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Abstract

Weakly-supervised temporal action localization
aims to locate intervals of action instances with
only video-level action labels for training. How-
ever, the localization results generated from video
classification networks are often not accurate due
to the lack of temporal boundary annotation of ac-
tions. Our motivating insight is that the temporal
boundary of action should be stably predicted under
various temporal transforms. This inspires a self-
supervised equivariant transform consistency con-
straint. We design a set of temporal transform op-
erations, including naive temporal down-sampling
to learnable attention-piloted time warping. In our
model, a localization network aims to perform well
under all transforms, and another policy network is
designed to choose a temporal transform at each it-
eration that adversarially brings localization result
inconsistent with the localization network’s. Ad-
ditionally, we devise a self-refine module to en-
hance the completeness of action intervals harness-
ing temporal and semantic contexts. Experimen-
tal results on THUMOS14 and ActivityNet demon-
strate that our model consistently outperforms the
state-of-the-art weakly-supervised temporal action
localization methods.

1 Introduction
Temporal action localization (TAL) in untrimmed videos is
one of the most challenging tasks in video understanding.
In real-world applications, untrimmed videos usually contain
multiple action instances and irrelevant background scenes.
The aim of temporal action localization is to locate the tem-
poral boundary and predict the action category for each ac-
tion instance in a video. To learn an effective action localiza-
tion model, most existing temporal action localization meth-
ods utilize fine-grained supervision, which requires manually
annotated temporal boundaries and action category label for
each action instance. However, labeling the temporal bound-
ary of an action instance is time-consuming. In this paper,
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Figure 1: Illustration of our motivation. ‘BG’ means background.
We learn to generate adversarial temporal transforms. A good model
should ensure video-level classification to be invariant, and the tem-
poral boundary of an action equivariant under all temporal trans-
forms.

we focus on weakly-supervised temporal action localization,
where only video-level action category labels are available.

To tackle the weakly-supervised TAL task, most exist-
ing works [Nguyen et al., 2018; Narayan et al., 2019;
Yu et al., 2019] fall into a multiple-instance-learning frame-
work. In specific, a video is treated as a bag of frames and fed
into video-level classification networks. By enforcing the ac-
curacy of video-level predictions, a weakly-supervised TAL
model learns to generate a class activation sequence (CAS)
for each video, which essentially indicates how likely each
frame belongs to an action class [Shou et al., 2018]. Action
instances can then be temporally localized based on the CAS.
However, without supervision from temporal boundaries of
actions, CAS is empirically observed to be often incomplete
(tends to cover only the most discriminative part of the action)
and noisy (often incorrectly activates background moments).

Figure 1 illustrates the motivation of this work. The per-
formance of a weakly-supervised TAL model heavily relies
on the quality of CAS. We aim to address a rarely-explored
aspect in weakly-supervised TAL: self-supervision brought
by temporal transforms on CAS. Given an untrimmed video
that contains several actions, the resultant CAS can drasti-
cally change after applying some temporal transforms to a
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video (such as fast forwarding selected segment of the video
while keeping other segments unchanged). It does not bring a
severe issue for video-level prediction, since it is invariant to
these transforms. However, the stability of CAS is crucial for
precisely de-limiting the action temporal boundary. To obtain
good performance, we would expect the CAS to be strongly
equivariant with respect to numerous temporal transforms.

To mitigate the supervision gap between weakly and fully
supervised temporal action localization, we propose a self-
supervised equivariant transform consistency constraint that
minimizes the discrepancy between the CAS of the original
/ temporally-transformed videos. In particular, we design an
action localization network with a Siamese architecture, com-
prised of two sub-networks with the identical design that read
the feature sequences of the original / temporally-transformed
videos, respectively. Without loss of generality, this work
only investigates three types of temporal transforms including
resize, window warp, and attention-based time warp. A pol-
icy network is learned to select a temporal transform at each
iteration. Critically, the localization and policy networks shall
operate adversarially to each other, similar to Generative Ad-
versarial Networks (GAN). The localization network desires
the two Siamese sub-networks return transform-equivariant
class activation sequences, while the policy network selects
a transform that potentially maximizes the inconsistency be-
tween original / temporally-transformed videos. In addition,
to enhance the completeness of the TAL results, we also pro-
pose a self-refine module that utilizes both temporal and se-
mantic contexts to generate more integral action instances.

