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ABSTRACT

Hand-object pose estimation aims to jointly estimate 3D poses of

hands and the held objects. During the interaction between hands

and objects, the position and motion of keypoints in hands and

objects are tightly related and there naturally exist some physical

restrictions, which is usually ignored by most previous methods. To

address this issue, we propose a learnable physical affinity loss to

regularize the joint estimation of hand and object poses. The physi-

cal constraints mainly focus on enhancing the stability of grasping,

which is the most common interaction manner between hands and

objects. Together with the physical affinity loss, a context-aware

graph network is also proposed to jointly learn independent geom-

etry prior and interaction messages. The whole pipeline consists

of two components. First an image encoder is used to predict 2D

keypoints from RGB image and then a contextual graph module is

designed to convert 2D keypoints into 3D estimations. Our graph

module treats the keypoints of hands and objects as two sub-graphs

and estimates initial 3D coordinates according to their topology

structure separately. Then the two sub-graphs are merged into a

whole graph to capture the interaction information and further re-

fine the 3D estimation results. Experimental results show that both

our physical affinity loss and our context-aware graph network can

effectively capture the relationship and improve the accuracy of

3D pose estimation.
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Figure 1: Illustration of stable and unstable grasping. During

the interaction, stability is the crucial metric for the hand-

object system. This work aims to develop learnable explicit

physical constraints which encourage the stability.
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1 INTRODUCTION

Human primarily uses hands to interact with the world. Accurate

recognition of hand pose [7, 28, 36, 43–45] and the interaction be-

tween hands and objects [1, 35, 38] are critical for understanding

human activities. It has huge potentials for a wide applications in

computer vision, such as augmented reality, human-computer inter-

action, robotics, which is beneficial to blur the boundaries between

the real and virtual worlds. However, accurate detecting 3D poses

of hands and the objects that are being handled is a quite challeng-

ing task. First, hands move quickly when they are interacting with

the world and handling objects, which results in self-occlusions of

hands and mutual occlusions between hands / objects from nearly

any given point of view. Second, the estimation of 3D hand pose

itself is not easy, as hand poses have a high degree of freedom com-

pared to other 3D tasks, such as human pose. Third, hand-object

interaction video is usually collected from moving, egocentric cam-

eras (e.g., for Augmented Reality applications), generating a large

degree of unpredictable camera motion.

To tackle the hand-object pose estimation task, [38] estimates

the pose of hands and objects separately. However, such approach

Full Research Paper  ICMR  ’21, August 21–24, 2021, Taipei, Taiwan

420



ignores the correlation between the poses of hand and handled

objects, which can be of great significance, as the poses of the hand

and the object influence each other. On one hand, estimating the

pose of the hand can provide clues for the category and pose of the

object. On the other hand, the shape of the object limits the pose

of the hand holding it. Recently, a few works [8, 37, 38] directly

learn to jointly estimate hand and object poses from RGB images

and achieve impressive results. Tekin et al. [37] propose a single 3D

YOLO model to jointly predict the 3D hand pose and object pose.

Similar to 3D human pose estimation [25], Doosti et al. propose

HOPE-Net [8], which first estimates 2D coordinates of the hand

joints and object corners and converts 2D coordinates to 3D space

with an Adaptive Graph U-Net.

However, most of these methods are limited by the following fac-

tors: Firstly, they do not consider any explicit physical constraints

between hand and object poses. Interactions impose constraints on

relative configurations of hands and objects naturally. For instance,

a stable grasp usually requires force-closure constraint [10, 23, 29],

which means that any motion of the object is resisted by a con-

tact force and the object can not break contact with the finger tips

without some non-zero external work. Secondly, they usually treat

hand keypoints and object keypoints equally, without distinguish-

ing their difference, which can be critical as the position and motion

of keypoints in hands and objects can vary a lot.

