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ABSTRACT

Steganography represents the art of unobtrusively concealing a
secret message within some cover data. The key scope of this work
is about high-capacity visual steganography techniques that hide
a full-sized color video within another. We empirically validate
that high-capacity image steganography model doesn’t naturally
extend to the video case for it completely ignores the temporal
redundancy within consecutive video frames. Our work proposes
a novel solution to this problem(i.e., hiding a video into another
video). The technical contributions are two-fold: first, motivated
by the fact that the residual between two consecutive frames is
highly-sparse, we propose to explicitly consider inter-frame resid-
uals. Specifically, our model contains two branches, one of which
is specially designed for hiding inter-frame residual into a cover
video frame and the other hides the original secret frame. And
then two decoders are devised, revealing residual or frame respec-
tively. Secondly, we develop the model based on deep convolutional
neural networks, which is the first of its kind in the literature of
video steganography. In experiments, comprehensive evaluations
are conducted to compare our model with classic steganography
methods and pure high-capacity image steganography models. All
results strongly suggest that the proposed model enjoys advantages
over previous methods. We also carefully investigate our model’s
security to steganalyzer and the robustness to video compression.
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Figure 1: The full scheme of steganography. See main text for more
explanation.

1 INTRODUCTION

The term steganography [2, 23, 24, 26] can date back to the 15th
century, whose goal is to encode a secret message in some transport
medium (called cover in this paper) and covertly communicate with
a potential receiver who knows the decoding protocol. Essentially
different from cryptography, steganography aims to hide the pres-
ence of secret communications, allowing only the target recipient
to know. State differently, the covering medium can be publicly
visible and yet only the target receiver can perceive the presence
and decode the secret message. In practice, any steganography
model should conceal a secret message by concurrently optimiz-
ing two criteria: minimizing the change of the covering medium
that leads to suspect from an adversary, and reducing the resid-
ual between decoded secret message and its ground truth. The
research on steganography has practical implications. For example,
anumber of nefarious applications of steganography techniques are
known, such as hiding commands that coordinate criminal activities
through images posted on social media websites. In the industry of
digital publishing, a common tactic to claiming authorship without
compromising the integrity of the digital content is to embed digital
watermarks. For other brief introduction to steganography, one can
refer to [1, 29, 31, 35].

Let us first explain the process of a typical steganography system,
which is shown in Figure 1. In classic steganography, the process
involves three parties: Alice, Bob and Eve. Alice first conceals a
secret message into a cover to obtain a container message, then
sends the container to Bob. Eve is an adversary (the steganalyzer)
to both Alice and Bob. His goal is to judge whether a message he
observed is steganographic or not. But he is not requested to decode
the hidden secret. In this scheme, we say Alice performs perfectly
if she ensures: 1) Bob receives the container and recovers secret at
high accuracy using a decoding protocol; and 2) Eve has exactly
50% chance of correctly judging a container or cover. It is similar to
the expectation in adversarial training [11, 16]. To accomplish both
goals, the container should not deviate from the original cover too
much, avoiding that abnormal pattern appears and is detected by

T denotes equal contribution. * is the corresponding author.
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Eve. Meanwhile, it should also be in a good shape to be accurately
deciphered by the decoder model at Bob’s hand.

Hiding messages in an image has been a long-standing research
task of salient practical interest [8, 13, 21, 25, 38]. One can gauge
the amount of concealed information through bits-per-pixel (bpp),
namely the amortized bits hidden at each pixel in the cover image.
Traditional image steganography can only handle very little secret
information (usually lower than 1 bpp) [12]. While a recent research
trend is hiding high bpp secret as exemplified in [3], which encodes a
full-sized color image into another same-sized image(high-capacity
image steganography). This represents a highly challenging task
since it pursues a bpp level 24 (i.e., each pixel in the cover hides a
complete RGB color). Figure 2 illustrates a typical results calculated
from a high-capacity image steganography model. The steganogra-
phy model can hardly accomplish both of Alice’s two goals in the
container. As artifacts can often be observed in container, making
it easily detected by an adversary.

