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ABSTRACT
In recent years, locality-sensitive hashing (LSH) has gained plenty
of attention from both the multimedia and computer vision com-
munities due to its empirical success and theoretic guarantee in
large-scale visual indexing and retrieval. Conventional LSH algo-
rithms are designated either for generic metrics such as Cosine sim-
ilarity, `2-norm and Jaccard index, or for the metrics learned from
user-supplied supervision information. The common drawbacks of
existing algorithms are their incapability to be adapted to metric
changes, along with the inefficacy when handling diverse seman-
tics (e.g., more than 1K different categories in the well-known Im-
ageNet database). For the metrics underlying the hashing structure,
even tiny changes tend to nullify previous indexing efforts, which
motivates our proposed framework towards “reconfigurable hash-
ing". The basic idea is to maintain a large pool of over-complete
hashing functions embedded in the ambient feature space, which
serves as the common infrastructure of high-level diverse seman-
tics. At the runtime, the algorithm dynamically selects relevant
hashing bits by maximizing the consistency to specific semantics-
induced metric, thereby achieving reusability of the pre-computed
hashing bits. Such a reusable scheme especially benefits the index-
ing and retrieval of large-scale dataset, since it facilitates one-off in-
dexing rather than continuous computation-intensive maintenance
towards metric adaptation. We propose a sequential bit-selection
algorithm based on local consistency and global regularization. Ex-
tensive studies are conducted on large-scale image benchmarks to
comparatively investigate the performance of different strategies
on reconfigurable hashing. Despite the vast literature on hashing,
to our best knowledge rare endeavors have been spent toward the
reusability of hashing structures in large-scale datasets.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding
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1. INTRODUCTION
With the explosive growth of available visual data in domains

such as shared photos or video clips on the Web, efficient index-
ing for large-scale datasets becomes increasingly critical for image
and video retrieval. Usually in such database all items are stored
as uniformly-formatted high-dimensional feature vectors, and one
simple yet essential operation is to efficiently find a set of nearest
neighbors for an arbitrary query by comparing inter-feature prox-
imity. A naive linear-scan implementation involves pairwise com-
putations between the query and all items in the database. Fortu-
nately, in most applications there is no need to identify the exact k-
nearest neighbors. Instead, approximate nearest neighbors (ANN)
achieve comparable performance in many scenarios, meanwhile
greatly decreasing the computational cost. Recent progress wit-
nessed the popularity of locality sensitive hashing (LSH) as an in-
valuable tool for retrieving approximate nearest neighbors in large-
scale datasets. The basic idea of LSH is to cast data into indepen-
dently generated hash buckets and normally it guarantees higher
collision probability for similar data. The line of work has gained
considerable empirical success in a variety of tasks such as image
search, template matching, near-duplicate image or video retrieval,
human pose estimation etc.

The key ingredient of an LSH algorithm is the unique metric
that it works for. Original LSH algorithms are devised for uniform-
length feature vectors equipped with “standard" metrics, including
Jaccard Index [2], Hamming distance [8], `1-norm [1], `2-norm [1],
Cosine similarity [3], or general `p-norm (p ∈ (0, 2]) [4]. Although
accompanied with strict collision bound analysis, unfortunately it
is seldom the case that pairwise similarity between visual identities
(e.g., images, three-dimensional shapes, video clips) are gauged
using aforementioned metrics. Instead, the so-called Mercer ker-
nels [16] provide more flexibility by implicitly embedding original
features into high-dimensional Hilbert spaces. Representative Mer-
cer kernels widely used by multimedia practitioners include the Ra-
dial Basis Function (RBF) kernel [16] and Pyramid Match Kernel
(PMK) [6]. Previous study [9, 11, 7] shows the extension of LSH
algorithms to the kernelized case is feasible.