The technical contributions of this work can be summa-
rized as below: (1) To our best knowledge, this work rep-
resents the first attempt to explore self-supervised equivari-
ant consistency regularization for weakly-supervised tempo-
ral action localization. To generate temporal transformed
videos, we propose attention based time warp methods and
design a policy network to select transform operations for
each video; (2) We propose a self-refine module to explic-
itly leverage the temporal and semantic context information
to obtain a more complete temporal interval of actions; (3)
Comprehensive evaluations are conducted on two challeng-
ing video benchmarks: THUMOS14 and ActivityNet. Our
method re-calibrates the state-of-the-art performance on both
benchmarks by large margins.

2 Related Work
Weakly-supervised action localization. It learns to local-
ize activities inside videos with only video-level action cat-
egory labels available. Most of the relevant approaches
adopt the multiple instance learning framework. Untrimmed-
Net [Wang et al., 2017a] proposes a selection module to rank
clip proposals and locate action instances. CMCS [Liu et
al., 2019] improves UntrimmedNet by using a multi-branch
network with diversity loss to model action completeness.
3C-Net [Narayan et al., 2019] implies that multi-label cen-
ter loss and action counting loss can be used to decrease
intra-class variations and increase the separability of adja-
cent action instances. BM [Nguyen et al., 2019] proposes a
background-aware loss to explicitly model background con-

tent. DGAM [Shi et al., 2020] proposes a generative at-
tention mechanism to separate action and context frames.
TSCN [Zhai et al., 2020] generates frame-level pseudo la-
bels by combining the predictions of RGB and flow streams.
Although these methods generally achieve promising results,
they only process the video at a fixed temporal resolution, ig-
noring the considerable variation of action duration. More
importantly, previous works have rarely studied the equivari-
ant property between the temporal boundary of an action and
temporal transforms.

Self supervised learning (SSL). It has received increasing
attention, noting the potential of learning effective seman-
tic feature representations without human annotations. Prior
study has explored different kinds of self-supervision, such as
prediction of the spatial context [Doersch et al., 2015], col-
orization [Zhang et al., 2016], and transition equivalence [Gi-
daris et al., 2018; Noroozi et al., 2017]. Recent SSL works
on videos mainly focus on spatio-temporal orders of videos.
For example, the frame order in videos is the main clue uti-
lized in [Misra et al., 2016]. Other types of temporal con-
text include its conjunction of spatial context [Wang et al.,
2017b], as well as the use of statistics on spatio-temporal co-
occurrence [Isola et al., 2015]. In all the works, [Wang et
al., 2020] is most close to our work. It uses an attention
mechanism to do self-supervised learning on semantic seg-
mentation. However, the self-supervision used in [Wang et
al., 2020] focuses on simple scale transforms in the spatial
domain. Differently, our method operates temporally with
learnable video transforms. We formulate it in an adversar-
ial fashion by designing a policy network to select the most
challenging temporal transform at each iteration. To our best
knowledge, we are the first to explore SSL in the weakly-
supervised TAL task.

3 Our Method

During training, we are provided with a training set of
untrimmed videos V = {vi, yi}Mi=1, where M is the num-
ber of videos, yi ∈ {0, 1}C denotes the video-level category
label of video vi, C is the number of action categories. At test
time, the output for each test video is a set of localized action
instances (bj , ej , cj , qj), where bj and ej denote the start and
end time, cj refers to the predicted action category, and qj is
the confidence score.

