoder
and bottom-up visual attention mechanism are combined to
encode fine-grained semantic information in text and images,
respectively, obtaining longer, fine-grained binary codes. The
candidates that survive in the previous filtering step are fur-
ther re-ranked, leading to more accurate results.

In addition, our work also formally investigates the ro-
bustness of cross-modal hashing models and explores an
adversarially-learned scheme. As reported by [13], due to
the modern median-sized cross-modal dataset, existing mod-
els tend to suffer from data bias, which will greatly affect the
model’s generalization ability and robustness. When facing
the adversarial attack, as proved in [14] existing methods are
often fragile and vulnerable. To solve this, we propose two
approaches to enhance the model. First, a novel scheme is de-
vised to automatically generate adversarial samples for each
sentence to form an adversarial setting, which forces the text
encoder to distinguish sentences with small text editing dis-
tance and thereby increases their sensitivity to fine-grained
semantic information. Second, we develop a protocol to gen-
erate rephrasing sentences to expand the original text library’s
diversity and mitigate the data bias. Our contributions can be
summarized as below:

1. We explore the fine-grained semantic matching prob-
lem for the first time in the visual-text cross-modal hashing
field. A two-step strategy is developed to establish a compet-
itive baseline for this novel task setting.

2. We introduce a rephrase-based augmentation strategy
and adversarial learning paradigm in the training procedure,
which further enhance the proposed model’s performance and
robustness.

2. RELATED WORK
Cross-modal hashing [15, 16] has been researched in the com-
puter vision field for many years. Traditional methods vary in
the learning criteria, including the minimization of the recon-
struction or quantization error [17, 18], or similarity preserva-
tion with graph-based constraint [19]. With the development
of deep learning technology, [20] utilized neural networks to
encode different modality data, [10] adopted the metric learn-
ing framework to reduce the semantic gap. However, these
existing methods only focus on coarse concept correlation,
but fine-grained higher-order semantic information is not ex-
plored.

To accomplish fine-grained retrieval, some researchers in
the semantic matching field tried to encode the images or text
into continuous embedding vectors and calculate the similar-
ities according to the Cosine or Euclidean distance in some
common space [21, 2, 22]. In recent years, cross atten-
tion [23] and graph convolution [6] have also been introduced
into this task to achieve more precise matching. Nevertheless,
these methods are often heavy-weight in computations. Our
method can achieve comparable performance but in a much
more efficient way.

3. PROPOSED METHOD
3.1. Problem Formulation
Our method aims to encode multi-modal instances as hash
codes and project them into a common space for efficient re-
trieval by the hamming distance. Given a dataset that contains
a set of images V and caption texts T, we utilize the image-
text pair information provided by the annotations to supervise
the learning procedure.

To tackle large data, we propose a two-step strategy with
primary screening and fine-grained re-ranking. The former
extracts the global information of images or texts and encodes
into a relatively short length code (e.g. tens of bytes) and filter
out most irrelevant samples, which significantly reduces the
search space. Then, for each survived candidate (200 samples
in our experiments), we further harness some fine-grained and
high-order semantics to learn a re-ranking model to get longer
hashing code in order to be sufficiently discriminative. More-
over, rephrased and adversarial sentences are also generated
and included during training to further improve the model per-
formance and robustness. Figure 2 illustrates the entire frame-
work.
3.2. Primary Screening
Efficiency is the focus of consideration in this step. Global
visual or textual features are supposed to be sufficient to filter
out a large number of irrelevant samples.

Global visual encoder. Let v be a raw input image in the
dataset V, we utilize a ResNet50 pre-trained on ImageNet as
the global visual feature extractor to get the feature map fgv .

Then it is compressed with a pixel-wise average pooling
layer and passed to feature projection layers (implemented by
MLP) to get a global semantic embedding egv . A tailored bit-
balanced hashing layer Hash(·) is followed to read egv and
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Fig. 2. The architectural diagram of our model. Note that the text encoders in primary screening and fine-grained re-ranking are the same
architecture but with different parameters and output dimensions. Zoom in and view in color for better details.

produces a global visual binary code bgv:
vm = med(softmax(e)), b = sign(e− vm), (1)

where med(·) represents the median function. During train-
ing sign(·) is approximated by tanh(·) for differentiation.