Note that all of aforementioned metrics (including those induced
from Mercer kernels) are explicitly pre-defined. More complica-
tions stem from the ambiguous metrics implicitly defined by a bunch
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Figure 1: Illustration of reconfigurable hashing. The left subfigure shows a toy dataset and the pre-computed redundant hashing
functions, while the contents on the right panel sketch the idea of optimal hashing bit selection toward specific semantic category.

of pairwise similarity (or dissimilarity) constraints, which frequently
occurs in the research field of metric learning [22]. Hashing with
this kind of partial supervision is challenging. Previous efforts
address this task towards two directions: 1) hashing with learned
metric [9], which transfigures the original metrics (typically via
the modulation of Mahalonobius matrix) and then applies standard
hashing techniques. 2) data-dependent hashing with weak super-
vision [11, 18], which seeks most consistent hashing hyperplanes
by constrained optimization. Despite their success, existing tech-
niques fail to handle the diverse semantics in real-world multimedia
applications. The cruxes of the dilemma originate from two factors:

• The ambiguity and inconstancy of the semantics. An exam-
ple is the visual semantics induced from pairwise affinity re-
lationship, which is either constructed from user labeling or
community-contributed tags. Unfortunately, both informa-
tion sources are usually arbitrarily created and suffer from
errors. Moreover, the collection of constraints is subject to
frequent update, which potentially causes semantic drifting.
Since both the hashing scheme and the resultant indexing
structure are seriously hinged on the underlying semantics
or metric, one-off data indexing is unfeasible under the cir-
cumstance of unstable semantics, which triggers unnecessary
labors spent on indexing structure maintenance.

• The diversity of the semantics [20]. Prior study assumes the
data are associated with limited number of disparate seman-
tics, which is usually not the true case in real-world bench-
marks. For example, the hand-labeled ImageNet dataset1

contains more than ten million images depicting 10,000+ ob-
ject categories. Simultaneous pursuit of optimal hashing for
all categories is unwise considering the unknown and com-
plex intrinsic data structures. Another possible solution is
to separately conduct hashing for each unique category and
concatenate all to form the final indexing structure, which
unfortunately is uneconomic in terms of storage (actually the
overlapped semantic subspace between two categories im-
plies that several hashing bits can be shared to save the stor-
age) and vulnerable to semantic changes and new emerging
categories owing to the expensive re-indexing the large-scale
dataset.

The above-mentioned drawbacks of existing methods motivate
“reconfigurable hashing" proposed in this paper. Figure 1 illustrates
the basic idea of reconfigurable hashing, whose basic operation is to
generate a set of over-complete hash functions and perform one-off
data indexing. When the semantic-related annotation or constraints
1http://www.image-net.org/challenges/LSVRC/2010/

arrive, the algorithms optimally choose a small portion of relevant
hashing bits from the pool to best fit the target semantic metric. Un-
like conventional methods, the proposed indexing framework sup-
ports unlimited number of diverse semantics based on one-off in-
dexing, and also admits the adaptation to the changed metrics at low
computational cost and zero re-indexing effort. In detail, our contri-
butions in this paper can be summarized as below: 1) a novel hash-
ing algorithm named random-anchor-random-projection (RARP),
which is equivalent to redundant random partition of the ambient
feature space and proves superior to other candidate LSH algo-
rithms. Strict collision analysis for RARP is also supplied. 2) we
discuss different strategies for optimal hash function selection and
further proposed a sequential algorithm based on local consistence
and global regularization. 3) the idea of reconfigurable hashing
is content agnostic and consequently domain independent, but the
performances of different selection strategies vary. Comparative
investigation about the proposed and other candidate strategies is
provided on four popular multiple-semantics image benchmarks,
which validates the effectiveness of reconfigurable hashing and its
scalability to large-scale data set.

The rest of the paper is organized as follows. Section 2 provides
a brief survey of relevant literature. Section 3 defines the notations
used in this paper and formally states the problem to be solved.
Section 4 elaborates on the proposed formulation and also other
alternative strategies. More details of the hashing collision analysis
are found in Section 4.4. Extensive experiments are conducted on
four real-world benchmarks in Section 5 and in Section 6 we give
the concluding remarks and point out several directions for future
work.

2. RELATED WORK
Existing LSH algorithms can be roughly cast into the following

categories:

• Element sampling or permutation: Well-known examples
include Hamming distance [8] and Jaccard Index [2]. For the
Hamming case, the work in [8] presents a hashing scheme
h(x) = xi, where i is randomly sampled from the dimension
index set {1, . . . , d} and xi is the binary value of the i-th
dimension. The guarantee of the locality sensitive property
is also given in [8].

• Project-Shift-Segment: The idea is to map a point onto R1

along a projection direction in Rd, randomly shift the pro-
jection values, and finally partition into intervals of length
lw (lw is data-dependent parameter and need fine tuning).
Examples include the algorithm for `1 norm [1], for Cosine
similarity [3, 5] and for `p norm [4].