Our method aims at tackling all these issues. To this end, we

propose a learnable physical loss as a regularization and constraints

of hand-object poses to enhance their physical stability. Our key

insight is, in a stable grasp, the contact points between hands and

objects should distribute diversely around the object surface and

the center of the hand and the manipulated object should be close

possibly. In such a case the hand-object system can be robust against

some external forces, such as the object’s gravity itself. Contact

points will provide enough force to resist object’s motion and dis-

turbance. Furthermore, a context-aware graph network for simul-

taneously predicting 3D hand and object poses is also proposed.

Following [8], the whole pipeline is broken into two steps. First

an image encoder is utilized to extract image features and predict

2D keypoints for both hands and objects. Second a context-aware

graph module is exploited to convert 2D coordinates into 3D co-

ordinates. During the 2D-to-3D conversion, the hand keypoints

and object keypoints are first treated as two sub-graph to extract

their own structure information and then the two sub-graphs are

merged into a whole-graph to pass their interaction messages.

In brief, the main contributions of this paper are summarized as

the following.

(1) We first propose a novel learnable physical affinity loss to reg-

ularize hand-object poses, which works as an approximate physical

constraint to enhance the grasping stability in hand-object pose

estimation task.

(2) We develop a context-aware network structure to explore

both independent topology structure and mutual interaction mes-

sages of hands and objects from the input RGB image, which helps

improve accuracy a lot.

(3) Through extensive experiments, we show that our approach

can outperform the state-of-the-art methods in a certain margin for

the joint hand-object pose estimation task on realistic benchmarks.

2 RELATEDWORKS

2.1 Hand Pose Estimation

3D hand pose estimation is a long-standing problem in computer

vision domain, and variousmethods have been proposed.Wemainly

focus on the more recent deep learning based approaches.

A large body of the works on hand pose estimation operate on

depth images as input, which greatly reduces the depth ambiguity

of the task. These methods can be further classified into regression-

based methods, detection-based methods and hierarchical and struc-

tured methods. Regression-based methods [6, 13, 15, 20, 30, 31, 41]

aim at directly regressing 3D hand pose parameters such as 3D coor-

dinates or joint angles from the input. Ge et al. apply 3D CNNs [15]

and PointNet [13] for estimating 3D hand poses directly. However,

regressing coordinates from images or point clouds is a highly

non-linear problem, which can be hard to learn. Thus detection-

based [11, 14, 17, 26, 40] methods work in a dense local predic-

tion manner via setting a heat-map for each keypoint. Moon et

al. [26] propose a Voxel-to-Voxel prediction network (V2V) for

both 3D hand and human pose estimation. Wan et al. [40] and

Ge et al. [17] formulate 3D hand pose as 3D heat-maps and unit

vector fields, and estimate these parameters by dense pixel-wise

or point-wise regression respectively. Hierarchical and structured

methods [5, 9, 24, 30, 31, 47] aim at incorporating hand part corre-

lations or pose constraints into the model.

However, it is relatively difficult to require depth-sensors in

daily life. Thus in recent years, there is an obvious trend shifting

towards RGB-based solutions [2, 3, 16, 27, 42, 46, 48], which are

often less restricted in real-world applications. But the ambiguities

in single RGB camera and the lack of texture features make current

techniques still far more ubiquitous than depth-based methods.

Besides, due to the huge difficulty in accurate 3D annotations for

RGB images, most of these works rely on synthetic data as well.

2.2 Hand-Object Pose Estimation

Different from estimating 3D hand pose only, hand-object pose

estimation jointly detects the poses of hands and the manipulated

objects. Oikonomidiset al. [33] treat hand-object interaction as con-

text to better estimate the 2D hand pose from multi-view images.

Choi et al. [7] train two networks, one object-centered and one hand-

centered, to capture information from both the object and hand

perspectives, and share information between the two networks to

learn a better representation for predicting 3D pose. Panteleris et

al. [34] generate 3D hand pose and 3D models of unknown objects

based on hand-object interactions and depth information. Ober-

weger et al. [32] propose an iterative approach by using Spatial

Transformer Networks (STNs) to separately focus on the manip-

ulated object and the hand to predict their corresponding poses.

