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ABSTRACT
Crowd counting has been a long-standing task in surveil-
lance video analysis. Most of existing methods focus on a
single-view setting. Crowd counting with multiple views can
provide richer and complementary information across views.
However, the task is still inadequately explored in the liter-
ature. Previous works have attempted either to project each
camera view onto a common geometric 2-D ground-plane and
estimate crowd density map through aggregation [1], or set
up connections among all pixel pairs [2]. However, regis-
tering a local view to the global ground-plane is error-prone
and fails to explicitly model the critical inter-view correla-
tion. Full inter-pixel connections inevitably lead to explo-
sion of parameters. To solve these problems, in this paper,
we propose an efficient module that effectively does the job
of cross-view fusion by directly modeling the correlation be-
tween each pair of views. More specifically, to distill and
transfer all useful information from multiple sources views
to a target camera view, we factorize the full transformation
into a generic-fusion component that encodes all geometric /
semantic information of this target view, and a view-specific
affine-transform component that encodes the scene geometry
/ semantics cues of specific source view. This factorization
significantly reduces the parameter redundancy and enables
plug-and-play of new cameras. Extensive experiments on
three multi-view counting datasets (PETS2009, DukeMTMC,
and CityStreet) clearly and consistently demonstrate the supe-
riority of the proposed method.

Index Terms— Scene Analysis, Multi-View Crowd
Counting, Cross-View feature fusion, Neural network

1. INTRODUCTION

Crowd counting aims to count people in surveillance images
or videos. It is of great practical importance in many applica-
tions such as crowd management, public safety, traffic moni-
toring or urban planning [3]. A popularly-adopted method in
crowd counting is estimating a crowd density map using deep
neural networks, as demonstrated in [4, 5, 6]. Nonetheless,
most of existing works operate in a single-view setting, ignor-
ing the correlation among different cameras. Indeed, cross-
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Fig. 1. Illustration of the benefit of the common region from an-
other camera view. Arrow with the same color indicated the same
pedestrians in different views. It can be seen that areas that are diffi-
cult to see clearly in one view are easy to see in another view. Zoom
in and viewed in color for more details.

view crowd counting is highly demanded in many scenar-
ios, since single-view images are intrinsically not suitable for
tackling large wide scenes or scenes with many occlusions.

This work aims to develop a new method for fusing mul-
tiple camera views with overlapped field-of-views for im-
proved estimation of crowd count in complicated scenes.
Early development of multi-view counting mostly relies on
foreground extraction and hand-crafted features, leading to
inferior performance. More Recent works adopt convolu-
tional neural networks (CNNs) as the main workhorse. For
example, the work in [1] projects features from all views into
a common 2-D ground plane and conducts feature fusion for
obtaining a 2-D density map. [7] takes height into account
and instead utilizes a 3-D space for fusing different camera
views. In above methods, partial supervision will stem from
the consistency among the projected camera views.

We here argue that widely-used common ground-planes
in existing methods may not be optimal choices for conduct-
ing cross-view fusion. Registering a local view to the global
ground-plane is prone to errors and does not explicitly model
the critical inter-view correlation. Instead, this work tries to
directly harness the correlation between a pair of views. Some
motivating cases are found in Fig. 1. As seen, in many cases
the crowd information is vague in a view and clearly observed
in another view. The fusion of both views can intuitively bring
enhanced counting performance.

The idea of explicit view-to-view fusion has rarely been
explored in the task of crowd counting. There are tightly-
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related works in some other computer vision tasks, such as
cross-view human pose estimation [2]. In specific, [2] es-
tablished parameter-controlled connections between any two
pixels of two views, which amounts to tremendous parame-
ters to be learned. In this work, we propose a significantly
more efficient view-to-view fusion scheme. For each camera
view (i.e. a target view), our model is comprised of a generic-
fusion component only dependent on the target view and
some affine transformations which vary across other views
to be fused (i.e. source views). Intuitively, the generic-fusion
component encodes all geometric / semantic information of
a target view. The affine-transform component parameterizes
the conversion across views, encoding scene geometry, se-
mantics and all other relevant cues. Such decomposition en-
ables the plug-and-play of new cameras. Namely, when more
cameras are added, they can be immediately fused into other
views once the affine-transform components are learned.

To validate the proposed model, we conduct compre-
hensive evaluations on three crowd-counting benchmarks:
PETS2009, DukeMTMC, and CityStreet. Our method con-
sistently outstrips all competitors by large margins, re-
calibrating the state-of-the-art performance. It is also worth
mentioning that our proposed method achieves a huge im-
provement in both the single view and the ground plane.