• Prototype-based methods: Another LSH family uses pre-
defined prototypes, such as polytopes on 24-D Leech lattice
in `2 space [1] (i.e., E2LSH) or 8-D lattice [14].

• Learning-based methods: Assisted with semantic annota-
tions or labels, LSH can be adapted via various learning meth-
ods like the classic SpectralHash [21] and SemanticHash [15].
Recent progress has also been made on hashing with weak
supervision [18, 11] and sequential optimization [19].

From the brief survey in this section, it is observed that prior re-
search is mainly focusing on designing LSH algorithms for specific
metrics, while the task of our work aims to provide a meta-hashing
method applicable in the existence of scalable diverse semantics
and adaptive metrics. To our best knowledge rare related work can
be found. It still lacks in-depth exploration and remains an open
problem.

3. NOTATIONS AND PROBLEM SETTING
Before continuing, let us formally establish the notations and

the problem setting. Denote X = {x1, . . . , xn} to be the set of
feature vectors in Rd. Let hi : Rd 7→ {0, 1}, i = 1 . . .m be
m independently-generated hashing functions, where m is large
enough to form an over-complete hashing pool. All samples in X
are hashed to obtain binary bits according to the collection {hi}.
The hashing operation is performed only once and not required to
be redone any more. The aim of reconfigurable hashing is to select
compact hashing bit configuration from the pool to approximate
any unknown metrics in terms of Hamming distance. Normally the
maximum number of activated hashing functions (denoted as l) is
budgeted and l � m. To define the target semantics or metrics,
assume a fraction of data in X are associated with side informa-
tion. Specifically we focus on the widely-used pairwise relation-
ship [11, 18] throughout this paper,which reveals the proximal ex-
tent of two samples. Denote two sets as M or C. Two arbitrary
sample pair (xi, xj) ∈ M reflects the acknowledgement from the
annotators that xi, xj semantically form a neighbor-pair in the con-
text of target category. Similarly, (xi, xj) ∈ C implies that they
are far away in the unknown metric space or have different class
labels. Note that manual annotation is typically labor-intensive,
therefore normally we assume that the labeled samples only cover
a small portion of the whole dataset. Also for large-scale dataset
associated with diverse semantics, the annotation is heavily unbal-
anced. In other words, the cardinality ofM is far less than that of
C, which mainly follows from the fact that C is the amalgamation
of all other non-target categories. A qualified algorithm on recon-
figurable hashing is expected to survive in such settings.

Generally we can regard the hashing function hi as a black box
and only visit the binary hashing bits during the optimization. How-
ever, different hashing schemes notably affect the retrieval quality
given budgeted hashing bits. For normalized feature vectors, one of
the most popular hashing scheme is proposed by Charikar et al. [3],
which is defined as below:

h(x) =

{
0, if ω>x < 0
1, if ω>x ≥ 0

(1)

where the hashing vector ω is uniformly sampled from the unit hy-
persphere Sd−1. The collision probability is Pr[h(x) = h(y)] =

1 − Θ(x, y)/π, where Θ(x, y) = arccos
(

x·y
‖x‖‖y‖

)
corresponds

to the inter-feature angle. In this paper we target the data lying
in the `p-normed spaces (0 < p ≤ 2), and propose a hashing
scheme named random-anchor-random-projection (called RARP

hereafter), which belongs to the random projection based hash fam-
ily yet differentiates itself from others by taking data distribution
into account. To generate a hashing function, a sample xo is ran-
domly sampled from the dataset to serve as the so-called “anchor
point". Also a random vector ω is sampled uniformly from the p-
stable distribution [4]. The projection value can be evaluated as
〈ω, x − xo〉 = 〈ω, x〉 − bω,xo , where bω,xo = 〈ω, xo〉 is actually
the hashing threshold, i.e.,

h(x) =

{
0, if 〈ω, x〉 < bω,xo
1, if 〈ω, x〉 ≥ bω,xo (2)

where 〈ω, x〉 denotes the inner product between ω and x. The col-
lision analysis for RARP is discussed in Section 4.4.

