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Abstract
This paper introduces a deep model water-
mark with an irreversible ownership verification
scheme: Trapdoor Normalization (TdN), inspired
by the trapdoor function in traditional cryptogra-
phy. To protect intellectual property within deep
models, the proposed method is able to embed
ownership information into normalization lay-
ers during training. We argue and empirically
validate that relevant methods are vulnerable to
ambiguity attacks, where the forged watermarks
can cast ambiguity over the ownership verifica-
tion. The primary trait that distinguishes this work
from previous ones, is its design of a bidirectional
connection between watermarks and deep mod-
els. Thereby, TdN enables an irreversible owner-
ship verification scheme that is difficult for the
adversary to compromise. In this way, the pro-
posed TdN can effectively defeat ambiguity at-
tacks. Extensive experiments demonstrate that
the proposed method is not only superior to pre-
vious state-of-the-art methods in robustness, but
also has better efficiency.

1. Introduction
With the increasing demand for deep learning applications,
deep neural networks are becoming increasingly larger and
more complex (Brown et al., 2020; Ramesh et al., 2022;
Rombach et al., 2022; Saharia et al., 2022), which spurs
more investment in computing resources and data collection.
On the one hand, deep models are regarded as a form of
valuable assets. On the other hand, when leaked (or stolen)
and under some unexpected malicious use or abuse, deep
models may cause serious privacy and security issues (Kr-
ishna et al., 2020; Choquette-Choo et al., 2021; Yu et al.,
2022). Thus an emerging primary concern in its modern
development relates to the need for ownership protection.
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Over recent years, deep model watermarks (Liu et al., 2021a)
serve as a promising way for model ownership protection.
By embedding the specific signature into deep models in the
training phase, ownership can be verified when the signature
is detected from the suspicious model. Pioneer approaches
tried to hide ownership information in the model weights
(Uchida et al., 2017) or prediction results (Adi et al., 2018).
However, these methods are proved to be vulnerable to the
so-called ambiguity attack, which is the central concern of
this research work. The term refers to the scenario in which
the adversary deliberately forges watermarks using adversar-
ial knowledge, thereby making the ownership doubtful since
multiple watermarks can now pass the verification. To defeat
ambiguity attacks, passport-based methods (Fan et al., 2019;
2022; Zhang et al., 2020) build a correlation between model
classification fidelity and the present watermark (i.e., a pass-
port image in this case). Specifically, the original passport
is transformed as a part of model parameters that are trained
alternatively with other model parameters, to deal with ver-
ification and deployment scenarios respectively. During
verification, the parameters of the corresponding position
will be replaced by those generated by the original passport.
Once the adversary forges a fake passport, the ownership
cannot be falsely claimed since the fake passport will result
in deteriorated model fidelity due to incorrect parameters.

We argue that current passport-based methods are not ro-
bust to ambiguity attacks if the adversary has access to the
original passport, where the adversary can forge a fake pass-
port using the knowledge about the original one to pass the
verification. In the potentially huge parameter space, the ad-
versary can maximize the discrimination between the forged
passport and the original one, while keeping the original
model fidelity. Optimized from the original passport, the
forged passport will look different and generate a set of
alternative parameters to pass the fidelity evaluation. For
ambiguity robustness, we find that it is insufficient to only
build the correlation between the model and the passport,
only from a feed-forward direction, as previous works did
(Fan et al., 2019; Zhang et al., 2020). To tackle it, this paper
proposes a conceptually simple yet effective watermarking
method, namely Trapdoor Normalization (TdN), for deep
model ownership protection. The fundamental spirit of TdN
is inspired by the trapdoor function in traditional cryptogra-
phy (Diffie & Hellman, 1976), where it is extremely difficult
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to find the inverse of the embedded signature (e.g., an image
that matches the signature). By binding watermarks with
models in a bidirectional manner, even if the adversary ob-
tains the original passport and forges a new one, and passes
the fidelity evaluation, the forged passport cannot be veri-
fied, because the signature in the watermarked model is the
hash fingerprint of the original passport.

The contributions of the paper can be summarized as follows:
a) We propose the first normalization-form watermark that is
robust against ambiguity attacks with oracle passports, with
theoretical analyses; b) The proposed trapdoor in deep mod-
els enables an irreversible ownership verification scheme,
with only negligible training overheads compared with pre-
vious methods; c) Experiments prove that TdN outperforms
previous methods in terms of robustness and efficiency.

2. Background
Deep model watermarks (Liu et al., 2021a; Bansal et al.,
2022; Yu et al., 2022) are a means of ownership protection
that verifies whether a trained model was from its autho-
rized owner. To protect digital rights and legitimate interests,
ownership information is embedded into models during the
training stage. When verifying suspicious models, previ-
ous methods used specific matrices (Uchida et al., 2017;
Rouhani et al., 2019) or pre-defined images (Adi et al.,
2018; Guo & Potkonjak, 2018; Zhang et al., 2018) to check
the potential ownership information in the trained models.