2. RELATED WORK

The task of multi-view counting [8, 3] has been studies for
years. Conventional relevant methods can be roughly divided
into three categories: 3D cylinder based methods [9] try to
find the position of people in the 3D scene by minimizing the
gap between the 3D position of the people projected into the
camera view and the single view detection, detection / track-
ing based methods [10, 11, 12] that first perform detection
or tracking on each scene respectively. Afterward, the view-
specific detection results are aggregated via geometric projec-
tion to a ground plane, and regression based methods [13, 14]
that first extract foreground segments from each view and then
use a regression model to predict the count number according
to segment-level features. The aforementioned methods often
lead to limited performance, partly owing to an error-prone
step that separates the crowd from scene background and the
use of hand-crafted features (rather than modern deep model-
induced neural features) in human detection or crowd count
regression.

Recent drastic advance of deep neural networks has in-
spired several multi-view counting methods that have the
traits of end-to-end parameter optimization and the use of
pre-trained deep features. For example, Zhang and Chan pro-
posed a DNN-based two-stage multi-view counting method
dubbed as MVMS [1]. In the first stage of MVMS, each cam-
era view separately extracts view-specific information (e.g.,
density map) and projects it onto a common ground plane
in the 3-D scene, using calibrated camera parameters. Next,
features from multiple views are pooled (or concatenated)

and go through some additional neural blocks for obtaining
scene-level density maps. More recently, Zhang et.al [15]
further proposed a new method by taking multi-height pro-
jection into account to improve the geometric correspondence
across views. Unlike [1], this method predicts a 3-D crowd
density map that encodes the distribution of the crowd in a
3-D space. Compared with conventional methods, both [1]
and [15] demonstrated large performance leaps. However,
these ground-plane based models heavily hinge on the local-
to-global geometric registration and are often ineffective in
tackling view-dependent occlusions, scale variation across
views etc. In this work, we learn to directly explore over-
lapped regions between two camera views.

3. OUR PROPOSED METHOD
In this section, we first describe the problem setting of multi-
view crowd counting, then overviews our proposed model. In
the last sub-section, we give a detailed description of cross-
view fusion, the key module of our proposed solution.

3.1. Multi-view Crowd Counting
We follow the setting of multi-view crowd counting as de-
scribed in [1]. For multi-view counting, the cameras are fixed
and the camera calibration parameters are known. Given a set
of multi-view images, the task aims to predict the number
of people in the entire 3D scene composed of these images.
[1] directly predicts a scene-level density map defined on the
ground-plane of the 3D scene. The ground-plane annotation
map is obtained using the ground-truth 3D coordinates of the
people, which is then convolved by a fixed-width Gaussian to
obtain the density map.

3.2. Our Proposed Model
Fig. 2 illustrates the computational flow of our proposed
cross-view crowd counting model. Images of each camera
view first pass through a convolutional neural network (CNN)
to obtain the crowd density maps. A second module in the
pipeline interacts with two camera views for cross-view en-
hancement. As a key improvement and technical contribution
of this work, we propose a new direct view-to-view fusion
scheme, which will be discussed in detail later. Finally, the
enhanced density maps of all views are projected into a com-
mon ground plane, where a learnable predictor is optimized to
generate the final crowd count. Below we detail the proposed
model except for deferring the cross-view fusion scheme to
Section 3.3.

Backbone network. In conventional single-view crowd
counting models, the feature-extracting backbone network is
often designed to be very complicated [16, 6, 17]. Since the
design of such backbone network is not the main focus of this
work, we follow previous common practice and directly use a
light-weight FCN-7 as our backbone network universally for
all views. Detailed neural architecture can be found in [1]
and omitted here. We only slightly tailor the input to be RGB
color images, rather than grayscale images as in [1].
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Fig. 2. The pipeline of our proposed model for the multi-view crowd counting problem. Each view corresponds to a unique camera, with all
intrinsics known. The pipeline is comprised of three sequential steps: view-specific density map estimation (via a light-weight CNN that reads
each image), cross-view fusion that enhances the initial estimations, and projection from each individual view to a common ground-plane,
where a crowd count is finally estimated.

Projection between camera-views and ground-plane.
After getting the density map of each view, we need to do
a projection between the camera view and the scene. Since
we already know the intrinsic and extrinsic parameters of the
cameras, the conversion process can be implemented by a dif-
ferentiable fixed-transformation module. Each pixel’s height
in the 3D world is assumed as a person’s average height (1750
mm). The camera parameters with the height assumption are
used to calculate the correspondence mapping P between 2D
image coordinates and the 3D coordinate, which can be im-
plemented as Spatial Transformer Networks [18].