In the hashing literature, it is common to utilize Hamming dis-
tance to approximate the distance or similarity in the original fea-
ture space, which is defined as below:

H(x, x′) =

B∑
b=1

(hb(x)⊕ hb(x′)), (3)

where ⊕ denotes the logical XOR operation. Recall that the range
of each hashing function is {0, 1}. Equation (3) can be expressed
in a more tractable form:∥∥h(x)− h(x′)

∥∥ =
(
h(x)− h(x′)

)T (
h(x)− h(x′)

)
. (4)

Here we adopt a generalized Hamming distance to ease numer-
ical optimization. Specifically, we introduce the parametric Ma-
halonoisbu matrix M for modulating purpose. To ensure the pos-
itiveness of the resulting measure, M is required to reside in the
positive semi-definite (p.s.d) cone, or mathematically M � 0.

‖h(x)− h(x′)‖M =
(
h(x)− h(x′)

)T ·M · (h(x)− h(x′)
)
. (5)

4. THE PROPOSED ALGORITHM
As a meta-hashing framework, the crucial operation in recon-

figurable hashing is the selection of hashing bits. In this section,
we present our proposed algorithm based on the averaged margin
and global regularization, along with other four possible algorithms
for the same task, based on random selection, maximum varaince,
maximum local margin and Shannon information entropy respec-
tively. The empirical evaluation of above methods is postponed to
the experimental section.

4.1 Formulation
As stated above, we rely on setsM and C to determine the un-

derlying semantics. However, the construction of pairwise relation-
ship has quadratic complexity of the sample number. To mitigate
the annotation burden, a practical solution is instead building two
sets L+ and L−. The former set consists of the samples assigned
to the target semantic label, and L− collects the rest samples. We
further generate random homogeneous pair and random hetero-
geneous pair to enrich M and C respectively. For each sample
xi ∈ L+, we randomly select xj ∈ L+ with the guarantee i 6= j.
The pair (xi, xj) is called random homogeneous pair. Likewise,
given xk ∈ L−, (xi, xk) constitutes a random heterogeneous pair.
In such a way the construction ofM and C is efficient.

Matrix M in Equation (5) can be eigen-decomposed to obtain
M =

∑K
k=1 σkwkw

T
k . To simplify numerical optimization, we

impose σk = 1 such thatM = WWT whereW = [w1, . . . , wK ].
Denote the index set I to be the collection of selected hashing bits
at current iteration. Let hI(xi) be the vectorized hashing bits for
xi. Two margin-oriented data matrices can be calculated by travers-
ing M, C respectively and piling the difference column vectors,



i.e.,

Xm =
{
hI(xi)− hI(xj)

}
(xi,xj)∈M

Xc =
{
hI(xi)− hI(xj)

}
(xi,xj)∈C

We adopt the averaged local margin [17] based criterion to measure
the empirical gain of I, which is defined as below:

J(W ) =
1

nc
tr{WTXcX

T
c W

T } − 1

nm
tr{WTXmX

T
mW

T } (6)

where nc and nm are cardinalities of C,M respectively. Intuitively
J(W ) maximizes the difference between random heterogeneous
pair and random homogeneous pair in terms of averaged Ham-
ming distances, analogous to the concept of margin in kernel-based
learning [16].

Moreover, prior work such as the well-known spectral hash-
ing [21] observes an interesting phenomena, i.e., hashing functions
with balanced bit distribution tend to bring superior performance.
In other words, the entire dataset is split into two equal-size parti-
tions. Intuitively, balanced hashing function separates more nearest
neighbor pairs. Coupling the independence condition of different
bits, such a scheme results in more buckets. Consequently the col-
lisions of heterogeneous pairs are reduced with high probability.
Motivated by this observation, we introduce a global regularizer
regarding bit distribution, i.e.,

R(W ) = E
(
‖WT (hI(xi)− µ)‖22

)
, (7)

where µ represents the statistical mean of all hashing-bit vectors.
In practice a small subset Xs with cardinality ns is sampled and
serves as statistical surrogate. Equation (7) can be rewritten as:

R(W ) =
1

ns
tr(WTXsX

T
s W )− tr(WTµµTW ). (8)

For brevity, denote LJ = XcX
T
c /nc −XmXT

m/nm and LR =
XsX

T
s /ns − µµT . Putting all together, finally we get the regular-

ized objective function:

F (W ) = tr(WTLJW ) + η · tr(WTLRW ), (9)

where η > 0 is a free parameter to control the regularizing strength.
It is easily verified that

maxF (W ) =

K∑
k=1

λk, (10)

where {λk} constitutes the non-negative eigenvalues of matrixLJ+
η · LR (the negative eigenvalues stem from the indefinite property
of LJ ) and the value of K is thereby automatically determined.