Normalization layers (Ba et al., 2016; Ulyanov et al., 2016)
have been widely applied in modern deep neural networks
(Dosovitskiy et al., 2021; Liu et al., 2021b; Dai et al., 2021)
to ease the training difficulty. To normalize intermediate fea-
tures, Batch Norm (Ioffe & Szegedy, 2015) utilized statistics
from the mini-batch samples. Likewise, Group Norm (Wu &
He, 2018) aimed to normalize features by dividing them into
groups. For the purpose of ownership protection, passport-
based methods emerge. By replacing normalization layers,
Fan et al. (2019; 2022) proposed Passport Layer to manip-
ulate the classifier performance based on the correctness
of present passports. Since forged passports would result
in poor model performance, Fan et al. (2019) argued that
Passport Layer is robust against ambiguity attacks, whereas
previous methods (Uchida et al., 2017; Adi et al., 2018)
cannot resist such attacks. To alleviate model fidelity drops
caused by Passport Layer, Zhang et al. (2020) used an extra
passport-aware branch for ownership protection (i.e., Pass-
port Norm). Given a passport image p, these passport-based
methods share a similar formulation:

Normaliztion: x̂ =
1

σx
(x− µx), (1)

Affine: z = γpx̂+ βp,

where feature x is the output of a precedent layer. In Eq.

(1), the way to compute the mean µx and the standard devi-
ation σx of x is different, which depends on the particular
normalization methods (e.g., according to the mini-batch in
Batch Norm). The only difference made by passport-based
methods is in the affine transformation, where γp and βp are
decided by the present passport p. Fan et al. (2019) used
an average pooling layer to compute γp and βp based on p,
while Zhang et al. (2020) implemented them using a block
similar to SE block (Hu et al., 2018). Ideally, any image
that is not p, will lead to incorrect γp and βp, thus making
deep models suffer from steep accuracy drops.

However, to defeat ambiguity attacks, it is not enough to
bind the passport with forward propagation to prevent pass-
port forgery. Since the entire parameter space is huge, it is
possible to forge a passport that can generate similar γp and
βp, yet looks different from the original one in the aspect of
human vision. In the following sections, we prove that it is
not trustworthy to rely only on fidelity evaluations to resist
ambiguity attacks. Unlike previous passport-based methods,
our proposed method not only binds the passport forward
based on forward propagation, but also binds the fingerprint
of the passport, in a backward manner.

3. Trapdoor Normalization (TdN)
Revisiting ambiguity attacks. Previous passport-based
methods (Fan et al., 2019; Zhang et al., 2020) proposed the
fidelity evaluation to defeat ambiguity attacks, where mod-
els verified with randomly forged passports will deteriorate
in terms of verification accuracy (i.e., based on incorrect γp
and βp there is a significant drop in accuracy during verifi-
cation). However, we find previous methods are vulnerable
to ambiguity attacks when the original passport is available
(i.e., the oracle passport scenario), as in Definition 3.1.

Definition 3.1 (Ambiguity attacks with oracle passports).
Given the deep neural network Fθ(·) with parameters θ,
the loss function Lθ(·) w.r.t. the model fidelity, and the
watermark embedding term Eθ. Let D and δ(p) represent
the training dataset and a feasible perturbation region w.r.t
the original passport p, respectively. Ambiguity attacks can
be formulated as a bi-level optimization problem:

min Lθ(D, p̃) + Eθ (2)

s.t. p̃ = argmax
p̃∈δ(p)

DST(p̃, p),

where DST(·) is a distance function to measure differences
between the forged passport p̃ and the original passport p.
The aim is to forge a visually different passport that can
pass the fidelity evaluation w.r.t. Lθ(·) while keeping valid
ownership w.r.t. Eθ, without modifying the model.

In fact, it is ordinary that the original passport is exposed to
the adversary: a) The adversary could be a former employee
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and leave the company with the original passport illegally.
b) Once public verification happens, there is no chance for a
second verification since the original passport is public and
known to everyone including the adversary. Unfortunately,
as empirically proved later in Table 3, even with a common
cosine similarity function as DST(·) in Definition 3.1, exist-
ing passport-based methods are not robust against ambiguity
attacks with oracle passports. To this end, we introduce ir-
reversible ownership verification in the proposed TdN to
resist ambiguity attacks.

Threat model. We assume that the adversary is capable of
obtaining deep models illegally. Besides, the adversary in-
tends to modify the trained models to remove the ownership
information, or cast doubts on the verification process to
make the ownership ambiguous. The following restrictions
on the adversary are considered for the own interests of the
adversary: a) The adversary cannot attack the embedded wa-
termark by significantly impairing the model performance,
which will make the model less valuable. b) The adversary
only possesses limited training data or computational re-
sources, since it is meaningless to steal a trained model if
the adversary could train a model from scratch.

The goal of watermarking deep models is to embed the iden-
tification of the owner (i.e., ownership information) into
deep neural networks. The requirements of embedding wa-
termarks into deep models are two-fold: a) The watermark is
supposed to have minimal impact on the model performance,
and it should be as difficult as possible for the adversary
to detect the presence of embedded watermarks. b) The
watermark should be robust against various attacks, includ-
ing removal attacks by adding perturbations on the model
parameters (e.g., fine-tuning and pruning), and ambiguity
attacks by forging watermarks to falsely claim ownership.

3.1. Normalization with Trapdoor

A trapdoor function is a one-way function that is easy to
compute but hard to invert (Yao, 1982). In the proposed
Trapdoor Normalization (TdN), the spirit of the trapdoor
is mainly embodied in two aspects: training the trapdoor
for deployment and training the trapdoor for verification.
For one thing, we train feed-forward replay cells in the
trapdoor for efficiency and bind the models with the fidelity
evaluation in a forward direction. For another, we construct
the trapdoor by binding the models with the fingerprint
of ownership information in a backward direction. This
bidirectional binding w.r.t. the trapdoor enables the proposed
TdN watermarking deep models efficiently and robustly,
with theoretical analyses and empirical evaluation.