Global textual encoder. For text encoding, unlike most
previous methods that only use bag-of-words or TF-IDF fea-
tures as input and fully connected layers as the encoder, we
expect the encoder can retain accurate and contextual seman-
tic information in the text. We decide to borrow BERT [24]
to mine the complex semantic context and produce the global
textual embedding egt . Then, the same bit-balance hash func-
tion as described in Eq. 1 is adopted to produce the textual
binary code bgt . The text encoders in primary screening and
fine-grained re-ranking have the same architecture but with
different parameters and output dimensions. We will explain
the detailed computation procedure in the next section.
3.3. Fine-grained Re-ranking
The hash codes obtained in the previous stage can only reflect
global semantic information, which is not enough when fac-
ing complex queries. Therefore, more refined and longer hash
codes bfv , b

f
t are required to explore the higher-order semantic

information and achieve more accurate matching results.
Image fine-grained encoding. In order to obtain more

refined visual semantic information, we need to find some
meaningful regions or objects in the image and then ex-
plore the potential internal relations or attributes. Specifically,
bottom-up-attention [25] is firstly employed to produce a se-
ries of salient regions and object proposals, with each rep-
resented by a pooled ROI feature ri. To further refine the
obtained features, a multi-heads self-attention mechanism is
then applied to explore the relationship between objects and
the higher-order semantic information.

Similar to the Transformer model [26], the self-attention
layer is comprised of multi-head self-attention sub-layer
MultiHead(·) and position-wise feed-forward sub-layer
FFN(·). Residual connections followed by layer normaliza-
tion are also applied around each of two sub-layers, through
which semantic information can be propagated to higher lay-
ers. Computation details are explained in supplementary ma-
terials.

Assume we have a set of ROI features and forms as a ma-
trix MR = [r1, · · · , rnr

] ∈ Rnr×df where nr is the number
of proposals, and df is the dimension of ROI feature vectors.
The matrix is fed into a multi-head self-attention layer to ex-
tract high-order and interactive information between objects.
Residual connection and layer-norm are followed to get the
context feature output Ov = [ov1; · · · ; ovnr

] ∈ Rnr×df :

Ov = LayerNorm(MR + (MultiHead(MR))). (2)

Then, the position-wise feed-forward network and layer nor-
malization are applied to further adjust and encode the high-
order information, whose output is:

zvi = LayerNorm(ovi + FFN(ovi )), i = 1, · · · , nr. (3)

After getting a set of high-order continuous representations
[zv1 , · · · , zvnr

], average pooling is adopted to aggregate the
representations into a compact embedding efv = 1

nr

∑nr

i zvi .
Then same hashing function described in Eq.1 is applied to
get a visual fine-grained bit-balanced binary code bfv .

Text fine-grained encoding. Given a sentence t, it is to-
kenized to a set of word tokens and represented as a sequence
of 1-hot vectors. Then each of the tokens is feed into a pre-
trained BERT encoder to obtain a series of contextual embed-
dings Z = {z1, · · · , znt}, where nt is the number of tokens.

To further exploit the local context information of the se-
quential features, we adopt 1-dim convolutional neural net-
works and applied three kinds of kernels to explore uni-gram,
bi-gram, and tri-gram information in the sentence, respec-
tively. For the kth embedding in the sequence, the output of
kernel size s is:

ps,k = ReLU(Conv1Ds(zk:k+s)), s ∈ {1, 2, 3}, (4)

Zero-padding is applied to keep the length consistent. Choos-
ing s ∈ {1, 2, 3}, an element-wise max-pooling is adopted to
get a fixed length output qs = max{ps,1, · · · , ps,nt

}. The
obtained three feature vectors q1, q2, q3 are then concatenated
together and passed to a feature projection layer to get the
text continuous embedding eft . Also, the bit-balance layer is
followed to produce the final binary code bft .

The optimization of the distance between bfv and bft is pi-
loted by cross-modal consistency. More details are deferred
to the section “joint learning paradigm”.

3
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3.4. High-order Concepts Guidance
While simple distance constraint cannot get a good enough
code representation, we hope the obtained code also have
sufficient high-order and fine-grained semantic modeling ca-
pabilities. As we argued, most previous methods only
tend to utilize the human-annotated low-level tag informa-
tion to supervise the training procedure, which can not cap-
ture the full semantics of a complex text. Thus we fur-
ther leverage high-order phrases (relationship triplets and at-
tribute tuples) to offer a comprehensive semantic understand-
ing beyond tags. Specifically, after getting the fine-grained
code bft , we further designed a concept prediction mod-
ule (CPM) to model the higher-order semantic contained in
it. To achieve this, we parsed all captions in the training
set and constructed a concept library not only containing a
set of low-level nouns but also higher-order concepts (e.g.,
〈apple〉, 〈red, apple〉, 〈apple, on, table〉 for “a red apple is on
the table”) to supervise the training procedure. The construc-
tion details are described in supplementary materials. Given
bft , a Multi-layer Perceptron (MLP) network and Sigmoid
function are stacked to formulate the CPM and produce the
concept prediction vector X .