4.2 Greedy Sequential Bit Selection
Due to the large number of the hashing pool, global optimization

is computationally forbidden. Here we employ a greedy strategy
for sequential bit selection. In the t-th iteration, each unselected
hashing function hp is individually added into current index set
I(t) and the optimum of F (W ) under I(t)∪{p} is computed. The
hashing function that maximizes the gain will be eventually added
into I(t). The procedure iterates until the hashing bit budget is
reached.

Unfortunately, one potential selection bias is rooted in the term
tr{WTXcX

T
c W

T } in Equation (6), which can be equivalently
expressed as

∑
(xi,xj)∈CW

Thijh
T
ijW

T with hij = hI(xi) −
hI(xj). Owing to the summation operation over the constraint set
C, the estimation is smooth and robust. However, recall that C is

randomly rendered. In some extreme case, the selected optimal
hashing functions may be trapped in the regions where the den-
sity of (xi, xj) is relatively high, resulting the zero-norm values of
some difference vectors (i.e., ‖hij‖0) are extremely high.

To mitigate this selection bias, we truncate too-high zero-norm
to avoid over-penalizing. Given a pre-defined threshold θ (in imple-
mentation we set θ = 5, which is a conservative parameter since
hashing buckets with distances larger than 5 are rarely visited in
approximate nearest neighbor retrieval), we re-scale the difference
vector via the following formula:

hij =
min

(
‖hij‖0, θ

)
‖hij‖0

· hij . (11)

4.3 Alternative Strategies
Besides our proposed hashing bit selection strategy, we also ex-

plore other alternatives. In detail, we choose the following:
Method-I: random selection (RS). In each iteration, select a hash-
ing bit from the pool by uniform sampling. The procedure ter-
minates when maximum budgeted number of hashing functions is
reached.
Method-II: maximum unfolding (MU). As previously mentioned,
previous research has revealed the superior performance of bal-
anced (or max-variance) hashing function. In other words, it prefers
hashing schemes with maximum unfolding. This strategy selects
top-ranked maximum-variance hashing bits from the pool.
Method-III: maximum averaged margin (MAM). Similar to Equa-
tion (6), we can compute the averaged margin of each hashing
function in the pool according to the formula and keep top-scored
hashing bits via greedy selection.

score(hp) = E(xi,xj)∈C(hp(xi)⊕ hp(xj))−
E(xi,xj)∈M(hp(xi)⊕ hp(xj)). (12)

Method-IV: weighted Shannon entropy (WSE). For each candi-
date in the pool, we calculate a score based on the Shannon en-
tropy [10]. For completeness we give its definition. Assume the
index set of data as L, two disjoint subsets Ll and Lr can be cre-
ated by a Boolean test T induced by a hashing function h(·). The
Shannon entropy is computed as:

SC(L, T ) =
2 · IC,T (L)

HC(L) +HT (L)
, (13)

where HC denotes the entropy of the category distribution in L.
Formally,

HC(L) = −
∑
c

nc
n

log2

nc
n
, (14)

where n is the cardinality of L and nc is the number of samples in
the category with index c. Maximal value is achieved when all nc
are the same. Similarly, the split entropy HT is defined for the test
T , which splits the data into two partitions:

HT (L) = −
2∑
p=1

np
n

log2

np
n
, (15)

where np (p = 1 or 2) denotes the sample number in Ll or Lr .
The maximum of HT (L) is reached when the two partitions have
equal sizes. Based on the entropy of L, the impurity of T can be
calculated by the mutual information of the split, i.e.,

IC,T (L) = HC(L)−
2∑
p=1

np
n
HC(Lp). (16)



Intuitively, SC(L, T ) prefers T that is as balanced as possible and
meanwhile separates different categories. As aforementioned, in
the setting of reconfigurable hashing, the numbers of labeled sam-
ples from target category and non-target categories are heavily un-
balanced, therefore we re-scale the sample weights such that the
summed weights for the target category and non-target categories
are equal. Finally the hashing functions with the highest scores are
kept.