In this work, our major focus is video steganography. The task
aims to hide a full-sized video clip into another. Considering the in-
creasing popularity of video data across the Internet, the research of
video steganography, though currently rarely found in the literature,
represents a nascent research topic of key practical implications.
It is naturally regarded that high-capacity image steganography
model can be readily used to solve the video steganography prob-
lem, by pairing frames in cover / secret videos and feeding them
into an image model. We argue that this tactic is not optimal, be-
cause it does not fully consider the temporal redundancy within
consecutive video frames. Our work proposes a novel solution to
video steganography. Briefly speaking, the technical contributions
are two-fold:

First, the residuals between two consecutive frames are highly
sparse. Critically, compared with hiding frame into another frame,
hiding such sparse residual in another video frame defines a much
easier task. Motivated by this fact, instead of blindly applying image
model on all frames, we propose to split frames into two sub-sets:
reference frames and residual frames. Each residual frame is obtained
by differencing with specific reference frame. Correspondingly, our
model contains two branches at both the encoding and decoding
stages, tackling either type of frames respectively. We empirically
validate this treatment can significantly boost the container’s per-
ceptual quality and increase the possibility of fooling an adversary.

Secondly, our model is fully based on deep convolutional neu-
ral networks, which is the first of its kind in video steganography.
Specifically, our deep video steganography model consists of two
H-networks for hiding references or residuals, and two R-networks
for revealing the secret video. The full model is trained without any
human annotations and network parameters are optimized from
scratch. In experiments, comprehensive evaluations are conducted
to validate the powerful modeling of deep networks. We also care-
fully design ablation investigation to find key factors in our deep
video steganography model.

The remainder of this paper is organized as following: We first
briefly review the related work in Section 2. Section 3 details the
proposed two-branch deep neural networks for the video steganog-
raphy task. All experimental evaluations and in-depth analysis are
found in Section 4. Finally, Section 5 concludes this work and points
out several future research directions.

Figure 2: Exemplar results generated by a high-capacity image
steganography model [3]. The role of each image is depicted in bold
yellow text located in the top-left of each image. To depict how con-
tainer image deviates from the original cover image, we choose two
local patches and contrast them for these two images. Indeed, for
the local patch delimited by the green box, from the container im-
age one can observe the ghost image of specific building in the secret
image (in blue box). Better viewing after enlarging.

2 RELATED WORK

Least Significant Bit (LSB) [5, 14, 34, 42] is a classic steganographic
algorithm. In digital images, each pixel in an image is comprised
of three bytes (i.e., 8 binary bits), representing the RGB chromatic
values respectively. The nbit-LSB algorithm replaces the least n
significant bits of the cover image by n most significant bits of
the secret image. For each byte, the significant bits dominate the
color values. This way, the chromatic variation of the container
image (altered cover) is minimized. Revealing the concealed secret
image can be simply accomplished by reading the n least signifi-
cant bits and performing bit shift. Despite that its distortion is not
often visually observable, LSB is unfortunately highly vulnerable
to steganalysis [15, 30, 33] - statistical analysis can easily detect the
pattern of altered pixels. Recent works have been devoted to more
sophisticated methods that preserve the image statistics or design
special distortion functions [18, 19, 32, 39, 48, 49].

To overcome the drawbacks of LSB, the variant HRVSS [10]
and [36] exploits special biological trait of human eyes for hiding a
grey image in a color image. Several other works utilize bit plane
complexity segmentation in either spatial or transform domain [28,
44, 47]. Other algorithms [4, 27, 37, 53] embed secret in DCT (Direct
Cosine Transformation) domain by changing DCT coefficients. As
many coefficients are equal to zero, changing too many zeros to non-
zero values will cause large distortion in container. It explains that
few bits can be embedded in DCT domain than spatial domain [6,
9, 45].

Recently, several deep learning based steganography methods
are developed to encode text message in images, such as the works
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Figure 3: Examples of video frames and inter-frame residuals. The column residuals represent the per-pixel difference between frame k and
k + 1. The righmost column shows the distribution of RGB values (top) and residual values (bottom) for the first frame pair (top row).

in [3, 54]. Early works [20, 40] mostly focused on the decoding
step (such as determining which bits to extract from the container
images) to elevate accuracies. Other works investigate efficiency
of employing deep learning on steganalysis such as [41, 43, 50, 52].
Both of [3, 17] build the whole system based on deep networks,
including encoding (hiding) and decoding (revealing) networks.
Prior quantitative evaluations strongly corroborate the superior
modeling ability of deep networks in image steganography. How-
ever, to our best knowledge, there is no prior work that explores
deep networks for the hiding-video-in-video setting.