Binding parameters with passport. To establish the fi-
delity evaluation procedure, where the model classification
fidelity depends on the correctness of the present watermark

(e.g., the passport p), γ and β in Eq. (1) are supposed to be
related with the pre-selected p = {pγ , pβ}:

γp = MLP(GMP(W ⊙ pγ)), (3)
βp = MLP(GMP(W ⊙ pβ)),

where W is the weight of the precedent layer, GMP(·) is
the global max pooling, and MLP(·) is the multi-layer per-
ceptron with one hidden layer. In a convolutional neural
network, the precedent layer w.r.t. W is a convolution and
p can be the feature map instead of the original input. We
use GMP(·) since we only focus on those units with larger
values that are more important to construct a more robust
watermark. MLP(·) is used to project parameters into the
semantic space of normalization layers. The hidden size in
MLP(·) is generally half of the input size, which is equiv-
alent to an embedding layer in the number of parameters,
and by default, we use ReLU(·) to introduce non-linearity.

Feed-forward replay cells. Note that Eq. (3) requires
the knowledge of the original passport at inference, as it
has become an indispensable part of the model parameters.
To reduce the burden of protecting p on end-users, we also
train another set of affine parameters (i.e., γd and βd) as an
alternative to γp and βp, and release them publicly during
deployment. When the watermarked model is deployed, γd
and βd substitute for γp and βp hence p is not required in
the deployment stage. For verification, we add γp and βp

back by feeding p and replacing γd and βd. Likewise, for
normalization layers that use training-time statistics, e.g.,
Batch Norm, we calculate another set of the mean and the
standard deviation w.r.t. γd and βd for deployment. As a
result, the proposed TdN can be seamlessly integrated into
any other normalization layer (e.g., Batch Norm and Group
Norm), without any structural change in existing deep nets.

However, the training costs nearly doubled if we train these
two sets of parameters for deployment and verification alter-
natively, which seriously hinders the practical application
of deep model watermarks. Intuitively, there is supposed to
be some data redundancy if the distribution of most layers
before watermarked ones is coherent. For the first several
un-watermarked layers, the values of feed-forward propa-
gation should be consistent in alternate training. In the first
normalization layer incorporated with TdN, we introduce
feed-forward replay cells for the precedent z in Eq. (1):

zt+1 ← zt, (4)

where zt+1 w.r.t. Eq. (1) represents the result of training γp
and βp for verification, which is identical to zt at the first
forward propagation for training deployment parameters
γd and βd. In other words, we build a skip connection
between two forward propagation in the first normalization
layer with TdN, and operations before this layer are skipped
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at the second propagation. The flow in the first forward
propagation is locked and stored in the trapdoor for the
second propagation, to simplify the computational graphs
between these two alternate forward propagation.

Irreversible ownership verification. The irreversible
ownership verification faces the challenge of over-
parameterization (Allen-Zhu et al., 2019), where a deep
net has more parameters than statistically needed to fit the
training data. These extra parameters describe a hypothesis
space w.r.t. the deep net, which makes the parameters gener-
ated by the forged passport p̃ pass the fidelity evaluation. As
a consequence, it is improbable to defeat ambiguity attacks
by maximizing Lθ in Definition 3.1. Since it is hard to re-
strict generated parameters in over-parameterized deep nets,
we turn to design the embedding term Eθ for a verification
strategy beyond the fidelity evaluation in the following:

Eθ =

c∑
i=1

ReLU(τ − ξiGAP(W ⊙ pγ)i), (5)

where W is the weight of the precedent layer, GAP(·) is the
global average pooling, ξ is the ownership signature in the
form of the binary sequence with values from −1 or 1, and
we set the threshold τ = 0.1 by default to prevent the results
of GAP(·) too small. This embedding term is inspired by
the hinge loss function (Gentile & Warmuth, 1998). In this
way, e.g., for a convolutional neural network, the signs of
passport p related parameters are consistent with the binary
sequence ξ as a signature for c convolutions in the deep net.
For other networks, such as graph neural networks, c can be
the number of the multi-layer perceptrons.

To construct an irreversible verification scheme, we use the
hash fingerprint of the original passport p as the signature ξ:

ξ = {SGN(x)|x ∈ HASH(p)}, (6)

where SGN(·) maps {0, 1} SGN−−−→ {−1, 1}, and HASH(·)
is the hash function (e.g., MD5 (Rivest, 1992) as used in
experiments). Critically, we would emphasize that ξ here
is passport-oriented, unlike the practice of using passport-
unrelated ASCII string as the target ownership signature
(e.g., “Copyright to ICML 2023”) in previous methods (Fan
et al., 2019). Given the non-locality sensitive essence (thus
hardly being differentiable) of MD5-like hash functions,
even some tiny perturbation over the passport will render
drastically different ξ. This ensures that the passport reverse-
engineering (decoding p from ξ) is almost numerically in-
feasible. This constructs the core trapdoor in our proposed
method. In implementation, we calculate ξ at the beginning
from the genuine passport, and keep ξ unchanged through-
out the training and embedding process.

The objective function of our TdN is defined as follows:

min
θ

LD,θ(D) + LV,θ(D, p) + Eθ, (7)

Algorithm 1 Embedding Trapdoor Normalization (TdN)
Parameter: dataset D, passport p and deep model parame-
ters θ.