3.1 Video Feature Extraction

To extract feature sequence, we first divide an untrimmed
video into a set of snippets, each of which contains sev-
eral consecutive frames. As in previous works [Narayan et
al., 2019; Nguyen et al., 2019; Shi et al., 2020], the RGB
and flow I3D [Carreira and Zisserman, 2017] models pre-
trained on Kinetics [Carreira and Zisserman, 2017] are uti-
lized to extract two-stream video features for each snippet.
Let X ∈ RT×D denote the RGB or flow feature sequence,
where T denotes the count of snippets and D is the dimen-
sion of features.
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Figure 2: Architecture of our proposed model. ‘FC’ means fully-connected layer,‘SR’ means Self-refine module. See text for more details.

3.2 Architecture Overview
As shown in Figure 2, we propose an action localization net-
work with a Siamese design, containing two sub-networks
Net1 and Net2 that share the same structure and parameters.
The inputs of Net1 and Net2 are video feature sequences
X, X̂ = o(X) extracted from a video and its temporally-
transformed version, where o denotes a temporal transform
operation. A policy network is included to choose one from a
set of pre-defined temporal transform operations O.

For the Siamese net, let us take Net1 to describe the com-
putational flow. The initial video feature X first goes through
some additional temporal convolutions to better adapt to the
current task, obtaining the embedding feature Xe. After that,
Xe is fed to a classification branch and an attention branch,
rendering features Xa and Xc respectively. Each branch is
composed of a temporal convolution layer and a fully con-
nected layer as the net head. The attention branch generates
temporal attention weights A ∈ RT×1. For the classification
branch, its coarse output is sent to a self-refine (SR) module,
getting the CAS S ∈ RT×C . Eventually, A and S are joined
to predict the class probability p = softmax(AᵀS) in the
video level. Similar treatment for Net2.

The learning of action localization network is guided by:

L = Lcls + Ltrans cls + αLcons, (1)

where Lcls, Ltrans cls are the classification losses of Net1
and Net2 respectively. Lcons is self-supervised transform
consistency loss. α is a weighting coefficient. We will elabo-
rate on the details of each term in following sections.

3.3 Self-refine Module
The classification branch generates the CAS for each snippet.
However, the initial CAS tends to be incomplete or noisy. To
remedy it, we propose a self-refine module that utilizes both
temporal and semantic context information.

For a video v that contains T snippets, we first construct
a fully connected graph G. Nodes in G are the T snippets
of v. Let E ∈ RT×T be the adjacency matrix of G. Ei,j
is the edge weight between node i and j. Intuitively, tempo-
rally neighboring snippets are more likely to have correlated
content. We define the temporal weight Etemi,j of edge i, j as:

Etemi,j = e−
|i−j|2

2σ2 , (2)

where σ is empirically set as T/10 in all experiments. For
the semantic similarity of snippets i and j, we evaluate it by
measuring the Cosine value:

Esemi,j = ReLU

(
Xr[i]

ᵀXr[j]

‖Xr[i]‖ · ‖Xr[j]‖

)
, (3)

where Xr = Conv1D(Xc) ∈ RT×D1 is an enhanced feature
with learnable 1-D convolution.

The final inter-node similarity Ei,j is calculated by multi-
plication:

Ei,j = Etemi,j ∗ Esemi,j . (4)

For numerical tractability, weights of the outbound edges
of each node are normalized to be 1. After constructing the
adjacency matrix E, a random walk routine is called to refine
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the coarse CAS S of the classification branch. In implemen-
tation, S is updated iteratively via S ←− E × S. We empiri-
cally find that an overall iteration of 3 times will strike a good
balance of accuracy and computational complexity.