3 THE PROPOSED MODEL

Figure 3 illustrates some motivating fact to our video steganography
model. As seen, the residual values between consecutive video
frames are dominated by near-zero values. Hiding such high-sparse
data into a cover frame intuitively requires less effort compared
with a full-colored secret frame, since hiding a zero value is trivial.
This way, the cover image tends to be less altered, which potentially
increases the chance of fooling an adversary. Using residuals as
the secret message instead can ease Alice’s job (or the encoding
model) in Figure 1 and meanwhile does not make Bob’s task harder.
However, to operate on residuals, there are two challenges that
we should concern: how to determine encoding the original video
frame or its residual with respect to the previous frame? And at
the decoding stage, how the decoder knows the received image
conceals a full-colored frame or a residual array?

To address above issues, we categorize all secret frames to be
either reference frame or residual frame. Correspondingly, we pro-
pose to use two separate encoding / decoding networks for tackling
different type of frames. The architecture of our proposed system
is shown in Figure 4. The system is comprised of six computational
steps.

3.1 Computational Pipeline

Step-1: Reference/Residual Frame Labeling : We adopt a sim-
ple thresholding approach for labeling a frame to be reference or
residual type. Specifically, the first frame in a video is surely labeled
as reference. The following frames in the same video sequentially

calculate their averaged pixel-wise discrepancy (APD)! with respect
to the first frame. Once the APD score of any frame exceeds some
pre-specified threshold, it will be set as a new reference and used
to calibrate all following frames. The procedure proceeds until all
frames are labeled.

Step-2: Hiding Secret: This step does Alice’s job in Figure 1. The
key difference of our method to others is a divide-and-conquer
scheme. Note that in Figure 4 two hiding networks are devised,
referred to as Reference H-net or Residual H-net respectively. Con-
catenated with cover frame F,q,), each secret frame Fg. is fed into
the corresponding H-net by their label and the output is container
frame F.op,.

Step-3: Video Codec Simulation: In practical applications, Alice
may compress a video (e.g., in MP4 or MPEG format) before sending
it to Bob. A video that goes through the video encoding / decoding
process can largely deviate from its original version. When deep
networks are utilized, small perturbation of container video can
be gradually enlarged at later neural layers and may cause a large
deviation in Bob’s revealed video. To mitigate this problem, we
add a Codec Simulation Layer (CSL) for simulating the video codec
process. For lossless video compression, CSL is simply an identity
mapping that does nothing on its input. For lossy compression, we
design the layer by investigating some statistics of video pixels.
More details are deferred to the Experiment Section.

Step-4: Revealing Secret: It does Bob’s job in Figure 1. The input
is merely the container frame Fc,p after codec, and the output (we
call it revealed secret Fry) is another frame which is desired to be
exactly the secret in the perfect case.

Similar to H-nets, two R-nets (Reference R-net or Residual R-net)
are introduced to reveal the frame or residual secret. However,
unlike the hiding stage, Bob strictly has no access to the cover or
secret, which implies that frame labels are missing. State differently,
the receiver is not aware of which R-net is the optimal handler. We

! For two RGB frames, we calculate pixel-wise absolute difference and take the average
for R, G, and B-channel respectively. The APD score is defined as the average value
across 3 channels.
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Figure 4: The computational pipeline of our proposed video steganography model. Each container passes through two R-nets respectively
to get two revealed messages. The subfigure on the right shows the classification mechanism of the RoR-net.

postpone this decision to the next step. The container frame will
be sent to both R-nets and obtained two revealed secret frames.