1: Initialize dataset D and deep model parameters θ;
2: Hash passport p as ownership signature ξ;
3: for it = 1, iteration do
4: Sample minibatch of n samples from D;
5: Compute loss LD,θ w.r.t. deployment parameters;
6: By using cached feed-forward results and passport p,

compute loss LV,θ w.r.t. verification parameters;
7: Compute the embedding term Eθ using fixed ξ;
8: Update θ by descending the gradients: ∇θLD,θ +

∇θLV,θ +∇θEθ;
9: end for

10: return optimized model parameters θ∗;

where the loss function Lθ(·) is divided into two parts,
namely LD,θ(·) and LV,θ(·), which correspond to training
{γd, βd} for deployment and training {γp, βp} for verifi-
cation respectively. The embedding process is described
in Algorithm 1. Practically, we directly use p itself as the
ownership information, with certified ownership proofs. In
addition to the fidelity evaluation, during verification we
also consider the signs of the passport-related parameters in
Eq. (5), to check whether they are consistent with the finger-
print of the present passport. Since we take the fingerprint
of the passport (instead of the visual meaning of passport
images) as the certification, we can also use other modality
other than visual images. This makes our TdN applicable to
most deep neural networks, including convolutional neural
networks and graph neural networks.

By building the connections between the passport p, the
hash fingerprint of p and the target model, we implement
bidirectional binding: For the forward direction, we bind the
passport with the model fidelity. For the backward direction,
we bind the target model and the passport with the signature
which is the hash fingerprint of p itself.

For ambiguity attacks as in Definition 3.1, the signs in Eq.
5 are supposed to remain unchanged, as proved in previous
works (Fan et al., 2019; Zhang et al., 2020) that any change
will greatly degrade the model fidelity. Even if the adver-
sary forges a passport p̃ and successfully passes the fidelity
evaluation, the hash fingerprint of p̃ calculated by Eq. (6) is
unlikely to match the signs of GAP(·) in Eq. (5). Accord-
ing to Corollary 3.4, for our TdN the probability of falsely
claiming the ownership is extremely low. By building the
trapdoor in the verification scheme, we make the embedding
term Eθ non-optimizable, and thus the proposed ownership
verification scheme of TdN is irreversible.

Proposition 3.2 (Ownership verification hypothesis). As-
sume the model with a forged passport p̃ has comparable
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performance to the original one. Let the null hypothesis
H0 be that the bit sequence from p̃ matches the embedded
ownership signature by chance. Under the null hypothesis,
suppose the number of matched bits as X and the number of
successful match as k, we have X ∼ B(n, p) to calculate:

P(X > k|H0) =

n∑
i=k

(
n

i

)
pi(1− p)n−i, (8)

where n (i.e., the number of trials) is the sequence length
and p is the probability of the matched bit. If the above
conditional probability is calculated to be low, we shall
reject the null hypothesis. The ownership of trained models
can be claimed if and only if H0 is rejected.

Proof. Since the number of trials n is fixed, and these n
trials are independent and are repeated using identical con-
ditions, with two possible outcomes namely matched or
unmatched, the bit-matching experiment is a binomial ex-
periment. Therefore, the number of matched bits X is a
random variable, and we have X ∼ B(n, p). According to
null hypothesis testing, if the P-value w.r.t. the conditional
probability is relatively low (e.g., less than 0.05), we are
supposed to reject H0 and accept the alternative hypothe-
sis where the signature is not matched, and thus the model
ownership cannot be claimed.

Remark 3.3. Because previous passport-based methods can-
not build a connection between the original passport p and
the embedded ownership signature (i.e., the embedded sig-
nature, namely a binary sequence, is defined independently).
When the original passport is available, the embedded signa-
ture is also known to the adversary. Through gradient-based
methods, such ownership verification schemes can be com-
promised by forging a different passport while matching the
signature, resulting in a high probability in Proposition 3.2.

Corollary 3.4. For TdN, if k is close to n, the conditional
probability in Eq. (8) is bounded as O( 1

2n (
en
n−k )

n−k).

Proof. According to Eq. (6), it is impossible to invert
the hash function by definition. Also, the optimization
in Eq. (2) will not converge due to the avalanche ef-
fect caused by the hash function in Eθ. Therefore, the
probability of matched bit p in Eq. (8) is bounded
as p ≤ 0.5. For Eq. (8), we have

∑n
i=k

(
n
i

)
pi(1 −

p)n−i =
∑n

i=k

(
n
i

)
1
2n = 1

2n

∑n−k
i=0

(
n
i

)
≤ 1

2n

∑n−k
i=0

ni

i! =
1
2n

∑n−k
i=0

(n(n−k))i

i!(n−k)i ≤ 1
2n (

n
n−k )

n−k
∑n−k

i=0
(n−k)i

i! ≤
1
2n (

n
n−k )

n−k
∑∞

i=0
(n−k)i

i! = 1
2n (

en
n−k )

n−k. Therefore,
the conditional probability in Proposition 3.2 has an up-
per bound as O( 1

2n (
en
n−k )

n−k).

4. Evaluation
Setup. Following common settings (Fan et al., 2019;
Zhang et al., 2020), we include empirical results for deep
models trained on CIFAR-10, CIFAR-100 (Krizhevsky,
2009), Caltech-101 and Caltech-256 (Fei-Fei et al., 2006)
for image classification tasks. For these datasets, we con-
duct experiments using AlexNet (Krizhevsky et al., 2012),
VGG-11 (Simonyan & Zisserman, 2015) and ResNet-18
(He et al., 2016) with Batch Norm (Ioffe & Szegedy, 2015)
and Group Norm (Wu & He, 2018). To demonstrate that our
proposed TdN can also be applied in deep nets other than
vision models, we also use GIN (Xu et al., 2019) with Batch
Norm on social network datasets (including IMDB-Binary,
IMDB-Multi, and COLLAB) and bioinformatics datasets
(including MUTAG) (Yanardag & Vishwanathan, 2015) for
graph classification tasks.