3.4 Self-supervised Equivariant Consistency
Human visual perception shows good consistency for tempo-
ral action localization tasks when they watch the video at dif-
ferent playback rates. For example, when we watch a video
that contains a high jump action, the action category of the
video will not change, yet the duration and temporal bound-
ary of the high jump action will change as the playback rate
varies. State differently, the action category of the video is in-
variant to different playback rates, while the temporal bound-
ary of action is equivariant. To make CAS S have the equiv-
ariant property, this work proposes a self-supervised equiv-
ariant consistency loss Lcons.

Given a video v with action category c. Suppose the in-
put video undergoes a temporal transform defined by o(·),
namely X̂ = o(X) for the input video feature X . Recall that
S, Ŝ are the final class activation sequences for the original
/ transformed videos. Critically, if the activation sequence S
were equivariant with respect to o(·), there shall be high con-
sistency with Ŝ. Let So = o(S) and we only slice the profile
of the ground-truth class c, namely Soc = softmax(So[:, c]),
Ŝc = softmax(Ŝ[:, c]). Here the softmax is used to get the
action class distribution along the temporal axis. The self-
supervised equivariant consistency loss Lcons is defined as:

Lcons = KL(Soc ‖ Ŝc) +KL(Ŝc ‖ Soc ), (5)

where KL denotes the Kullback–Leibler divergence.

3.5 Adversarial Temporal Transform
To make the idea of self-supervision feasible, we first define a
bank of candidate temporal transforms, which can be divided
into the following categories:

1.Resize. Similar to the resize operation in image pro-
cessing, the resize operation performs up-sampling or down-
sampling the entire video feature sequence along the time di-
mension uniformly.

2.Window warp. It divides the feature sequence into some
non-overlapping sub-sequences. A sub-sequence will be cho-
sen for either temporal stretching or contraction.

3.Attention based time warp. It re-samples the video fea-
ture map following a probability distribution induced by the
temporal attention A.

To perform time warp, we first get the upsampled video
feature Xup ∈ RNT×D and temporal attention Aup ∈
RNT×1 by performing linear interpolation on original X,A.
N is a parameter to control the upsampling rate. We devise
three different time-warp operators: (1) attention-enhanced
time warp. (2) attention-complemented time warp. (3) atten-
tion gradient enhanced time warp. The attention enhanced
time warp samples T locations from the upsampled NT lo-
cations. The i-th position is sampled with a probability
disenh[i], where

disenh = softmax(Aup). (6)

The temporal interval highlighted by A is often the action-
occurring moment. disenh leads more dense sampling (sim-
ilar to slow-motion playback) on action-related intervals and
suppresses background segments (similar to fast-forwarding).
In this way, we have more fine-grained view of action bound-
aries.

Likewise, the attention complemented time warp samples
T locations following a probability discomp, where

discomp =
1− disenh
NT − 1

. (7)

The attention complemented time warp mainly samples
temporal location that is overlooked by temporal attention
A. A video usually contains multiple actions. The tempo-
ral attention usually focuses on the most discriminative part
of a video, ignoring some action instances with short dura-
tion. Attention complemented time warp allows the network
to mine more actions that are missed by current temporal at-
tention.

The attention gradient enhanced time warp samples T lo-
cations from disga, where

disga = softmax(GA), GA[i] = Aup[i+1]−Aup[i]. (8)

Temporal locations with large gradients often belong to the
boundary of the action. By intensive sampling nearby the
boundary, the start and end time of the actions can be deter-
mined more accurately.

Inspired by GANs, we design a policy network to select
a transform operation o from the transform bank O, which
maximizes training loss of the localization network. In prac-
tice, the policy network consists of one temporal convolution
layer and two fully-connected layers. Let θ denote the pa-
rameters of policy network. Taking video feature sequence
as input, policy network output the distribution pθ(o) which
defines a probability of operation o being selected. For-
mally, the goal of policy network is to maximize J(θ) =∑
o∈O pθ(o)r(o), where r(o) = Ltrans cls + αLcons is a re-

ward corresponding to transform operation o.