Ground-plane density map predictor. Since the density
map is stretched during the projection step, an additional nor-
malization as described in [1] is employed to keep the sum
of the density map before and after the projection unchanged.
Normalized projected density maps are then concatenated and
fed to a small CNN to obtain the eventual scene-level density
map. For this small CNN, we follow the design of 3 convolu-
tional layers as in [1]

3.3. Cross-View Fusion
The idea of view-to-view fusion has not been explored in the
context of multi-view crowd counting yet. However, there
exist a few such endeavors in similar tasks, such as human
pose estimation [2]. In specific, [2] proposes a cross-view
fusion strategy that naively connects each pixel on view 1
with all pixels on view 2. Intuitively, this results in incredibly
large number of parameters and high computational cost. To
comprehensively demonstrate the superiority of our proposed
cross-view fusion scheme, we adapt [2] to the task of multi-
view crowd counting for comparison. Below we present
both [2] and our new idea that conducts improved cross-view
fusion by joining generic and affine-transformation compo-

nents.
Naive fusion strategy in [2]. Denote the point sets under

different cameras 1 and 2 as Z1 and Z2, respectively. The
features of view 1 and 2 at different locations are denoted as
F 1 = {x11, ..., x1|Z1|} and F 2 = {x21, ..., x2|Z2|}. The key to
establishing the feature interconnection between view1 and
view2 is the correspondence between the two views:

x1i = x1i +

|Z2|∑
j=1

wj,i ∗ x2j ,∀i ∈ Z1, (1)

where wj,i is a scalar parameter. In [2], determining the val-
ues for all wj,i for each pair of cameras is accomplished by
FCLs (Fully Connect Layers).

Geometrically, when a pixel i in view 1 and another
pixel j in view 2 correspond to the same 3D point in the
scene, they shall follow the constraint of epipolar geometry.
Namely, wj,i is generally positive for entries on the epipolar
line and zero otherwise, which indeed affects the feasible set
of wj,i. Nonetheless, our experiments reveal that the enforce-
ment of epipolar constraints suffers from high sensitivity to
the precision of camera calibration. Therefore we abandon
all geometry-induced constraints and let all wj,i freely opti-
mized in the implementation.

Critically this strategy adopts a full pixel-to-pixel connec-
tion and entails tremendous number of parameters (quadratic
with respect to image pixels) to be learned. When the input
image has high spatial resolution, the strategy will severely
suffer from the explosion of parameter count and also the
over-fitting issue on small data.

Improved cross-view fusion strategy. To reduce the
number of total learnable parameters, we factorize the cross-

3
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Table 1. Experiment results: mean absolute error (MAE) on three multi-view counting datasets. We list out the MAE of each camera
view as well as the whole scene. “scene” denotes the scene-level counting error. In addition to comparison to state-of-the-art methods, we
also implemented FCLs [2] and performed experiments on the multi-view crowd counting dataset for comparison. Best performances are
highlighted in bold.

Dataset PETS2009 DukeMTMC CityStreet
Camera 1 2 3 scene 2 3 5 8 scene 1 3 4 scene

Dmap weighted 3.37 5.59 5.84 8.32 0.62 0.91 0.98 1.41 2.12 10.16 12.55 21.56 11.10
Detection+ReID 8.60 1.19 14.61 9.41 2.06 0.25 0.96 3.58 2.20 41.38 32.94 28.57 27.60

Late fusion [1] 2.62 3.17 3.97 3.92 0.49 0.77 0.39 1.15 1.27 8.14 7.72 8.08 8.12
Naive early fusion [1] 2.37 4.27 4.92 5.43 0.64 0.44 0.93 1.72 1.25 8.13 7.62 7.89 8.10
MVMS [1] 1.66 2.58 3.46 3.49 0.63 0.52 0.94 1.36 1.03 7.99 7.63 7.91 8.01
3D counting [7] - - - 3.15 - - - - 1.37 - - - 7.54

FCLs [2] 1.77 2.74 3.56 3.40 0.52 0.78 0.36 1.12 1.02 7.67 7.49 5.50 7.71
Our method 1.66 2.36 3.41 3.08 0.46 0.73 0.42 1.10 0.87 7.38 6.85 5.18 7.08

view fusion module into two sub-modules: the generic fusion
model and light-weight affine transformations.