Baselines. We benchmark our TdN against previous state-
of-the-art methods, including Passport Layer (Fan et al.,
2019) and Passport Norm (Zhang et al., 2020). To demon-
strate the flexibility of our TdN, TdN is also applied in
conjunction with Backdoor (Adi et al., 2018) for evaluation.

Metrics. The following metrics are adopted for evalua-
tion: a) Clean Accuracy (CA): the CA is the accuracy during
the inference stage of a trained classifier without any wa-
termarks; b) Watermark Accuracy (WA) and Watermark
Success Rate (WSR): for a watermarked model during the
inference stage, the WA and WSR represent the accuracy
and the bit error rate of the embedded signature, respectively.
Generally, the WA measures the performance of the water-
marked classification model compared with the CA, and the
WSR measures whether the model watermark is robust.

Implementation. We used PyTorch (Paszke et al., 2019)
to implement our proposed TdN. Most experiments were
conducted using NVIDIA GeForce RTX 2080 Ti (11GB).

4.1. Effectiveness

To demonstrate the effectiveness of our proposed method,
we perform experiments on our TdN as well as baseline
methods. As our proposed TdN can be built upon existing
normalization layers, we embed watermarks into the last
three normalization layers in the feature learning part of a
deep net. All models are trained for 200 epochs by default,
with the multi-step learning rate scheduled from 0.01 to
0.0001. The choices of batch size are set as 64 and 128
for the training set and the test set, respectively. Table 1
shows the empirical results. Since ownership information is
embedded during training, the influence on model fidelity is
inevitable. Therefore, the results of clean models and mod-
els watermarked by Backdoor are also reported in Table 1.
By appending nearly 100 image-label pairs into the train-
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Table 1. Model watermarks on different models and datasets. Experiments are conducted to verify whether model watermarks are
detectable after training, while maintaining the original classification accuracy. Values outside and inside the bracket denote the accuracy
(%) of the trained model during deployment and verification, respectively. ↑ indicates that the higher value represents better performance.
The watermark success rate is omitted since all watermarks are embedded successfully (i.e., we have WSR of 100% for all watermarks).

AlexNet
CIFAR-10 (↑) CIFAR-100 (↑) Caltech-101 (↑) Caltech-256 (↑) Avg.

Batch Norm Group Norm Batch Norm Group Norm Batch Norm Group Norm Batch Norm Group Norm

Clean 91.26 90.05 68.32 64.68 69.47 67.27 44.68 42.17 67.24
Backdoor 91.21 89.95 68.79 65.40 68.51 67.22 44.23 40.79 67.01
Passport Layer 90.60 (90.39) 90.34 (89.93) 61.79 (66.29) 64.87 (63.89) 48.98 (48.44) 67.76 (66.58) 38.86 (42.70) 40.92 (40.39) 63.01
Passport Norm 91.52 (90.99) 90.22 (90.22) 68.55 (66.74) 64.84 (63.52) 69.42 (67.60) 66.20 (63.68) 44.05 (41.32) 40.98 (38.78) 66.97
TdN (Ours) 91.07 (90.51) 90.05 (89.77) 68.68 (66.46) 65.09 (63.34) 69.26 (68.29) 67.06 (63.52) 44.89 (41.27) 40.53 (38.33) 67.08

+Backdoor 91.30 (90.73) 89.50 (89.50) 68.46 (66.49) 64.66 (63.54) 68.99 (66.58) 64.70 (61.43) 44.26 (41.13) 41.24 (39.09) 66.64

VGG-11 Batch Norm Group Norm Batch Norm Group Norm Batch Norm Group Norm Batch Norm Group Norm Avg.

Clean 92.33 91.01 68.77 64.29 69.05 65.99 47.03 41.02 67.43
Backdoor 91.90 90.63 68.48 63.75 69.31 66.58 46.59 41.56 67.35
Passport Layer 92.08 (91.95) 90.99 (90.94) 67.17 (69.38) 63.85 (64.15) 68.83 (67.49) 66.52 (64.54) 45.92 (46.95) 39.79 (39.09) 66.89
Passport Norm 92.07 (91.91) 90.83 (90.79) 69.85 (68.05) 63.88 (62.44) 71.03 (67.97) 65.93 (62.88) 46.72 (44.33) 39.17 (36.74) 67.44
TdN (Ours) 92.11 (91.86) 90.54 (90.65) 69.91 (68.30) 65.19 (63.42) 70.23 (67.97) 65.72 (63.73) 46.90 (44.15) 39.92 (37.58) 67.56

+Backdoor 91.79 (91.93) 90.35 (90.24) 69.56 (68.29) 64.56 (62.55) 70.17 (67.38) 65.88 (63.41) 47.40 (43.94) 39.71 (37.03) 67.43

ResNet-18 Batch Norm Group Norm Batch Norm Group Norm Batch Norm Group Norm Batch Norm Group Norm Avg.

Clean 95.10 93.52 76.83 72.02 69.37 66.79 54.03 45.08 71.59
Backdoor 95.14 93.62 76.60 72.01 69.10 66.58 54.45 44.55 71.51
Passport Layer 95.05 (94.86) 93.75 (93.72) 76.68 (76.82) 72.55 (72.58) 70.01 (69.15) 66.95 (66.15) 55.64 (54.87) 46.24 (45.82) 72.11
Passport Norm 95.11 (95.08) 93.80 (93.81) 76.28 (76.01) 71.95 (71.79) 72.80 (72.59) 66.79 (66.85) 55.96 (55.00) 45.27 (44.25) 72.25
TdN (Ours) 94.94 (94.88) 93.51 (93.41) 76.56 (75.84) 72.14 (71.73) 74.09 (72.26) 66.74 (66.15) 55.29 (53.78) 46.53 (44.73) 72.47

+Backdoor 94.64 (94.56) 93.34 (93.29) 76.10 (75.55) 72.17 (71.42) 72.48 (71.78) 65.56 (64.43) 54.56 (53.23) 44.18 (42.72) 71.63

ing set, Backdoor seems to be a promising method in deep
model watermarking, with only a 0.13% accuracy drop on
average. However, since ownership information embedded
by Backdoor is verified via the prediction results only, later
in Section 4.2 it is empirically proved that watermarking by
applying Backdoor alone is vulnerable to removal attacks.