X = σ(MLP (bft )), X = {x1, · · · , xK} ∈ {0, 1}K , (5)

where K is the predefined concept numbers, and σ is the sig-
moid activation function. The obtained prediction is com-
pared with the corresponding ground truth Y , thereby enhanc-
ing the semantic modeling ability of the hash code.

3.5. Rephrased & Adversarial Learning
Besides, due to the inevitable bias in the dataset (e.g., two ob-
jects may co-occur with each other in most cases like table
and plate) and limited scale, we found the learned sentence
encoders usually pay attention to only part of the sentence
(e.g., high-frequency keywords) thus ignore other useful in-
formation. To tackle this issue, we propose a rephrased-based
data augmentation strategy and an adversarial learning mech-
anism to force the encoder to reflect subtle deviations from
the fine-grained meaning of the text data.

For each sentence t, we generate two kinds of correspond-
ing augmentation samples. Specifically, one is sentences with
subtle modification from the source (e.g., replacing the ob-
ject nouns, attributes, or changing the relationship in t to pro-
duce different semantics), we called them adversarial sam-
ples and note as tadv . While the other kind is the rephrase
sentences (e.g., replacement of synonyms or restatements to
keep same semantics) which are denoted as trep. We dis-
play some examples in the peach box and light blue box in
Figure 2 and explain the detailed generation procedure in the
supplementary materials. Note bfa and bfr as the codes of tadv
and trep respectively. Intuitively, we expect the model is sen-
sitive enough and distinguish the subtle difference between
the original sentence and the adversarial samples, which will
help the learning of fine-grained semantics. Thus, the dis-
tance between bft and bfa should be sufficiently large. On the

other hand, to avoid the model converging to a limited num-
ber of high-frequency keywords, the distance between bft and
bfr should be close enough.
3.6. Joint Learning Paradigm
Let bv denote the binary code of image v, and bt denote the
code of text t. While bfa,i represents the binary code of tadv,i
and bfr,j represents the binary code of trep,j .

To constrain the score distance between positive and neg-
ative pairs, a bi-directional triplet ranking loss with hard ex-
ample mining strategy is adopted in the training process. For
a positive pair (v, t), the triplet loss can be formulated as:

Ltrip(v, t) =max[0,m1 − s(bv, bt) + s(bv, b
′

t)]

+max[0,m1 − s(bv, bt) + s(b
′

v, bt)],
(6)

where m1 = 0.2 is the margin parameter, s(·) is the sim-
ilarity function which is instanced by cosine similarity, b

′

t, b
′

v

denote the hardest negative sentence and image for v and t in
the mini-batch respectively.

Besides, as mentioned above, to ensure the distance be-
tween bfa and bfv larger than the ground-truth pair, and bfr close
to bft , we further define the adversarial loss and rephrase loss
in the following way:

Ladv(v, t, tadv) =

ni∑
i=1

max[0,m2 + s(bfa,i, b
f
v )− s(b

f
t , b

f
v )],

Lrep(t, trep) =

nj∑
j=1

(1− s(bft , b
f
r,j)),

(7)
where, ni, nj are the quantity for adversarial and

rephrased sentences, respectively, m2 = 0.5 is a margin
hyper-parameter to penalize the adversarial pairs.

A multi-label cross-entropy loss is further adopted to read
the predicted concept label X and ground-truth labels Y to
supervise the high-order concepts learning.

Lcon = − 1

K

K∑
c=1

[yc · log(xc) + (1− yc) · log(1− xc)],

(8)
where xc and yc are the predicted and ground-truth label for
the cth concept.

We synthesize all above loss functions, leading to the final
loss formulation:

L = λ1Ltrip + λ2Ladv + λ3Lrep + λ4Lcon, (9)
where all λs are hyper-parameters. We train the screen model
and re-ranking model separately with full training set, and
λ2,3,4 are set to zero when training the screening model. In the
inference phase, we replace s(·) with the hamming distance
to measure the similarity between two binary codes.