Later they estimate the hand and object depth images and fuse them

using an inverse STN. The synthesized depth images are further

used to refine the hand and object pose estimations.

Recently, Tekin et al. [37] and Doosti et al. [8] use deep neural

network to estimate hand and object poses from a single RGB image

in real-data. Tekin et al. [37] propose a single 3D YOLO model to

jointly predict the 3D hand pose and object pose. Doosti et al. [8]

propose HOPE-Net, which first estimates 2D coordinates of the

hand joints and object corners and convert 2D coordinates to 3D
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Figure 2: The whole pipeline of our model. First a backbone is used to estimate 2D coordinates of both hand and object key-

points from RGB images. Then context-aware graph module converts 2D coordinates into 3D coordinates for hand and object

separately to learn their shape prior and then refine 3D poses jointly according to their interaction messages.

with a Graph U-Net. However, they ignore the physical constraints

and affinity between hands and objects during their interaction,

which is of great significance.

Hasson et al. [18] shows that by incorporating physical con-

straints, two separate networks responsible for learning object and

hand representations can be combined to generate better 3D hand

and object shapes, which is similar to our work. However, ours

differs from Hasson et al. [18] in the following aspects: First they

work on a synthetic dataset which is less complex than realistic

data. Second they focus on the reconstruction of 3D mesh, which

needs more accurate and complex labels. Third, their physical con-

straints are, when grasping objects, the contact points in hands and

objects should be as close as possible but they should not be inside

each other at the same time. However, our physical affinity loss

considers the stability of grasping from the perspective of forces

and mechanics.

3 METHODOLOGY

Given a single image 𝐼 , we aim at estimating accurate 3D poses of

both hands and manipulated objects. In this section, we first give

a brief introduction to Graph Convolution Network (GCN) [22],

which works as the core component of our model. Then the whole

pipeline and network architecture are introduced. In the last, we

will present our physical affinity loss in detail.

3.1 Revisiting Graph Convolution

Graph convolution network (GCN) is adopted as the core of our

model for its ability to learn high-level representations of rela-

tionships between the nodes of graph-based data. Compared with

traditional CNN, GCN has its unique convolutional operators for

irregular data structures.

Given an input graph with𝑁 nodes, 𝑘 input features and 𝑙 output
features for each node, a graph convolution layer can be defined as,

𝑌 = 𝜎 (�̃�𝑋𝑊 ), (1)

where 𝜎 is the activation function, 𝑊 ∈ R𝑘×𝑙 is the trainable

weights matrix, 𝑋 ∈ R𝑁×𝑘 is the matrix of input features, �̃� ∈

R
𝑁×𝑁 is the re-normalized adjacency matrix of the graph as men-

tioned in [22],

�̃� = �̂�− 1
2𝐴�̂�− 1

2 , (2)

where𝐴 = 𝐴+ 𝐼 and �̂� is the diagonal node degree matrix. �̃� simply

defines the extent to which each node uses other nodes’ features

and �̃�𝑋 is a new feature matrix in which each node’s feature are the

average of the node itself and its adjacent nodes. 𝐴 is the adjacency

matrix of graph, which can both be defined by users or learned

from training.

Figure 3: Kinematic structure of hands and objects.

3.2 Network Architecture

Motivated by recent advances in 3D human pose estimation [25]

and hand-object pose estimation [8], our model consists of two

modules, which first estimates 2D poses of both hands and objects

from a single RGB image, and then lift 2D locations to 3D space.

The whole pipeline can be seen in Figure 2.