4.4 Hashing Collision Probability
Before diving into the experimental results, we would like to

highlight the asymptotic property of the proposed random-anchor-
random-projection (RARP) hashing functions.

For two samples x1 and x2, let c = ‖x1 − x2‖p. In the hashing
literature, it is well acknowledged [8] that the computational com-
plexity of a hashing algorithm is dominated by O(nρ), where n is
the dataset size and ρ < 1 is dependent on algorithm choice and c.
Suppose ω determines the parametric random hashing hyperplane.
It is known that 〈ω, x1−x2〉 is distributed as cX , whereX is drawn
from the p-stable distribution. Denote the range of projected values
asR = maxi〈ω, xi〉−mini〈ω, xi〉 and let η = 〈ω,xo〉−mini〈ω,xi〉

R
(xo is the random anchor). Without loss of generality, we assume
η > 0.5. Let gp(t) be the probability density function of the abso-
lute value of the p-stable distribution. The collision probability of
RARP can be written as

Pr (hω,xo(x1) = hω,xo(x2)) ≈
∫ ηR

0

1

c
gp(

t

c
)(η − t

R
)dt

+

∫ (1−η)R

0

1

c
gp(

t

c
)(1− η − t

R
)dt (17)

The two terms in Equation (17) reflect the chances that x1, x2
collides in the two sides of xo respectively. Note that the equal-
ity relationship only approximately holds in (17) due to the uneven
data distribution (computing the accurate probability involves dou-
ble integrals along ω), and rigorously holds in case of uniform dis-
tribution. Moreover, when R is large enough and the uniformity
holds, analytic bound for ρ exists. Analysis in this section follows
closely [4], and the detailed proofs are omitted due to space limit:

THEOREM 1. For any p ∈ (0, 2] and c > 1, there exists hash-
ing familyH for `p-norm such that for any scalar γ > 0,

lim
R→∞

ρ ≤ (1 + γ) ·max

(
1

c
,

1

cp

)
. (18)

5. EXPERIMENTS
In this section we justify the effectiveness of the proposed re-

configurable hashing through empirical evaluations on four bench-
marks: Caltech-1012, MNIST-Digit3, CIFAR-10 and CIFAR-1004.
In the experiments we compare the proposed hashing bit selecting
strategy with other alternatives presented in Section 4.3. To reduce
the effect of randomness, all experiments are iterated 30 times to
get the statistical average. By default we set η = 0.5 and choose
both 4 samples from target category and non-target categories to
constructM and C. The size of the hashing pool is fixed to be 10K
in all experiments unless otherwise mentioned. Figure 2 shows se-
lected images in the adopted benchmarks.

2http://www.vision.caltech.edu/Image_Datasets/Caltech101/
3http://yann.lecun.com/exdb/mnist/
4http://www.cs.utoronto.ca/∼kriz/cifar.html

Caltech-101 MNIST-Digit

CIFAR-10 CIFAR-100

Figure 2: Exemplar images on selected benchmarks.

Table 1: Exemplar labels in the CIFAR-100 dataset.

COARSE LABELS FINE LABELS

FISH AQUARIUM FISH, FLATFISH, RAY, SHARK, TROUT
FLOWERS ORCHIDS, POPPIES, ROSES, SUNFLOWERS, TULIPS

FOOD CONTAINERS BOTTLES, BOWLS, CANS, CUPS, PLATES
TREES MAPLE, OAK, PALM, PINE, WILLOW

PEOPLE BABY, BOY, GIRL, MAN, WOMAN
VEHICLES 1 BICYCLE, BUS, MOTORCYCLE, PICKUP TRUCK, TRAIN
VEHICLES 2 LAWN-MOWER, ROCKET, STREETCAR, TANK, TRACTOR

REPTILES CROCODILE, DINOSAUR, LIZARD, SNAKE, TURTLE
INSECTS BEE, BEETLE, BUTTERFLY, CATERPILLAR, COCKROACH

5.1 Caltech-101 and CIFAR-100
Caltech-101 is constructed to test object recognition algorithms

for semantic categories of images. The data set contains 101 object
categories and 1 background category, with 40 to 800 images per
category. As preprocessing, the maximum dimension of each im-
age is normalized to be 480-pixel. We extract 5000 SIFT descrip-
tors from each image whose locations and scales are determined in
a random manner (see [13] for more details). For the visual vocab-
ulary construction, we employ recently-proposed randomized lo-
cality sensitive vocabularies (RLSV) [12] to build 20 independent
bag-of-words feature, each of which consists of roughly 1K visual
words. Finally they are concatenated to form a single feature vector
and reduced to be 1000-dimensional by dimensionality reduction.