4. EXPERIMENTS
4.1. Datasets and Experiments Settings
We chose two public datasets for evaluation. MS-COCO [29]
is a large-scale dataset containing 123,287 images, and each
image annotated with five text descriptions. We follow [5] to
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Table 1. Comparison with state-of-the-art hashing methods.
Models Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10
Results on MS-COCO

DCMH[27] 4.0 17.0 29.0 4.0 14.0 27.0
CMHH[8] 5.0 8.0 24.0 4.0 15.0 20.0

SCAHN[28] 19.0 47.0 67.0 17.0 48.0 68.0
DJSRH[12] 51.0 86.0 93.0 41.0 85.0 93.0
S(256bit) 60.0 91.0 94.0 60.0 91.0 94.0

R(2048bit) 62.0 92.0 96.0 56.0 90.0 95.0
S+R 69.0 94.0 99.0 61.0 92.0 99.0

Models Results on Flickr30K
DCMH[27] 2.0 6.0 12.0 2.0 8.0 9.0
CMHH[8] 2.0 6.0 12.0 3.0 9.0 17.0

SCAHN[28] 3.0 13.0 24.0 3.0 11.0 21.0
DJSRH[12] 25.0 57.0 68.0 29.0 55.0 66.0
S(256bit) 58.0 88.0 94.0 60.0 89.0 94.0

R(2048bit) 70.0 91.0 96.0 62.0 93.0 95.0
S+R 74.0 93.0 96.0 72.0 95.0 96.0

prepare the training, validation, and testing set. All images
are split into three parts which contain 113,287, 5,000, 5,000
samples, respectively. The testing results are reported by av-
eraging over five folds of 1,000 test images. Flickr30K [30]
contains 31,783 images collected from the Flickr website also
with five captions each. We followed the split in [2] and [31]
that used 1,000 images for testing and 1,000 images for vali-
dation. The rest are used for training.

For evaluation metrics, we argue the commonly used
mean Average Precision (mAP) in the hashing field is based
on a multi-label scheme, which is not sufficient to reflect the
model performance in the fine-grained scenario (with com-
plex attributes and relations). So we propose to follow the
common practice in the cross-modal matching field and mea-
sure the performance by recall at top-K (R@K), which is de-
fined as the fraction of queries for which the ground-truth item
is retrieved in the closest K points to the query. K is set to 1,
5, and 10 in all experiments. We present more implementa-
tion details in the supplementary materials.
4.2. Comparisons with State-of-the-art Methods
We first compare with four state-of-the-art and open-source
cross-modal hashing methods on two benchmarks. We fol-
low [9] and randomly select 10,000 samples to form the train-
ing set. Due to the poor performance of the baseline meth-
ods, we only report the results on a test set with 100 sam-
ples, which is shown in the upper part of Table 1. We first
present the results of only using the screening model and
only the rerank model (noted as “S” and “R”), and also report
the results of re-ranking after the primary screening (noted as
“S+R”). It is clear that even the screening model dominates
all the baseline methods in all indicators. This also shows
previous hashing methods are basically unable to handle fine-
grained queries with complex semantics.

For better evaluation, we also compare with several
powerful continuous embedding-based cross-modal matching
methods and achieve state-of-the-art performance, which are
shown in the supplementary materials.
4.3. Adversarial Attack in Sentence Retrieval
To evaluate the proposed method’s robustness, we select the
fine-grained reranking model (2048bit) and attack it by ad-
versarial samples in the sentence retrieval scenario. We first

extend each caption with 30 adversarial samples (10 noun-
typed, 10 numeral-typed, and 10 relation-typed). Therefore,
each image has 30×5 contrastive adversarial samples in total.
The candidate retrieval set for each image now becomes 5000
+ 150. We design four kinds of adversarial learning proto-
col: noun-type, numeral-type, relation-type, and mixed-types.
Under each specific kind, we use 10 corresponding type ad-
versarial samples for each sentence in the training phase. Be-
sides, we also use all the 30 samples in the mixed setting.
Results are shown in Table 2.

Comparing the results without attack (the 1st row in Ta-
ble 2), the reranking model has a noticeable performance drop
in each indicator, especially when facing the relation-type at-
tack, the R@1 drop 54.9 points (64.4→ 9.5). In comparison,
the drop on the noun-type attack is much more slightly, which
shows that the model tends to focus on frequent key nouns
and ignore the exploration of potential higher-order semantic
information (i.e., relationships).

Nonetheless, when we added some adversarial samples in
the training process, the situation clearly improves. It demon-
strates that the proposed adversarial learning strategy can sig-
nificantly improve the model robustness. Overall, training the
model with one type gains the best performance on robustness
against the adversarial attack of the type itself. Training with
relation-typed adversarial samples helps improve the robust-
ness against a noun-typed attack, which suggests the neces-
sity to explore higher-order information in the cross-modal
retrieval field. We can also find that using more adversarial
samples in the training procedure helps the model to obtain
better robustness and accuracy on top1 results when facing
all kinds of attacks.
4.4. Ablation Study
To explore the effectiveness of the proposed rephrased sen-
tences and high-order concepts, we conduct ablation experi-
ments on the Flickr30k dataset. We choose the rerank models
with output lengths of 1024bit and 2048bit as the basis and
sequentially subtract the rephrase data and concept prediction
branch from them. From the results in Table 3, we can clearly
find that the model’s performance and generalization ability
have decreased in most indicators without the rephrased train-
ing samples and high-order concepts guidance.