In the first module, an image encoder based on Resnet50 back-

bone [19] is utilized to extract visual features and predicts initial

2D keypoint locations for both hands and objects. For each hand

or object keypoint, its initial 2D coordinate is concatenated with

the global image feature and obtain a 2050D feature as its node

representation (initial x-coordinate and y-coordinate plus a 2048D
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stable grasp unstable grasp

Figure 4: Stable and unstable grasp. Yellow areas are contact

points between hands and objects. When the contact points

distribute diversely around the object, the grasp can bemore

stable.

image feature). Then a lightweight 3-layer GCN is applied to refine

the initial 2D points, where the adjacency matrix is learned from

data.

In the second module, given the estimated 2D keypoints as input,

a graph module further learns to convert 2D coordinates into 3D

space. Different from Hope-Net [8] which utilizes a Graph U-Net

and treats all keypoints in the same manner, we design a context-

aware graph module. Our key insight is that hands and objects have

their own topology structure. At the same time, there also exists

mutual constraints when hands are interacting with objects. Thus

we first use two sub-graph networks to capture their own structure

for hands and objects separately. And then the two sub-graphs are

merged to a whole graph to mine the interaction messages. In this

manner, our graph model can explicitly learn separate topology

structures and pass interaction messages. The connections of hand

and object sub-graph network are defined as their kinematic struc-

ture in Figure 3 and their interaction connections are learned from

data. The sub-graph network is made up of 3 GCN layers while the

merged graph consists of 6 GCN layers.

3.3 Physical Affinity Loss

In this section we will present our physical affinity loss in detail. So

far, the prediction of hands and objects does not leverage explicit

constraints that guide the hand-object interaction in the physical

world. As we know, contacts occur at the surface between the object

and the hand, especially for grasping. Hasson et al. [18] leverage the

fact that the surface of the object and the hand should be as close

as possible but they can not interpenetrate each other. However,

that is not enough for a stable grasp. In a stable grasp, any motion

of the object is resisted by a contact force and the object can not

break contact with the finger tips without some non-zero external

work, which is called a force-closure grasp. But the judging of a

force-closure grasp is a bit difficult. It needs accurate modeling of

the location of contact points and the coefficient of friction, which

can be hard to obtain in hand-object estimation task. In this paper,

motivated by force-closure judgement and zero moment point [39]

in robotics, we simplify the physical constraints and propose a

differential loss function.

Our motivation is to enhance the stability of grasping from

the perspective of forces. Similar to zero moment point [39] in

robotics, for a stable grasp, the contact points should distribute

Figure 5: Physical Affinity loss illustration. Yellow points

(P1-P5) are contact points between the hand and object.

Black points (R1-R5) are the projection of contact points in

object’s central axis.

around the central axis of the object diversely so that the center

of these contact points can locate closer to the center of objects.

In such a case contact points can provide enough support forces

against any external disturbance, as shown in Figure 4.

Thus we design our physical affinity loss in the following fashion.

In brief we first sample the approximate contact points between

the hand and object, then obtain direction vectors pointed from the

object central axis to these contact points. Our physical affinity loss

is defined as a diversity loss based on the cosine similarities among

these direction vectors.

Given hand keypoints 𝑉𝐻𝑎𝑛𝑑 ∈ R𝑁ℎ×3 and object keypoints

𝑉𝑂𝑏 𝑗 ∈ R
𝑁𝑜×3, where 𝑁ℎ = 21 and 𝑁𝑜 = 8 represent the number of

keypoints in hand and object separately. We denote the 𝑖-th hand

keypoint as 𝐻𝑖 . As the bounding box of object is approximately a

cuboid, it has 8 keypoints (vertexes) and 6 faces. We denote the

𝑗-th object face as Π 𝑗 . For each face Π 𝑗 , we uniformally sample 𝑁
points along the direction of length and width separately through

bilinear interpolation according to the four vertexes and get totally

𝑁 × 𝑁 face points as a face point set 𝐹 𝑗 ∈ R
𝑁 2×3, 𝑗 = 1, 2, 3, · · · , 6.