Step-5: Reference-or-Residual Classification: Our proposed tem-
poral residual modeling raises new challenges to the classic scheme
as depicted in Figure 1 - Bob receives two copies of revealed se-
cret messages in Step-4, from Reference R-net or Residual R-net
respectively. Clearly, only one of the secret message is true. Bob
needs to pick out the real message. In fact, we can exhaustively
enumerate all possible messages: the real reference and fake resid-
ual (container with a true reference secret gets through Reference
and Residual R-nets respectively), real residual or fake reference
(similar to above, but containers now carry residuals), totalling four
valid cases. Therefore, we formulate it as a four-way classification
problem. As seen in Figure 4, a Reference-or-Residual (RoR) Net is
devised for judging an input revealed message.

Step-6: Residual Frame Reconstruction: This step is optional if
Step 5 judges a message as real reference. However, for a residual
frame, it is not visually understandable per se. One need to add
revealed residuals to the correct reference frame for obtaining the
concealed video frame. Since we always process video frames in
temporal order, we can record the latest reference frame for recon-
structing residuals. Due to the addition operation, an unavoidable
problem is such reconstruction scheme will introduce two parts of
errors to reconstructed residual frame (from the corresponding re-
constructed reference and the residual itself). To tackle this problem,
we assume Alice has access to the protocol of revealing process.
When labeling reference and residual frames in step-1, she first
sends the frame to Reference H-net and R-net to get the revealed
reference secret. Instead of comparing current secret frame with
latest secret reference, the residual frame is labeled by calculating
the APD between current secret and latest revealed reference secret.

3.2 Hiding/ Revealing Networks

In our proposed system, each pair of H-net / R-net for hiding /
revealing specific type of frame is jointly trained before the RoR

net. Each H-nets take the concatenation of cover frame F.qy, and
corresponding secret frame Fs.. as input and output container
frame F.op. In practice, we choose the U-net model (7, 22] for both
H-nets. The network specifications are found in Table 1. We use the
following loss to measure distortion between cover and container

LH(Fcov,FconZHe) = ||Feov — FCOHH;V o))

where || - ||F is the Frobenius norm.

We let R-net have a mainframe of five convolutional layers, each
of which is paired with BN layer and LeakyReLU. The input of R-
net is container frame F,, after codec and the output is revealed
secret F, .y, 0qleqd- The specification of R-nets is found in Table 2.
The R-net models are trained to minimize the discrepancy between
the secret and its revealed version:

LR(FSCCaFrE‘U;RQ) = ||Fsec _Frev”%‘- @)

We define overall loss function for learning H-nets / R-nets
as Lsym = Ly + ALg. Here constant A is used to balance the
perceptual performance of container and revealed secret. For all
experiments, A is set as 0.75. It should be clarified that all nets do
not share any parameter.

3.3 Reference-or-Residual (RoR) Network

As stated earlier, to categorize the revealed message we train a four-
class CNN Reference-or-Residual (RoR) classifier. In practice, we use
the trained Reference H/R-nets and Residual H/R-nets to t training
data, and use these data to train the RoR network. The architecture
of RoR-net is similar to R-net except the network head, which is
a linear fully-connected layer followed by a softmax layer. Given
an input image, the softmax eventually returns a 4-d probabilistic
vector that categorizes the revealed information. For learning the
RoR net, we adopt the standard cross-entropy loss to enforce label
consistency.

On the testing set, an accuracy of 99.9625% was achieved, which
is nearly perfect yet the RoR-net is still fooled by some hard samples.
To attack this issue, we propose an improved judgment method.



Table 1: Architecture of both Reference Hiding network and Residual Hiding network. There is a batch normalization layer
(BN) and a Leaky Rectified Linear Unit (LeakyReLU) after each convolution layer. And there is a BN and a Rectified Linear Unit
(ReLU) after each deconvolution layer except for the last one. The last deconvolution layer is followed by a Sigmoid function.