We also explore the effect of code length on the retrieval
result, deferred to the supplementary materials.
4.5. Efficiency Evaluation
To evaluate the retrieval efficiency of the proposed method,
we select three representative and open-source embedding-
based image-text matching methods for comparison. We use
a database containing 100,000 samples as a benchmark and
record the total time cost for 5000 queries to rule out sam-
pling randomness. We also calculate the storage space re-
quirement. We report the encoding time of the query data and
the retrieval time in the database separately. The results are
shown in Table 4. It can be found that our proposed screen
model has greatly improved retrieval efficiency and reduced
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Table 2. Detailed results on each type of adversarial attack for sentence retrieval scenario on Flickr30K. ‘Mixed’ represents using all three
kinds of adversarial samples. +Mixed adv10 means randomly select 10 adversarial samples for each sentence in the training process.

Models Noun adversarial Num adversarial Rela adversarial Mixed adversarial
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Rerank(W/O Attack) 68.2 93.5 97.5 54.5 86.5 93.4 64.4 86.6 92.9 44.9 75.2 84.4
Rerank(With Attack) 33.9 74.9 89.3 31.3 65.3 82.5 9.50 43.3 77.8 6.30 27.5 53.6

+Noun adv 52.1 79.3 87.6 27.9 61.5 78.9 16.5 61.8 82.1 10.3 43.8 69.2
+Num adv 29.6 71.2 86.4 58.3 83.7 90.6 8.40 40.9 73.4 6.00 30.8 62.5
+Rela adv 40.0 76.4 87.0 26.3 62.1 78.5 49.6 80.2 88.6 20.5 57.1 75.5

+Mixed adv10 49.2 81.0 88.8 50.1 81.6 89.1 44.3 80.7 89.1 40.3 79.5 88.6
+Mixed adv30 51.9 79.1 88.3 51.6 79.3 88.3 49.1 78.7 88.1 43.9 79.8 88.4

Table 3. Ablation study results on Flickr30K.
Models Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10
Full Rerank(2048bit) 64.4 86.6 92.9 44.9 75.2 84.4

-Rephrase 62.1 87.3 92.7 44.1 74.7 83.4
-Concepts 60.7 86.1 92.7 44.2 74.9 83.9

Full Rerank(1024bit) 62.3 86.7 93.4 43.1 74.0 83.4
-Rephrase 60.0 85.6 91.9 42.6 72.7 81.8
-Concepts 57.2 83.8 91.2 42.2 73.1 82.0

Table 4. Retrieval efficiency comparison, Tenc, Ienc represent the
encoding time for texts and images, respectively. ”Search” shows
the time cost to rank all the results. All experiments are conducted
on a Linux server with one NVIDIA TITAN-X GPU and two Intel
Xeon E5-2697-v4 CPUs.

Methods Tenc (S) Ienc (S) Search (S) Storage (MB)
Screen(256bit) 6.055 11.74 32.17 3.052

Rerank(2048bit) 6.157 410+1.991 374.2 24.41
Screen+Rerank 12.21 423.7 32.17+1.34 27.46

VSE++(1024dim)[2] 0.527 15.62 1682 390.6
CMPM(512dim)[32] 0.646 21.41 877.1 195.3
SAEM(256dim)[5] 6.788 410+0.926 465.3 97.65

storage requirements compared to previous methods. For ex-
ample, the search efficiency has improved by 52 times com-
pared to VSE++ [2], while storage requirements reduced by
127 times. It should be noted that the 410s time in the image
encoding part is cost by Faster-RCNN to extract ROI features.
If it is replaced with a faster object detector, the efficiency will
be further improved. The 1.34 second in the third row is the
re-ranking time on the top 200 screened candidates.

5. CONCLUSION
In this work, we first explored the importance of complex
queries, fine-grained semantics, and higher-order information
in the hashing field. The well-designed two-step retrieval
paradigm retained high accuracy while effectively improving
retrieval efficiency. The novelly generated rephrase sentences
and adversarial sentences further improved the model perfor-
mance and robustness. Abundant ablation studies illustrated
the effectiveness of all the devised components and strategies.
Comprehensive experiments on two datasets suggested our
method’s superiority in both efficiency and accuracy.
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