Then for each hand keypoint 𝐻𝑖 and each object face Π 𝑗 , we can

calculate their distance 𝑑 (𝐻𝑖 ,Π 𝑗 ) and support point 𝑠𝑢𝑝𝑝 (𝐻𝑖 ,Π 𝑗 )

in the following manner:

𝑑 (𝐻𝑖 ,Π 𝑗 ) = min
𝑃 ∈𝐹 𝑗

‖𝐻𝑖 − 𝑃 ‖2 ,

𝑠𝑢𝑝𝑝 (𝐻𝑖 ,Π 𝑗 ) = arg min
𝑃 ∈𝐹 𝑗

‖𝐻𝑖 − 𝑃 ‖2 ,
(3)

where the support point between hand keypoint 𝐻𝑖 and object face

Π 𝑗 is defined as the point in face Π 𝑗 with the minimal distance to

hand keypoint 𝐻𝑖 .

From all these support points {𝑠𝑢𝑝𝑝 (𝐻𝑖 ,Π 𝑗 )}, we select top 𝑁𝑐

points with the minimal distances to their corresponding hand

keypoints as candidate contact point set 𝐶:

𝐶 = {𝑠𝑢𝑝𝑝 (𝐻𝑖 ,Π 𝑗 ) | 𝑑 (𝐻𝑖 ,Π 𝑗 ) ∈ 𝑇𝑜𝑝𝐾{𝑑 (𝐻𝑖 ,Π 𝑗 )}}. (4)

However, note that contacts may not occur between hands and

objects, as they are not in touching with each other all the time. For

such a case, we use the the radius of objects as a condition to filter

the candidate contact points 𝐶 and get valid contact points 𝐶 ′.
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Algorithm 1 The computational pipeline of our method.

Input:

Hand keypoints, 𝑉𝐻𝑎𝑛𝑑 ;

Object keypoints, 𝑉𝑂𝑏 𝑗 ;

Output:

Physical Affinity Loss, 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 ;
1: for each object face Π 𝑗 do

2: Sample face point set 𝐹 𝑗 ;
3: for each hand keypoint 𝐻𝑖 do

4: Calculate 𝑑 (𝐻𝑖 ,Π 𝑗 ) and 𝑠𝑢𝑝𝑝 (𝐻𝑖 ,Π 𝑗 );

5: end for

6: end for

7: Select candidate contact point set 𝐶 according to Equation 4;

8: Filter valid contact point set 𝐶 ′’ according to Equation 5;

9: Obtain direction vectors {𝑣𝑖 } for points in set 𝐶 ′;

10: Calculate 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 (𝑉𝐻𝑎𝑛𝑑 ,𝑉𝑂𝑏 𝑗 ) according to Equation 6;

11: return 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 (𝑉𝐻𝑎𝑛𝑑 ,𝑉𝑂𝑏 𝑗 );

The radius of an object 𝐿 is defined as the mean of side lengths

of object bounding box’s upper surface and lower surface. If the

radio of the corresponding distance of a candidate contact point

and the object radius is larger than a threshold 𝜂, we argue that no
contacts occur at this candidate contact point and remove it from

candidate point set:

𝐶 ′ = {𝑠𝑢𝑝𝑝 (𝐻𝑖 ,Π 𝑗 ) | 𝑠𝑢𝑝𝑝 (𝐻𝑖 ,Π 𝑗 ) ∈ 𝐶

𝑎𝑛𝑑 𝑑 (𝐻𝑖 ,Π 𝑗 ) ≤ 𝜂𝐿},
(5)

where we set 𝑁𝑐 = 10 and 𝜂 = 0.2 in our experiments.