With Batch Norm, there are many significant accuracy drops
in models embedded with Passport Layer, which is because
Passport Layer uses the same set of mean and standard de-
viation in both the deployment phase and the verification
phase. By using different mean and standard deviation, Pass-
port Norm performs better than Passport Layer, especially
when models are equipped with Batch Norm. However, Fig-
ure 1 shows that both Passport Layer and Passport Norm are
significantly inefficient. For most neural networks, the train-
ing cost almost doubled according to the results from three
different models across four different datasets. As is shown
in Table 1, comparison results with previous state-of-the-art
passport-based methods reveal that our TdN is in pair with
the best previous methods in terms of accuracy, and even
slightly better than clean models by 0.88% average accuracy
increase on ResNet-18. We ascribe this fidelity increase to
the MLP used in our method. As for efficiency, our TdN
only adds limited training overheads as in Figure 1, with
less than a half extra training time compared with previous
methods. Also, when incorporated with Backdoor, our pro-
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Figure 1. Average training time and accuracy on 4 datasets. A, V
and R stand for AlexNet, VGG-11 and ResNet-18, respectively.

posed TdN can implement a black-box verification scheme,
where suspicious models can be verified remotely ahead
for preliminary investigations, to meet the needs of differ-
ent scenarios. Experiments about effectiveness empirically
prove that our TdN can successfully embed ownership in-
formation into models while maintaining the original model
fidelity, with only a negligible extra training cost.

4.2. Robustness

When the trained model is lost to the adversary, the adver-
sary may make a series of modifications to the model to
erase the ownership information (i.e., removal attacks), or

6



Trapdoor Normalization with Irreversible Ownership Verification

Table 2. Model watermarks against removals during fine-tuning. Values outside and inside the bracket denote the accuracy (%) of the
model during deployment and the watermark success rate (%), respectively. ↑ indicates that the higher value represents better performance.

ResNet-18
CIFAR-100 to CIFAR-10 (↑) CIFAR-10 to CIFAR-100 (↑) Caltech-256 to Caltech-101 (↑) Caltech-101 to Caltech-256 (↑) Avg.
Batch Norm Group Norm Batch Norm Group Norm Batch Norm Group Norm Batch Norm Group Norm

Clean 93.65 91.60 72.96 69.01 77.68 70.98 45.81 39.91 70.20
Backdoor 93.56 (19.00) 91.95 (11.00) 73.39 (0.00) 67.75 (0.00) 77.41 (16.00) 70.33 (8.00) 45.16 (0.00) 40.49 (0.00) 70.01
Passport Layer 92.88 (100) 91.11 (100) 72.24 (99.54) 67.67 (100) 78.11 (99.87) 71.24 (100) 44.70 (88.22) 38.93 (94.92) 69.61
Passport Norm 93.26 (99.93) 91.39 (100) 71.49 (94.53) 66.90 (100) 76.77 (99.61) 72.05 (100) 47.01 (90.89) 39.14 (91.21) 69.75
TdN (Ours) 93.09 (100) 91.41 (100) 71.90 (97.53) 66.83 (100) 77.31 (99.67) 72.21 (100) 48.18 (90.56) 39.25 (95.51) 70.02
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Figure 2. TdN against removals during pruning. Parameters of ResNet-18 are pruned at random or by ℓ1-norm under a specific sparsity.

forge the watermark to make the ownership become ambigu-
ous (i.e., ambiguity attacks). To examine robustness, trained
models are fine-tuned under transfer learning or pruned un-
der model compression for removal attacks, and the forged
watermarks are optimized by learning the knowledge of the
original ownership for ambiguity attacks.

Removal robustness. In Table 2 we compare TdN with
baselines under fine-tuning scenarios. Every model is initial-
ized from the pre-trained weights on a different dataset, and
they are trained for 100 epochs with a smaller learning rate
of 0.001. Since model parameters are modified during fine-
tuning, ownership information in the watermarked model
may fade. In detail, empirical results in Table 2 reflect that
our TdN can preserve ownership information, and even in
the worst case (i.e., from Caltech-101 to Caltech-256) the
WSR remains above 90%. Compared with baselines, our
TdN achieves the best deployment accuracy on average,
which only suffers 0.18% accuracy drops compared with
the results of clean models. As the ownership information is
not significantly erased during transfer learning, empirical
evaluations demonstrate that our TdN is robust when the
parameters of watermarked models are fine-tuned.

When deployed to mobile devices, trained models are usu-
ally pruned to reduce computation and storage costs. There
are two most common pruning strategies: pruning model
parameters at random and by ℓ1-norm. TdN is evaluated un-
der both strategies and results are presented in Figure 2. We
notice that when a watermarked model is pruned, the WSR
declines if and only if the model itself becomes useless (i.e.,

the accuracy is exceedingly low), which violates the inter-
ests of the adversary as is discussed in Section 3. Hence, it
is empirically proved that our TdN is robust against removal
attacks regardless of fine-tuning or pruning.