CIFAR-100 is comprised of 60,000 images selected from 80M
Tiny-Image dataset5. This dataset is just like the CIFAR-10, except
it has 100 classes containing 600 images each. The 100 classes
in the CIFAR-100 are grouped into 20 superclasses. Each image
comes with a “fine" label (the class to which it belongs) and a
“coarse" label (the superclass to which it belongs). Table 1 presents
some examples of these two-granularity categories. For the 32×32
pixel images, we extract `2-normalized 384-D GIST features.

5http://people.csail.mit.edu/torralba/tinyimages/
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Figure 3: The evolution of accuracies of the first 300 retrieved samples on randomly-selected Caltech-101 categories.

We randomly generate 15 samples from each category in Caltech-
101 and 30 samples for CIFAR-100 respectively, used for hashing
bit selection. For each category, a unique hashing scheme is learned
either by our proposed method or other methods mentioned in Sec-
tion 4.3 with hashing bit budget equal to 14 on Caltech-100 or 16
on CIFAR-100, therefore in total 102 different hashing schemes for
Caltech-101 and 100 for CIFAR-100. During the learning on spe-
cific category, the ensemble of the rest categories serves as the neg-
ative class. For each training sample from the target category, four
random homogenous pairs and four random heterogenous pairs are
generated by uniform sampling, forming the constraint setsM and
C respectively.

We report the averaged results over 30 runs of our proposed
method, along with the results obtained by four baselines, i.e., ran-
dom selection (RS), maximum unfolding (MU), maximum aver-
aged margin (MAM) and weighted Shannon enropy (WSE). The
results of naive linear scan (NLS) are also reported. However,
recall that NLS utilizes no side information. There is no guar-
antee that NLS provides the upper-bound of the performance, as
illustrated in the cases of Caltech-101 and CIFAR-100. We col-
lect the proportions of “good neighbors" (samples belonging to the
same category) in the first hundreds of retrieved samples (300 for
Caltech-101, and 1000 for CIFAR-100). The samples within every
bucket are randomly shuffled, and multiple candidate buckets with
the same Hamming distance are also shuffled, so that the evaluation
will not be affected by the order of the first retrieved samples (this
operation is usually ignored in the evaluations of previous work).
See Table 2 for the detailed experimental results, where the win-
ning counts of each algorithm are also compared. To better illus-
trate the evolving tendencies of reconfigurable hashing, Figures 3
and 4 plot the accuracies of selected categories from Caltech-101
and CIFAR-100 respectively. It is observed that the plotted curves
on CIFAR-100 have more gentle slopes compared with Caltech-
101’s, which reveals the different characteristics of underlying data

Table 2: Reconfigurable hashing on multi-category benchmarks
Caltech-101 and CIFAR-100. The top table illustrates the averaged ac-
curacies (%) of the first k retrieved samples (k = 300 for Caltech-101
and k = 1000 for CIFAR-100). We also count the number of categories
on which an algorithm beats all the others (102 or 100 in total on these
two benchmarks). The results are reported in the bottom table.

RS MU MAM WSE OURS NLS
CALTECH-101 3.99 4.92 10.31 10.15 11.08 10.20
CIFAR-100 1.75 2.01 3.93 3.93 4.26 4.09

RS MU MAM WSE OURS

CALTECH-101 0 0 2 1 99
CIFAR-100 0 0 4 5 91

distributions, i.e., the samples from the same category in Caltech-
101 gather more closely.

Although reconfigurable hashing is a meta-hashing framework,
the ground hashing algorithms seriously affect the final performance.
In Figure 5 we plot the logarithm of the accuracy for each category
on Caltech-101, employing either our proposed RARP or conven-
tional LSH as described in Equation (1). RARP shows superior per-
formance, which indicates that data-dependent hashing algorithms
such as RARP is promising for future exploration.