After selecting all valid contact points, we get contact point set

𝐶 ′ with 𝑁 ′
𝑐 contact points. To make a grasp stable, we hope these

contact points can distribute diversely around the object central

axis 𝑙 , which is defined as the line between the centers of object

bounding box’s upper surface and lower surface. Thus for each

contact point 𝑃𝑖 ∈ 𝐶
′, we denote its projection on object central

axis 𝑙 as 𝑅𝑖 , and define its direction vector as 𝑣𝑖 , which is the vector

pointed from 𝑅𝑖 to 𝑃𝑖 , as can be seen in Figure 5. Our physical

affinity loss is defined as a diversity loss based on cosine similarity

of these direction vectors:

𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 =
1

𝑍

𝑁 ′
𝑐−1∑

𝑖=1

𝑁 ′
𝑐∑

𝑗=𝑖+1

𝑣𝑖 · 𝑣 𝑗

‖𝑣𝑖 ‖2
��𝑣 𝑗

��
2

, (6)

where 𝑍 = 1
2𝑁

′
𝑐 (𝑁

′
𝑐 − 1) is the normalization factor. The calcula-

tion of our physical affinity loss can be summarized in Algorithm

1.

3.4 Full Objective

The loss function to train our network is composed of two parts,

fully supervised loss and our physical affinity loss. The supervised

loss is defined as the Mean Squared Error for both 2D coordinates

and 3D coordinates between predictions and ground-truths, and

physical affinity loss is defined in Section 3.3,

L = 𝜆1L2𝐷 + 𝜆2L3𝐷 + 𝜆3L𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 , (7)

where 𝜆1 = 0.01, 𝜆2 = 1 and 𝜆3 = 10 for training.

4 EXPERIMENTS

4.1 Datasets

To evaluate effectiveness of our network and our physical affinity

loss, we perform experiments on a realistic dataset: First-Person

Hand Action (FPHA) [12]. Besides, following [8], we also pre-train

our network on a synthetic dataset Obman [18] for better perfor-

mance. All of these datasets use 21 joints model for hands and 8

joints for object bounding boxes.

First-Person Hand Action [12] contains first- person videos

of hand actions performed on a variety of objects. The dataset

consists of 1,175 gesture videos with 45 gesture classes. The videos

are performed by 6 actors under 3 different scenarios. A total of

105,459 video frames are annotated with accurate hand pose and

action classes. Both 2D and 3D annotations of the total 21 hand

keypoints are provided for each frame. However, only a small subset

with 21,501 frames include 6D object pose annotations, which we

denote as FPHA-HO in the following paragraphs. The objects in

FPHA-HO are milk, juice bottle, liquid soap, and salt, and actions

include open, close, pour, and put. We conduct our experiments

on FPHA-HO, with 11,019 frames for training, 5,442 frames for

validation and 5,040 frames for testing.

Obman [18] is a large dataset of synthetically-generated images

of hand-object interactions. Images in this dataset are produced by

rendering meshes of hands with selected objects from ShapeNet [4].

The dataset consists of 141,550 frames for training, 6,463 for valida-

tion and 6,285 for testing. Despite the large-scale of the annotated

data, the models trained with these synthetic images do not gen-

eralize well to real images [8]. Nevertheless, it is still helpful to

pre-train our model on the large-scale data of ObMan, and then

fine-tune using real images of FHAD-HO.

4.2 Evaluation Metrics

Following [8, 37], we use the percentage of correct keypoint esti-

mates (3D PCK) and percentage of correct poses for 3D hand pose

estimation and 6D object pose estimation respectively. We consider

a hand pose estimate to be correct when the mean distance between

the predicted and ground-truth joint positions is below a certain

threshold (in mm). When using the percentage of correct poses to

evaluate 6D object pose estimation, we take a pose estimate to be

correct if the 2D projection error is less than a certain threshold (in

pixels).

4.3 Implementation Details

We implement our method with the PyTorch framework, and opti-

mize the objective function with the Adam optimizer [21] with mini-

batches of size 256. All experiments are conducted on a single server

with four NVIDIA TITAN GPUs. Following [8], we pre-train the

whole network on Obman [18] before training on FHAD-HO [12].