We set the current view as the target view and all other
views as the source view. Let wbase ∈ Rk×(H×W ) be the
parameter matrix of a generic fusion model, which connects
k pixels in a target view and all H × W pixels in a source
view (wbase only varies with respect to the target view and is
the same for different source views. We thus omit the view-
related indices unless otherwise notified). The information
transfer on the source view can pass the wbase to the k pix-
els of the target view. Because some regions in a view may
not be visible in another view or uninformative for the crowd
counting task, we choose k pixels instead of allH×W pixels.
It is worth mentioning that we randomly select k pixels from
all the pixels where people have appeared. For the choice
of k, we do a thorough ablation study in Section 4.3. Since
the geometry (position, orientation angle etc.) and scene se-
mantics of each camera are typically unique, an independent
generic fusion model is learned for each camera. To reduce
the number of total learnable parameters, we factorize the
cross-view fusion module into two sub-modules: the generic
fusion model and light-weight affine transformations.

Suppose the ith selected pixel in view 1 can find its corre-
spondence in an epipolar line I in view 2, which is encoded
by wbasei ∈ RH×W . If view 2 changes to 3, we can obtain the
epipolar line by applying an appropriate affine transformation
to I . This is equivalent to affine transformation to wbasei . We
can compute the corresponding fusion model for all k pixels
by applying affine transformations:

wadvi = T θi(wbasei ), i = 1, ..., k, (2)

where T is the affine transformation function, θi is the pa-
rameter of each selected pixel which can be learned from
data. Note that T is implemented by Spatial Transformer
Networks [18], which only requires six parameters. In other
words, the affine transform of all selected k pixels only needs
6×k parameters, which greatly reduces the number of param-
eters compared to the naive fusion strategy. A more detailed

analysis is conducted later. We learn different θ for different
camera pairs. It is worth noting that both wbase and θ are in-
variant to a specific image. When a new view is added, we
can learn θ using very little data and transfer the information
of that view to other views, because the number of parame-
ters of θ is very small. Since all cameras are assumed to be
fixed once mounted, all above-mentioned parameters need to
be calibrated once only.

After obtaining wadv , we can pass the information from
view 3 to selected k pixels on view 1. Other views will also
do the affine transformation, but the parameters used are dif-
ferent. After getting all the information from other views, we
concatenate them with the information of the current view.
The new feature is used to generate density maps on each
single-view and ground-plane, which are supervised by mean-
square error (MSE) loss.

Parameter Analysis. We set the number of cameras as
N , and the image on each camera has H ×W pixels. It can
be seen that the parameter of generic fusion is k × H ×W ,
and the parameter of each affine transform is 6 × k, so the
parameter of our method is N × k ×H ×W +C2

N × 6× k.
In contrast, the number of parameters of the original naive
model is C2

N × (H ×W )× (H ×W ), which is much larger
especially when N is relatively large.

4. EVALUATIONS AND EXPERIMENTS

4.1. Datasets and Evaluation
Datasets. To evaluate the proposed method, we fol-
low the dataset settings in [1] and compare our methods
on 3 public multi-view counting datasets, PETS2009 [19],
DukeMTMC [20] and CityStreet [1]. PETS2009 [19] con-
tains 3 views. There are 1105 and 794 images for training and
testing respectively. The input image is resized to 384 × 288
and the ground-plane density maps resolution is 152 × 177.
DukeMTMC [20] contains 4 views. The first 700 images and
the remaining 289 images are used for training and testing re-
spectively. The resolution of input images is 640 × 360, and
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Enhanced view Original view                 Single view result                 Multi-view result

a)

b)

Fig. 3. Multi-view enhanced visualization. It is difficult to predict accurately in the original view relying on a single view. But with the
enhancement of the features from the enhanced view, the model can accurately predict even people with several pixels. Zoom in and view in
color for more details.

Table 2. Ablation study on CityStreet dataset comparing the differ-
ent choice of k.

Camera 1 3 4 scene

k = 10 7.81 7.66 5.56 7.67
k = 50 7.46 6.80 5.26 7.45
k = 100 7.38 6.85 5.18 7.08
k = 200 7.41 6.68 4.95 7.32

160 × 120 for the ground-plane density maps. CityStreet [1]
consists of 3 views and 500 images in which the first 300 is
for training and the rest 200 is for testing. The resolution of
input images is 676× 380 and the resolution of ground-plane
density maps is 160× 192. The intrinsic and extrinsic param-
eters are estimated using a calibration algorithm from [21].

Evaluation Metric. Mean absolute error (MAE) is used
to evaluate the scene-level counting performance as well
as compare scene-level predicted counts and ground truth
counts. In addition, we also evaluate the MAE of the pre-
dicted counts in each camera-view.