3.6 Optimization
Since some temporal transform operations are non-
differentiable, it is intractable to train the localization / pol-
icy networks jointly. Instead, we train them by alternately
executing the following steps: (1) Update the action localiza-
tion network with loss L as in Eqn. 1. (2) Utilize the REIN-
FORCE [Williams, 1992] algorithm to train the policy net-
work.

3.7 Action Localization
During testing, only Net1 is required for action localization.
Given a test video feature sequence X , we first use Net1 to
obtain its CAS S and class probability distribution p. We
utilize a two-stage threshold method to generate action local-
ization results. First, we filter out action categories whose
probabilities are below a threshold τ . For a remaining cate-
gory c, we use a set of threshold values [α0, ..., αr] to thresh-
old on S[:, c] respectively and generate localization proposals.
Let (bi, ei, c, qi) denote the i-th proposal, where bi is the start
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Supervision Methods mAP@IoU (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Full
SSN [Zhao et al., 2017] 66.0 59.4 51.9 41.0 29.8 - -
TAL-Net [Chao et al., 2018] 59.8 57.1 53.2 48.5 42.8 33.8 20.8
G-TAD [Xu et al., 2020] - - 54.5 47.6 40.2 30.8 23.4

Weak

UntrimmedNet [Wang et al., 2017a] 44.4 37.7 28.2 21.1 13.7 - -
STPN [Nguyen et al., 2018] 52.0 44.7 35.5 25.8 16.9 9.9 4.3
Autoloc [Shou et al., 2018] - - 35.8 29.0 21.2 13.4 5.8
W-TALC [Paul et al., 2018] 55.2 49.6 40.1 31.1 22.8 - 7.6
MAAN [Yuan et al., 2019] 59.8 50.8 41.1 30.6 20.3 12.0 6.9
CMCS [Liu et al., 2019] 57.4 50.8 41.2 32.1 23.1 15.0 7.0
3C-Net [Narayan et al., 2019] 59.1 53.5 44.2 34.1 26.6 - 8.1
BM [Nguyen et al., 2019] 60.4 56.0 46.6 37.5 26.8 17.6 9.0
BaSNet [Lee et al., 2020] 58.2 52.3 44.6 36.0 27.0 18.6 10.4
DGAM [Shi et al., 2020] 60.0 54.2 46.8 38.2 28.8 19.8 11.5
ActionBytes [Jain et al., 2020] - - 43.0 35.8 29.0 - 9.5
ACL [Gong et al., 2020] - - 46.9 38.9 30.1 19.8 10.4
TSCN [Zhai et al., 2020] 63.4 57.6 47.8 37.7 28.7 19.4 10.2
A2CL-PT [Min and Corso, 2020] 61.2 56.1 48.1 39.0 30.1 19.2 10.6
Ours 64.8 58.4 50.8 42.2 32.9 21.0 10.1

Table 1: Comparisons on the THUMOS14 test set for fully-supervised and weakly-supervised temporal action localization.

time, ei is the end time, c is the action category and qi is the
proposal score. As in [Liu et al., 2019], qi is calculated by:

qi = mean(S[inner, c])−mean(S[outer, c]) + γpc, (9)

where inner denotes the region (bi, ei), and outer denotes
the surrounding region (bi− (ei− bi)/4, bi)∪ (ei, ei+ (ei−
bi)/4). The category probability is combined with the weight
γ. Non-maximum suppression(NMS) is used to remove du-
plicate proposals and generate the final localization results.

4 Evaluations
4.1 Data Description and Evaluation Protocol
To evaluate our method, we conduct experiments on two
video benchmarks: THUMOS14 [Idrees et al., 2017] and Ac-
tivityNet [Heilbron et al., 2015].

THUMOS14. It contains untrimmed videos with temporal
annotations from 20 action classes. There are 200 videos in
the validation set and 212 videos in the testing set. Following
the settings in previous works [Chao et al., 2018; Liu et al.,
2019], we train our model on the validation set and evaluate
on the test set.