Specifically, on each dataset, we first train the graph module

which converts 2D coordinates to 3D space and the image encoder

that predict 2D keypoints separately and then fine-tune the whole

pipeline in an end-to-end manner. For training graph module, we

use the ground-truth 2D coordinates as the input and train this

module for 10,000 epochs with an initial learning rate of 0.001 and

multiply it by 0.1 every 4000 epochs. Similarly, the Image Encoder
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Figure 6: The percentage of correct 3D hand pose of our

model on FPHA-HO using different thresholds (in mm).

is trained for 1,000 epochs with an initial learning rate of 0.001 and

multiplied by 0.9 every 100 epochs to predict 2D keypoints. Finally,

the two modules are fine-tuned in an end-to-end manner with a

learning rate of 0.0001 for 100 epochs. During training, all images

are resized to 224 × 224 pixels.

4.4 Experimental Results

We now report the performance of our model on FPHA-HO and

compare our results to the state-of-the-art results of [8] [37].

In Table 1 we present the mean 3D distance of hand keypoints

and object keypoints in mm. As we can see, our results obviously

outperform the other two methods in a certain margin. Please note

that the results of HO [37] are reported from their original paper,

while the results of Hope-Net [8] are our re-implementation results

according to publicly available codes, which is slightly better than

the authors’ released model (in which the mean error of hand and

object are 16.14 mm and 72.89 mm separately).

Network HO[37] Hope-Net[8] Ours

Hand Pose error (mm) 15.81 15.04 12.53

Object Pose error (mm) 24.89 21.33 19.09

Table 1: Quantitative 3D errors(mm) of predicted hand and

object poses.

Figure 6 presents the percentage of correct 3D hand poses for

various thresholds (measured in millimeters) in detail. The results

show that our method not only outperforms RGB-based models

like Hope-Net [8] and HO [37], but also beats some depth-based

model [12], without any depth information or temporal informa-

tion. Our method shows good superiority for smaller thresholds

(from 0 to 40 mm). Figure 7 presents the percentage of correct ob-

ject pose for various pixel thresholds for the 2D projection. Our

method is slightly better than our re-implemented Hope-Net [8],

and outperforms HO [37] and Tekin et al. [38] in a certain margin.

In Figure 8 we show some visual examples of both our method

and Hope-Net [8]. We see that our method can better capture the

geometry shape, especially for object shapes. Even in some extreme

Figure 7: The percentage of correct 2D object pose of our

model on FPHA-HO using different thresholds (in pixel).

cases like the second column in Figure 8, the hands and objects

are beyond the image boundary, our estimation of object pose is

more accurate and more like a cuboid. We believe this is due to our

specific design which distinguishes hands and objects first before

capturing their interaction and learns better prior knowledge of

hands and objects separately. Besides, our results also show better

affinity between hands and objects as our physical loss encourages

more stable situations (like the first and the third case in Figure 8).

More examples are presented in Figure 10 for some other ob-

jects and actions. We can see that for some scenes where several

keypoints are beyond the image boundary slightly, our method

can still make accurate predictions according to the learned prior

knowledge of hand and object geometry information.

4.5 Ablation Study

In this section we also conduct ablation studies to identify the

importance of each components for achieving our results.

Network Hand Pose error Object Pose error

Adaptive Graph U-Net 14.36 21.65

Hand Sub-graph Only 12.22 -

Object Sub-graph Only - 14.41

Full Graph 10.38 13.85

Table 2: Mean error (measured in millimeter) on 3D hand

and object pose estimation with 2D ground-truth as inputs.