4.2. Implementation Details

We add the cross-view fusion module to the entire model for
training. In the training process, the generic fusion model re-
mains the same for each view, while the affine transformations
are different in different camera pairs. We use multi-view data
to train the cross-view fusion module in an end-to-end fash-
ion, whose parameters are updated together with other param-
eters of the network.

A two-stage training process is applied to train the model.
In the first stage, the model is trained under the supervision
of density maps in each view together with the ground-plane
density map. All density maps are obtained by applying a
fixed-sized Gaussian kernel convolution on the ground truth.
In the second stage, the supervisory information of the single-

view density maps is removed and the backbone network is
fixed except the cross-view fusion and final crowd count pre-
dictor. The learning rate and batch size are set to 1e-4 and 1
without further empirical tuning in all experiments.

4.3. Quantitative Results

We design different comparison experiments to explore the
effectiveness of the module, including comparison with the
state-of-the-art methods and ablation study.

Comparison with the state-of-the-art. Table 1 shows all
comparisons conducted on three multi-view crowd counting
datasets. “Dmap weighted” fuses single-view density map
into a scene-level count with a view-specific weighted map,
which is adapted from [13]. “Detection + ReID” first detects
all humans in each camera-view and then associates the same
people across views. “Late fusion” model fuses density maps
to generate ground plane density maps. “Naive early fusion”
model fuses feature maps to generate ground plane density
maps; “MVMS” model fuses feature maps with a scale se-
lection module. “3D counting” model projects feature maps
into 3D space and supervises the training with projection con-
sistency measure loss. Besides, we also implement FCLs [2]
proposed in the multi-view human pose estimation task and
adapt it into our multi-view crowd counting task, denoted as
FCLs in Table 1.

As can be seen from the table, our method achieves su-
perior results on all three datasets. Especially in the City
Street dataset and PETS2009 dataset where people are rela-
tively dense, our method surpasses the state-of-the-art meth-
ods for both single views and ground plane. Since the CityS-
treet dataset has more people and a denser population than the
PETS2009 dataset, our model achieves significant improve-
ment compared with state-of-the-art. On the DukeMTMC
dataset, in which cameras 2, 3, and 5 are not related to each
other, the cross-view fusion method has almost no improve-

5

Authorized licensed use limited to: Peking University. Downloaded on November 22,2021 at 12:29:33 UTC from IEEE Xplore.  Restrictions apply. 



ment in these three views compared to the original late fusion
method. However, on camera 8, the areas that are originally
difficult to be observed on the picture are supplemented by
other cameras, thus the performance of the model is signif-
icantly improved. Detection+ReID achieves the best results
on camera 3 in the DukeMTMC dataset because this camera
is almost parallel to the horizontal and has a low count, which
is an ideal scene for the detector.

Ablation study. We conduct an ablation study on the
CityStreet dataset, which is also the most densely populated
dataset. The columns of Table 2 show the results of using
different k in generic fusion model. Because the input im-
age resolution is small, and the image is down-sampled three
times by the model, the value of k we choose is also relatively
small. It can be seen that as k increases, the crowd counting
performance of the model becomes better. When k reaches
a certain level, the performance of the model does not con-
tinue to become better as k becomes larger but even worse
on part of the view and ground plane. However, with an in-
crease of k, the parameter amount and calculation amount of
the model increases. For the trade-off of model speed and
accuracy, we need to choose an appropriate k. In our experi-
ments, we choose k = 100.

4.4. Qualitative Results

To prove that the model has learned relevant information from
other views to improve the crowd counting prediction of the
current view after employing the cross-view fusion module
we designed, we visualize the density map output from the
last layer of the network for several representative examples,
as shown in Fig. 3.

As seen, some people are only visible at limited number of
pixels in the video frames. It is insufficient to use single-view
image for precisely counting such people. Through perform-
ing cross-view fusion, features that are obtained from other
angles of view are used to enhance the current view, helping
improve the accuracy of the prediction under the current view.
When the prediction on each view is more accurate, it is ob-
vious that more accurate information can be obtained on the
ground-plane.

5. CONCLUDING REMARKS
In this work, we propose a novel method for learning hu-
man crowd counting in a multi-view scenario. Our key idea
is utilizing the common region constraint between different
views to solve the problems of occlusion and long-distance
blurring in cameras, which enhances the feature maps in ev-
ery single view and further improves the performance on the
ground plane. We evaluate the proposed method on three pub-
lic datasets and conduct several ablation studies. Strong evi-
dence is observed to demonstrate its effectiveness and superi-
ority. Acknowledgement: This work is supported by National
Key R&D Program of China (2020AAA0104400), National

Natural Science Foundation of China (61772037) and Beijing
Natural Science Foundation (Z190001).
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