Ambiguity robustness. When the adversary is charged
with possessing a trained model without authorization, the
adversary would try to forge a passport w.r.t. the trained
model to falsely state ownership. According to the adver-
sarial knowledge about the original passport, two kinds of
adversarial settings are investigated for the interests of the
adversary: a) the random passport setting where the adver-
sary only has access to the trained model parameters, and b)
the oracle passport setting where the adversary has access
to the trained model parameters and the original passport.

In the random passport setting, since the adversary has no
knowledge about the original passport, the adversary sam-
ples plenty of images from a given distribution to claim
ownership by chance. For each deep net and each dataset,
we randomly sample 100 images as forged passports from
the same distribution where we selected the original passport
image. Figure 3 presents the ambiguity robustness results
against random passports. In total 800 images as forged
passports are sampled, in an attempt to pass the fidelity
evaluation. Empirical results show that none of the forged
passports passes the fidelity evaluation, with a maximum
accuracy of 37.05% for VGG-11 on CIFAR-10. Compared
with the WA for verification in Table 1, the accuracy margin
between them is as high as 54.81%, which makes the forged
passports useless. It is confirmed that the proposed TdN can
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Table 3. Forging passports to cast ambiguity over the ownership verification. WAO and WAF denote the watermarked accuracy (%)
when the original and forged passport is present, respectively. CS represents the cosine similarity between original passports and forged
passports. WSRF denotes the forged watermark success rate (%). Baselines are vulnerable to ambiguity attacks with oracle passports.

ResNet-18 CIFAR-10 CIFAR-100 Caltech-101 Caltech-256

w/ Batch Norm WAO WAF CS WSRF WAO WAF CS WSRF WAO WAF CS WSRF WAO WAF CS WSRF

Passport Layer 94.86 94.92 -0.44 100 76.82 75.63 -0.51 100 69.15 68.03 -0.02 100 54.87 54.50 -0.37 100
Passport Norm 95.08 95.08 -0.46 100 76.01 76.03 -0.53 100 72.59 72.42 -0.02 100 55.00 55.00 -0.39 100

w/ Group Norm WAO WAF CS WSRF WAO WAF CS WSRF WAO WAF CS WSRF WAO WAF CS WSRF

Passport Layer 93.72 93.68 -0.47 100 72.58 72.17 -0.45 100 66.15 64.91 -0.09 100 45.82 44.66 -0.32 100
Passport Norm 93.81 93.81 -0.47 100 71.79 71.79 -0.46 100 66.85 66.79 -0.08 100 44.25 43.75 -0.32 100
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Figure 3. TdN against ambiguity attacks when random passports present are across various datasets. Models are built with Batch Norm.

resist ambiguity attacks with random passports.

Once the adversary somehow obtains the original passport,
i.e., the oracle passport setting, the adversary intends to
forge a passport that achieves comparable model fidelity
and high WSR, yet looks different via inductive bias from
human vision. Since the adversary has the original passport,
the original signature embedded in the watermarked model
can also be obtained. By freezing the model parameters dur-
ing optimization, the adversary can train a set of noises and
add them to the original passport image (or the feature maps
of the original passport). With the oracle passport knowl-
edge, the forged passport, which is made up of the original
passport and trained noises, can pass the fidelity evaluation
with a high WA. As is presented in Table 3, we use the
cosine similarity as the distance function in Definition 3.1.
In the first place, the cosine similarity between the original
passport and the forged passport stays 1.00. After training
noises for 200 epochs, the forged passport is quite dissim-
ilar to the original one, and the cosine similarity can be
−0.47 for ResNet-18 on CIFAR-10. It is observed that both
Passport Layer and Passport Norm fail to defeat ambiguity
attacks with oracle passports, because the forged passports
all achieve 100% WSR and pass the fidelity evaluations with
a high WAF .

However, even with the knowledge of the original passport,
ambiguity attacks still cannot compromise our TdN. Once
the adversary trains noises to forge a passport, the expected
hash fingerprint also changes. By the grace of the trapdoor

in our method, the adversary cannot forge passports and en-
sure that the parameter signs generated by passports match
the fingerprints at the same time. Since the last three convo-
lutions of AlexNet, VGG-11, and ResNet-18 all can contain
at least 320-bit information, according to Corollary 3.4, the
probability in Proposition 3.2 is no more than 4× 10−51 to
match 90% signature for our proposed TdN.

4.3. Additional Analysis

Statistics of Trapdoor Normalization. It is expected that
there is not much difference in statistical distribution be-
tween the watermarked model and the clean model, as the
difference may result in obvious fidelity impairment or ex-
pose the ownership information to the adversary. According
to the experiment results above, our TdN will not largely af-
fect the model fidelity, and there should not be much change
in distribution. Statistic results in Figure 4 support that
point. Watermarked model and clean model mostly overlap
in distribution, thus the adversary is unlikely to detect the
embedded information from a statistical perspective.

Ablation studies. To explore the influence of different
watermark layers on the model fidelity, we watermark the
last several convolution layers of AlexNet as depicted in
Figure 5. We observe that the deployment accuracy has
not decreased with the increasing number of watermarked
layers, which means that in a certain range, the negative
impact of our method on the model is minimal. Also, the
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Figure 4. Statistics of model parameters watermarked by TdN.

Table 4. On the number of epochs for fine-tuning. Values outside
and inside the bracket denote the accuracy (%) and the watermark
success rate (%), respectively. ↑ indicates that the higher value
represents better performance.