ActivityNet. To facilitate comparisons, we conduct ex-
periments on both ActivityNet-1.2 and ActivityNet-1.3.
ActivityNet-1.3 contains about 20,000 videos from 200 ac-
tivity classes. ActivityNet-1.2 is a subset of ActivityNet-1.3,
which has videos from 100 activity classes. This dataset is
divided into training, validation and testing sets with a ra-
tio of 2:1:1. Since the annotations of testing set are with-
held, we use the training set to train our model and evaluate
on the validation set as in previous work [Paul et al., 2018;
Narayan et al., 2019].

Evaluation protocol. We report the traditional mean Aver-
age Precision (mAP) at different temporal intersection over
union (IoU) thresholds. The average mAP with IoU thresh-
olds [0.5:0.95:0.05] is used to compare different methods on

ActivityNet. On THUMOS14, the IoU thresholds are from
0.1 to 0.7 with a stride of 0.1.

4.2 Implementation Details
We implement our model in PyTorch. To extract video fea-
tures, we utilize I3D [Carreira and Zisserman, 2017] mod-
els pre-trained on Kinetics [Carreira and Zisserman, 2017].
For each snippet, the corresponding optical flow is generated
using the TV-L1 algorithm. The input of I3D is 16 stacked
RGB or optical flow frames. The output is a 1024-D feature
for each stream. Two separate models are trained for RGB
and flow streams respectively. Then outputs of RGB and op-
tical flow streams are combined by late fusion to generate the
action localization results.

The action localization model is trained with batch size 24
and optimized by Adam. The learning rate of localization
model is 0.001 on ActivityNet and 0.0001 on THUMOS14.
The policy network is optimized by Adam with 0.0001 learn-
ing rate on ActivityNet and 0.00001 learning rate on THU-
MOS14. α in Eqn. 1 is 0.5. For action localization, classes
whose video-level probabilities below 0.1 are filtered out. For
the remaining class c, a set of threshold values ranging from
[0.1 : 1.0 : 0.1] × mean (S[:, c]) is used to generate action
proposals. γ is set to 0.1 when scoring proposals.

4.3 Comparisons with State-of-the-art
Table 1 summarizes comparisons with existing weakly-
supervised and fully-supervised methods on THUMOS14.
Our method outperforms other weakly-supervised methods
when IoU varies from 0.1 to 0.6. Specifically, for mAP@0.5,
our method improves the performance by 2.8%. Furthermore,
the results achieved by our weakly-supervised method are
comparable to the results obtained by several fully-supervised
methods, indicating the effectiveness of our method.

Tables 2 and 3 present the results on benchmarks
ActivityNet-1.2 and ActivityNet-1.3 respectively. On both
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Methods mAP@IoU (%)
0.5 0.75 0.95 AVG

AutoLoc [Shou et al., 2018] 27.3 15.1 3.3 16.0
CMCS [Liu et al., 2019] 36.8 22.0 5.6 22.4
3C-Net [Narayan et al., 2019] 37.2 - - 21.7
TSM [Yu et al., 2019] 28.3 17.0 3.5 -
CleanNet [Le Wang et al., 2019] 37.1 20.3 5.0 21.6
RPN [Huang et al., 2020] 37.6 23.9 5.4 23.3
BaSNet [Lee et al., 2020] 38.5 24.2 5.6 24.3
ACL [Gong et al., 2020] 40.0 25.0 4.6 24.6
TSCN [Zhai et al., 2020] 37.6 23.7 5.7 23.6
EM-MIL [Luo et al., 2020] 37.4 - - -
Ours 45.5 27.3 5.4 27.6

Table 2: Comparisons on the ActivityNet1.2 dataset for action local-
ization. AVG denotes average mAP on thresholds 0.5:0.05:0.95