Index Type Kernel Stride Padding Input Out Concatenation

1 Conv2d. 4x4 2 1 6 64 N/A
Conv2d. 4x4 2 1 64 128 N/A

3 Conv2d. 4x4 2 1 128 256 N/A

4 Conv2d. 4Xx4 2 1 256 512 N/A

5 Conv2d. 4x4 2 1 512 512 N/A

6 Conv2d. 4x4 2 1 512 512 N/A

7 Conv2d. 4Xx4 2 1 512 512 N/A

8 deConv2d. 4x4 2 1 512 512 N/A

9 deConv2d.  4x4 2 1 1024 512 concat with layer #6

10  deConv2d.  4x4 2 1 1024 512 concat with layer #5

11 deConv2d.  4x4 2 1 1024 256 concat with layer #4

12 deConv2d.  4x4 2 1 512 128 concat with layer #3

13 deConv2d.  4x4 2 1 256 64  concat with layer #2

14  deConv2d.  4x4 2 1 128 3 concat with layer #1

Table 2: Architecture of both Reference Reveal network and Residual Reveal network. Each layer has a 3x3 convolution. There
is a batch normalization layer (BN) and a Rectified Linear Unit (ReLU) after each convolution layer except for the last one. The

output convolution layer is followed by a Sigmoid function.

Index  Type  Kernel Stride Padding Input Out
1 Conv2d. 3%X3 1 1 3 50
2 Conv2d. 3x3 1 1 100 50
3 Conv2d. 3%3 1 1 100 50
4 Conv2d. 3%X3 1 1 100 50
5 Conv2d. 3X3 1 1 100 50
5 Conv2d. 1x1 1 0 100 3

Given a specific type of container frame, the Reference and Resid-
ual R-nets will output two revealed messages. Then RoR-net will
output two 4-d probabilistic vectors. Because there are only two
combinations of reference and residual values, i.e. real reference
and fake residual (generated by container with reference frame)
or fake reference and real residual (generated by container carry-
ing residual frame), we calculate a final score vector by executing
element-wise addition of the two probabilistic vectors. After that,
we add the score of real reference and score of fake residual as P1.
The score of fake reference and the score of real residual was added
up as P2. If P1 is larger than P2, we suppose that this container
conceals reference information, otherwise it hides residuals. The
subfigure of Figure 4 shows a classification process example of a
container with a true reference frame. This simple scheme brings a
100% accuracy on the test set. It is worth noting that this accuracy
is obtained on a set of 24,000 samples, so though small(< 5e — 5),
the possibility of misclassification of references and residuals ex-
ists. If a frame is misclassified unfortunately, the successive frames
will be affected until the next reference is correctly classified. This
infrequent error can be reduced by choosing a smaller threshold
(narrowing the interval of reference frames).

4 EXPERIMENTS

4.1 Dataset Description and Experimental
Setting

There is no available benchmark used for video steganography
research. We therefore construct a new benchmark as follows:
TRECVID Multimedia event detection (MED)? is a yearly compe-
tition about retrieving specific semantic events (such as “birthday
party" or “parkour”) from a huge pool of videos. The MED 2017
video corpus consists of more than 0.3 Million videos with high-
quality annotation. Since our task is essentially unsupervised, we
ignore the video semantic labels and randomly sample 12,000 videos
from the whole set. For each video, a 2-second clip is randomly
cropped and 24 frames are extracted using the tool of FFMPEG. We
generate a data split of training / validation / testing subsets, with
10,000, 1,000, and 1,000 video clips respectively.

We get the splitting threshold 30 by calculating mean APD be-
tween the twelfth frame and the first frame on all training data and
generate 43,610 reference frames and 196,840 residuals. Videos are
randomly drawn to form the (cover, secret)-pair. The Reference H-
net is trained using all reference frames, and Residual H-net utilizes
the residuals. All decoded messages collectively train the four-way

http://www-nlpir.nist.gov/projects/tv2017/Tasks/med/
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Figure 5: Hiding results using our video model. Left pair of each set: original cover and secret. Center pair: cover frame embedded with the
secret frame (container) and the revealed secret frame. Right pair: Residual errors for container and secret (enhanced 5x). Secret frames in

odd and even rows are reference / residual frames respectively. The results are achieved by setting CSL to identity-mapping layer.

RoR net. All frames are resized to 256 X 256 pixels before sending
to networks. We tune the network parameter using Adam with
standard parameters and use an initial learning rate of 0.001 that
is decayed by a factor of 10 each time the validation loss plateaus
after 5 epochs. The best model on the validation set is kept as the
final model.