5.2 MNIST-Digit and CIFAR-10
The sample number of each category on Caltech-101 and CIFAR-

100 is relatively small, ranging from 31 to 800. To complement the
study in Section 5.1, we also conduct experiments on the bench-
marks MNIST-Digit and CIFAR-10, which have larger sample num-
ber (6K or 7K) per category.

MNIST-Digit is constructed for handwritten digits recognition.
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Figure 4: The evolution of accuracies of the first 1000 retrieved samples on randomly-selected CIFAR-100 categories.

It consists of totally 70,000 digit images, 7,000 images for each
digit in 0 ∼ 9. The digits have been size-normalized to be 28× 28
pixels. In our study, each digit image is transformed by matrix-
to-vector concatenation and normalized to be unit-length feature.
These raw grayscale vectors directly serve as the low-level feature
for recognition purpose.

Similar to CIFAR-100, CIFAR-10 is also a labeled subset of
the 80 million tiny images dataset, containing 60K 32 × 32 color
images in 10 classes (6K images for each class). The dataset is
constructed to learn meaningful recognition-related image filters
whose responses resemble the behavior of human visual cortex. In
the experiment we use the 387-d GIST image feature.

We learn category-dependent hashing schemes with 16 hashing
bit budget. The experimental settings are identical to those on
CIFAR-100, except that in the testing stage, only a portion of test-
ing samples (300 in our implementation) are chosen for evaluation.
Table 3 presents the results in terms of accuracy and winning count.

It is meaningful to investigate the correlation of the bucket num-
ber and the final performance. In Figure 6 we plot the bucket num-
ber for each of the ten categories averaged over 30 independent
runs. It is observed that MU results in the largest bucket numbers,
which is consistent to its design principle. However, the retrieval
performance of MU is only slightly better than random selection
(RS), which negates the hypothesis that increasing bucket num-
ber will promote the performance with high probability. In con-
trast, WSE has the fewest buckets compared with other three non-
random algorithms, yet the performance is amazingly excellent (see
Table 3). Intuitively, the Shannon entropy adopted in WSE favors
hashing hyperplanes that cross the boundary between target cate-
gory and its complemental categories. Such a strategy tends to keep
the samples from target category stay closely in terms of Hamming
distance and reduces unnecessary bucket creation. The high con-
trast between the small bucket number and high effectiveness sug-

Table 3: Reconfigurable hashing on two 10-category image bench-
marks MNIST-Digit and CIFAR-10. The implications of the top and
bottom tables are the same as in Table 2. Note that our proposed strat-
egy wins on all the categories.

RS MU MAM WSE OURS NLS
CIFAR-10 14.23 15.58 21.06 20.51 21.92 25.14
MNIST-DIGIT 28.24 34.96 60.97 60.00 63.60 74.74

RS MU MAM WSE OURS

CIFAR-10 0 0 0 0 10
MNIST-DIGIT 0 0 0 0 10

gests the intelligent category-aware bucket creation is crucial for
reconfigurable hashing. On the other hand, although both MAM
and our proposed strategy utilize the idea of averaged margin, the
latter brings slightly larger bucket number, which is supposed to
stem from the regularization term R(W ) defined in Equation (7).
And it is observed the combination of averaged margin and maxi-
mum unfolding improves the hashing quality.

6. CONCLUSIONS
In this paper we investigate the possibility of effective hashing

in the existence of diverse semantics and metric adaptation. We
propose a novel meta-hashing framework based on the idea of re-
configurable hashing. Unlike directly optimizing the parameters of
hashing functions in conventional methods, reconfigurable hashing
constructs a large hash pool by one-off data indexing and then se-
lects most effective hashing-bit combination at runtime. The con-
tributions in this paper include a novel RARP based hashing algo-
rithm for `p norm, a novel bit-selection algorithm based on aver-
aged margin and global unfolding-based regularization, and a com-
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Figure 6: Comparison of bucket numbers on CIFAR-10.

parative study of various bit-selection strategies. For the future re-
search direction, we are working towards two directions:

• How to identify the correlation of different hashing bits and
then mitigate its adverse effect is still an open problem in
reconfigurable hashing. Current techniques are far from sat-
isfactory. We believe that some tools developed in the infor-
mation theory community are helpful.

• The effectiveness of a hashing algorithm is heavily hinged
on the characteristics of underlying data distributions. To
develop a taxonomy about data distribution in the hashing
context is especially useful.
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