Epoch CIFAR-100 to CIFAR-10 (↑) Caltech-256 to Caltech-101 (↑)
Batch Norm Group Norm Batch Norm Group Norm

20 91.83 (100) 89.64 (100) 75.16 (100) 70.28 (100)
40 92.27 (100) 90.32 (100) 76.77 (100) 71.57 (100)
60 92.60 (100) 90.89 (100) 76.93 (100) 72.00 (100)
80 92.88 (100) 90.98 (100) 77.09 (99.93) 72.00 (100)
100 93.09 (100) 91.41 (100) 77.31 (99.67) 72.21 (100)

ablation studies on the number of epochs for fine-tuning
are shown in Table 4, where we can find out that there is
no significant difference between different epoch numbers
during transfer learning w.r.t. removal robustness.

Robustness against knowledge distillation. To demon-
strate the robustness against knowledge distillation (Hin-
ton et al., 2015), we perform experiments of AlexNet with
Batch Norm over CIFAR-10, CIFAR-100, Caltech-101, and
Caltech-256. For the hyper-parameters of knowledge dis-
tillation, we set the coefficient of distillation term as 0.95,
the learning rate as 0.01, and the number of epochs as 200.
We find that in most cases the WSR remains above 90%.
Empirical results demonstrate that our proposed method is
robust against knowledge distillation.

Watermarking graph neural networks. Previous meth-
ods (Fan et al., 2019; Zhang et al., 2020) relied on visual
representation from the human vision system to demonstrate
the validity of the passport image. Since our proposed TdN
not only binds the model with the fidelity evaluation for-
ward but also binds the model and the passport with the
hash fingerprint backward, it is not necessary to rely on the
visual representation of the passport for ownership verifica-
tion. Therefore, our TdN is applicable to a variety of model
architectures. We train GIN on IMDB-Binary, IMDB-Multi,
COLLAB, and MUTAG for 200 epochs and report the em-
pirical results for whole-graph classification tasks. Since the
watermarks can be successfully embedded into graph neural

Table 5. Model watermarks on graph neural networks. The clean
accuracy (%) is reported for comparison. For watermarked mod-
els, WA and WSR denote the watermarked accuracy (%) and the
watermark success rate (%), respectively.

GIN IMDB-B (↑) IMDB-M (↑) COLLAB (↑) MUTAG (↑)
w/ Batch Norm WA WSR WA WSR WA WSR WA WSR

Clean 69.00 54.67 79.60 78.95
TdN (Ours) 70.00 100 53.33 100 79.80 100 78.95 100
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Figure 5. Different numbers of watermarked layers by our TdN.
Experiments are performed for AlexNet on CIFAR-10.

networks with only negligible accuracy drops, results in
Table 5 demonstrate that our proposed TdN can be applied
to graph neural networks, and protect the ownership of deep
learning models.

5. Conclusion
Owing to over-parameterization, we can embed ownership
information into deep nets. However, it also makes ambigu-
ity attacks possible. Our major contribution is proposing the
trapdoor in deep nets by building a bidirectional connection,
allowing a robust and efficient model watermarking method
with irreversible ownership verification.
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Choquette-Choo, C. A., Tramèr, F., Carlini, N., and Paper-
not, N. Label-only membership inference attacks. In
ICML, volume 139 of Proceedings of Machine Learning
Research, pp. 1964–1974. PMLR, 2021.

Dai, Z., Liu, H., Le, Q. V., and Tan, M. Coatnet: Marrying
convolution and attention for all data sizes. In NeurIPS,
pp. 3965–3977, 2021.

Diffie, W. and Hellman, M. E. New directions in cryptogra-
phy. IEEE Trans. Inf. Theory, 22(6):644–654, 1976.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR. OpenReview.net, 2021.

Fan, L., Ng, K. W., and Chan, C. S. Rethinking deep neural
network ownership verification: Embedding passports to
defeat ambiguity attacks. In NeurIPS, pp. 4716–4725,
2019.

Fan, L., Ng, K. W., Chan, C. S., and Yang, Q. Deepipr:
Deep neural network ownership verification with pass-
ports. IEEE Trans. Pattern Anal. Mach. Intell., 44(10):
6122–6139, 2022.

Fei-Fei, L., Fergus, R., and Perona, P. One-shot learning
of object categories. IEEE Trans. Pattern Anal. Mach.
Intell., 28(4):594–611, 2006.

Gentile, C. and Warmuth, M. K. Linear hinge loss and
average margin. In NIPS, pp. 225–231. The MIT Press,
1998.

Guo, J. and Potkonjak, M. Watermarking deep neural net-
works for embedded systems. In ICCAD, pp. 133. ACM,
2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, pp. 770–778.
IEEE Computer Society, 2016.

Hinton, G. E., Vinyals, O., and Dean, J. Distilling the
knowledge in a neural network. CoRR, abs/1503.02531,
2015.

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation net-
works. In CVPR, pp. 7132–7141. Computer Vision Foun-
dation / IEEE Computer Society, 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In ICML, volume 37 of JMLR Workshop and Conference
Proceedings, pp. 448–456. JMLR.org, 2015.

Krishna, K., Tomar, G. S., Parikh, A. P., Papernot, N., and
Iyyer, M. Thieves on sesame street! model extraction of
bert-based apis. In ICLR. OpenReview.net, 2020.

Krizhevsky, A. Learning multiple layers of features from
tiny images. University of Toronto, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NIPS, pp. 1106–1114, 2012.

Liu, H., Weng, Z., and Zhu, Y. Watermarking deep neural
networks with greedy residuals. In ICML, volume 139
of Proceedings of Machine Learning Research, pp. 6978–
6988. PMLR, 2021a.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In ICCV, pp. 9992–
10002. IEEE, 2021b.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
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