Context-aware Graph Module. Our model and Hope-Net [8]

share a similar pipeline, which first estimate 2D coordinates of

keypoints from RGB images and then convert 2D coordinates to

3D space. The most difference is our 2D-to-3D conversion module

utilizes a sub-graph based design, while Hope-Net uses Adaptive

Graph U-Net. To show the effectiveness of our sub-graph structure,

we directly compare it with Adaptive Graph U-Net. All these mod-

ules are trained to lift 2D coordinates of hand and object keypoints

to 3D space. We directly use the 2D ground-truth coordinates as

input and Mean Square Error as loss function to show their ability.

And all the results follow the same training procedure which first
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Figure 8: Comparison with previous state-of-the-art method Hope-Net [8]. Ourmethod can better capture the geometry shape

of hands and objects, even in some extreme scenes, such as hands and objects are partly out of the image boundary.

pre-train on synthetic data and then fine-tune on realistic data. The

quantitative results can be seen in Table 2. Note that the results of

Graph U-Net are our re-implementation according to publicly avail-

able codes, which are also better than the released model (where

hand error and object error are 22.07 mm and 43.76 mm separately).

As we can see, our full graph model is significantly better than

other methods on both hand pose and object pose estimation. Mean-

while, hand sub-graph only and object sub-graph only also outper-

form Adaptive Graph U-Net. Especially for object pose estimation,

a large margin can be observed between Adaptive Graph U-Net and

Object Sub-graph Network. We believe it is due to the following

reasons: Adaptive Graph U-Net treats each keypoint equally, no

matter from hands or objects. Such a treatment ignores the factor

that hands and objects have prior geometry knowledge and the

position and motion of keypoints in hands and objects can vary a

lot during their interaction. However, our sub-graph based modules

fully consider the topology structure of hands and objects them-

selves as well as their interactions. Thus our context-aware graph

module can successfully combine the local structure knowledge

and mutual interaction information.

Loss Function Hand Pose error Object Pose error

MSE 12.83 20.83

MSE + Physical loss 12.53 19.09

Table 3: Mean error (measured in millimeter) on 3D hand

and object pose estimation with different loss functions.

Physical Affinity Loss.We further study the effect of our phys-

ical affinity loss as a fine-tune step. Quantitative results can be seen

in Table 3. By introducing our physical affinity loss and further

fine-tune the whole model, we can see that the mean 3D error of

object pose achieves a certain improvement. Besides, the results of

hand pose also have a slightly improvement as well. This is mainly

because that our physical affinity loss explicitly restricts and limits

the relationship between the hand and object poses, encouraging

their positions and shapes meet the constraints for grasp stability

and be in affinity with each other.

In Figure 11 we further visualize some examples of contact points

in FPHA-HO dataset. As we can see, our algorithm effectively de-

tects these contact locations and make these contacts distribute

diversely around the object central axis if contact exists.

Figure 9: Some failure cases.

5 FAILURE CASES

We show some difficult cases in Figure 9, the estimations of which

are clearly unsatisfactory.

For example, in the first and second row of Figure 9, we can see

significant errors primarily caused by out-of-sight hand or object

parts. In the third row, the object is totally occluded by the hand.

Although the object and hand shapes are approximately correct

compared to the ground-truths, there still exist obvious offsets in

3D space for these hard examples.

6 CONCLUSION

In this paper, we propose a learnable physical loss together with a

context-aware graph model for jointly hand-object pose estimation

from a single RGB image. Our physical affinity loss encourages
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Figure 10: Some visual examples. Colored skeletons are our predictions and black ones are ground-truth. The proposedmethod

can handle various objects and actions. Even when some keypoints are out of the image boundary, our method can still make

predictions according to learned prior knowledge of hand and object geometry information.

Figure 11: Visual examples of contact points between hands and objects. Yellow areas and points are our detected contact areas.

stable grasping and works as a effective regularization. Our context-

aware model works as a "local-to-global" architecture and explores

both the independent structure and mutual interaction of hands

and objects. Future work could further take temporal information

into consideration to both improve pose estimation results and

understand human actions.
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