4.2 Empirical Evaluation and Analysis

Figure 5 shows the steganography results on selected videos. For
each video, we show both the results of Reference H/R-nets and
Residual H/R-nets. By investigating the residuals between container-
cover and secret-revealed secret pairs as in Figure 5, one can observe
that the container frames still look visually natural and the residual
error is smaller when hiding a residual frame. Since no existing
work exploring hiding video in another video, we choose four best-
known steganography methods that have comparable capacity for
information embedding with ours, including 4bit-LSB, HRVSS [10],
Baluja [3] and HiDDeN [54]. HRVSS uses an improved LSB strategy
to hide 8 bits of one gray image in three channels of another RGB
image. Although the input secret is a color image, it can only reveal
its gray version. As HiDDeN is not specially designed for high-
capacity steganography, we reimplement its input and output layer
to ensure the consistence of experiment settings. In Table 3, we re-
port several performance measures on visual similarity and quality
loss between cover-container pair and secret-revealed secret pair
respectively, including APD, RMSE, PSNR (Peak Signal-to-Noise
Ratio), SSIM (Structural Similarity Index) and VIF (Visual Informa-
tion Fidelity) [46]. We also perform visual comparison with other

methods in Figure 6 and clear superiority goes to our model. Both
4bit-LSB and Baluja output containers and revealed secrets with
obvious textures. Undesirable color bias phenomenon can be found
in the result frames of HiDDeN. It is seen that our full model enjoys
few distortions for both the container and revealed secret frame.
Our model yields optimal performance in both image purity and
color fidelity. It is clarified that all the results are achieved under
the setting of lossless transmission and the CSL in our model is set
to identity-mapping layer.

4.3 Investigation on Adversarial Learning

In steganography, a prominent goal is to fool the adversary, Eve
in Figure 1. An interesting problem to us is: after collecting how
many labeled cover / container data, the adversary will become
accurate enough to detect the presence of secret message? Without
loss of generality, we assume the adversary uses a 6-layer CNN for
learning a binary classification from labeled data. We investigate
both LSB and our video model, as shown in Figure 7. Interestingly,
both methods tend to have zero probability of fooling the adversary
after about 2,000 labeled data are leaked.

To increase the resistance to the adversary, we explore an idea of
adding an adversarial learning sub-model, similar to [17]. Specifi-
cally, besides H/R-nets we incorporate an adversarial discriminator
(we assume it has a common CNN architecture). It can receive
frames from the cover and container to make a judgment. If the
discriminator cannot distinguish a cover or container, it means that
the container generated by H-nets is able to fool this discriminator.
We adopt the classic GAN [16] loss for this discriminator. In one of
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Right columns: containers and revealed secrets. All results are achieved under the setting of lossless transmission. Our model achieves better
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Table 3: Comparison of quality measures on cover-container pair and secret-decoded secret pair under the setting of lossless
transmission. T denotes higher is better, and vice versa.

method cover-container pair secret-revealed secret pair
PSNRT SSIMT  VIFT RMSE| APD| PSNRT SSIMT VIFT RMSE| APD|
4bit-LSB 31.88  0.6287  0.6145 6.59 5.51 29.41 0.6550  0.6405 8.73 7.29

HRVSS [10] 39.95 0.7735  0.8038 2.83 2.18 2493  0.8702 0.3634 20.12 11.79
Baluja [3] 38.97 0.7796  0.7759 3.05 2.17 33.91 0.7501  0.6649 5.39 3.92
HiDDeN [54] 32.13 0.8267  0.6265 7.24 5.31 34.19 0.7462  0.6850 5.24 3.80
ours 40.62 0.8466 0.8286 2.50 1.68 40.76 0.8542  0.8368 2.50 1.66

Table 4: Comparison of quality measures with/without CSL under the setting of lossy transmission.

method cover-container pair secret-decoded secret pair
PSNRT SSIMT VIF] RMSE| APD| PSNRT SSIMT VIFT RMSE| APD|
train without CSL 40.62 0.8466  0.8286 2.50 1.68 24.75 0.4614 0.3617 19.13 10.82

train with CSL 36.51 0.7533  0.7127 3.87 2.82 33.43 0.6714  0.6023 5.54 4.18

our experiments, we combine this GAN loss with H/R losses, mod- model in Table 3. This implies that the new loss sacrifices APD in
ulated via a hyper-parameter (set to 3e-4 empirically), and re-train H/R-nets for lower detectability by the adversary.
the video model. The APD of the re-trained H/R-nets are 2.81 and After re-training, we plot the curve of the new model in Figure 7

3.32, respectively, which are slightly worse than the original video (denoted as “w/ GAN"). The apparent gap between the curves of
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Figure 8: Comparison with different splitting threshold on test set.
The light blue bar denotes percentage of residual frames generated
under the certain threshold.

original model (denoted as “w/o GAN") and new model indicates
that the latter is enhanced for anti-steganalysis. For example, for
the original model, leaking 400 training pairs can enable the at-
tacker to correctly distinguish 80% testing samples. While for the
adversarially-trained new model, to achieve this accuracy, more
than 600 pairs are required. This experiment serves a strong ev-
idence that incorporating a GAN-style adversarial discriminator
can lead to a more steganalysis-secure message embedding. It is
also noted that, for LSB the adversary can easily perform shift op-
erations on covers and containers to distinguish, making it less
secure.

4.4 Codec Simulation

Let us detail the design of Codec Simulation Layer (CSL). Since
video codec is generally non-differentiable, we introduce some ap-
proximation for ensuring gradient’s back propagation through this
layer. Specifically, We use image2 demuxer to sythesize mp4 video
file from container frames via FFMPEG (parameter gscale is set to
0 and vb is 100M), and then extract frames from the compressed
video. After comparing the frames before and after codec, we find
that the variation of each pixel approximately obeys the lognormal
distribution, which motivates us to utilize random noise generator
for simulating codec. CSL is initialized as identity mapping. After
a few epoches of training, CSL switches to draw random noises

from the lognormal distribution independently for each pixel and
adds the noise to the original pixel value. This can be regarded as a
tractable simulation of codec.

Table 4 shows that under the setting of lossy transmission, the
results of training with/without CSL are quite different. In the first
experiment of Table 4, we use the same H-net and R-net as those in
experiments of Table 3, and the performance of the container is not
affected. The container is then compressed and decompressed to
get the container’. As the parameters of R-net trained on container
are not applicable to container’, the visual performance of revealed
secret is surely very poor (with undesirable light spots) and all
measures of secret-revealed secret pair get worse sharply. After
fine-tuning H-net and R-net with CSL in an end-to-end manner,
the parameters of our model can adapt to the effects of video codec
and restored secrets are consistently better on all measures. The
randomness introduced by CSL slightly reduces the visual perfor-
mance of the container, but greatly enhances the performance of the
revealed secret. This proves the addition of CSL successfully miti-
gates the problem of poor performance of revealed secret caused
by video codec in practical use at a small price.

4.5 The Choice of Threshold

We adopt a thresholding scheme to split reference and residual
frames. However, choosing a proper threshold is non-trivial. When
selecting different threshold, the APDs between cover-container
pair and secret-revealed secret pair are presented in Figure 8. En-
larging the threshold will generate more residuals with more infor-
mation, making the residual branch harder to reveal the residual
secret and degrading the final revealed secret. If we set a smaller
threshold, there will be more reference frames, making the video
model quickly converge to the image steganography. In practical
use, one may adjust the threshold for different needs and applica-
tion scenarios. We consider the threshold is a trade-off of quality
between the container and revealed secret. For example, it is possi-
ble to enlarge the threshold when the security of container is more
important than quality of decoded secret. In our test stages, the
threshold is set to 30 to ensure the performance of both container
and decoded secret.

5 CONCLUDING REMARKS

We present a novel deep neural network for the task of high-
capacity video steganography. To fully utilize the sparse property
of inter-frame differences, we develop a temporal residual modeling
technique, separately treating reference and residual frames during
generating steganographic videos. We also take into consideration
the effect of video codec process in lossy transmission. Comprehen-
sive evaluations and studies show the superiority of our method.
The future work shall include the exploration of more sophisticated
deep models, such as C3D [51], which may better model temporal
relationship between frames.
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