Methods mAP@IoU (%)
0.5 0.75 0.95 AVG

CMCS [Liu et al., 2019] 34.0 20.9 5.7 21.2
BaSNet [Lee et al., 2020] 34.5 22.5 4.9 22.2
MAAN [Yuan et al., 2019] 33.7 21.9 5.5 -
BM [Nguyen et al., 2019] 36.4 19.2 2.9 -
TSCN [Zhai et al., 2020] 35.3 21.4 5.3 21.7
A2CL-PT [Min and Corso, 2020] 36.8 22.0 5.2 22.5
Ours 41.8 26.2 5.0 26.0

Table 3: Comparisons on the ActivityNet1.3 dataset for action local-
ization.AVG denotes average mAP on thresholds 0.5:0.05:0.95

versions of ActivityNet, our method significantly outper-
forms other state-of-the-art weakly-supervised methods in
terms of average mAP. The performance of our method is
slightly lower than other methods when IoU=0.95. Since the
difference between actions surrounding context and action in-
stances is small, temporal boundaries of actions have an in-
trinsic ambiguity. We observe that our method sometimes
generates overly complete proposals containing surrounding
context, leading to false positives when IoU is high. Nonethe-
less, we improve the average mAP on ActivityNet-1.3 from
the previous state-of-the-art 22.5% to 26.0%.

4.4 Ablation Studies
To analyze how each component contributes to the over-
all performance, we conduct ablation studies on the THU-
MOS14 test set. We start with an action localization model
without Siamese architecture and self-refine module. The
model is trained only by Lcls. Adding Ltrans cls indicates
the Siamese architecture is used, and the model is supervised
by the classification loss of original and transformed videos.
The self-supervised consistency lossLcons is further included
to validate the effectiveness of self-supervision. Finally, the
self-refine module is added to get our full model.

Table 4 demonstrates the results by considering one more
component at each stage. Adding Ltrans cls to the baseline
model improves the mAP by 1.6%. Self-supervision consis-
tency loss contributes a significant increase of 4.6%, demon-
strating the effectiveness of the proposed equivariant con-
straint. The self-refine module further improves the mAP
from 28.8% to 32.9%, showing that temporal and semantic
context is critical to generate accurate CAS.

Lcls Ltrans cls Lcons SR mAP@0.5
X - - - 22.6
X X - - 24.2
X X X - 28.8
X X X X 32.9

Table 4: Contribution of each design in our model on THUMOS14
test set. SR means self-refine module.

Type Operation mAP@0.5

Single
Resize 27.8

Window Warp 29.1
Attention Based Time Warp 31.1

All Random Select 31.3
Adversarial Select 32.9

Table 5: Ablation studies results on THUMOS14 test set for differ-
ent temporal transforms.

Table 5 shows the results of different temporal transform
operations. To validate the effectiveness of adversarial tem-
poral transformation, we compare the following five settings:
1) only use resize type of transform operations (Resize); 2)
only use window warp type of transform operations (Win-
dow Warp); 3) only use attention based time warp type of
transform operations (Attention Based Time Warp); 4) use all
three type of transform operations, and randomly select one
operation from all operations at each training step (Random
Select); 5) use all three type of transform operations. The
policy network is used to select one operation from all oper-
ations at each training step (Adversarial Select). The result
shows that when single type of operation is used, the perfor-
mance of attention based time warp methods is better than
other two types, which proves its effectiveness. In specific,
compared to Resize operation, attention based time warp im-
proves the mAP from 27.8% to 31.1%. Compared with the
random select, adversarial select improves the mAP by 1.6%,
verifying the effectiveness of policy network. When using all
types of operations, the performance is better than using sin-
gle type of operation, indicating different types of operations
are complementary.

5 Conclusions
This paper explores self-supervised equivariant consistency
regulation for weakly-supervised temporal action localiza-
tion. We design a set of temporal transform operations and
utilize a policy network to select an operation in an adver-
sarial manner. On THUMOS14 and ActivityNet, our meth-
ods re-calibrate the state-of-the-are performance on weakly-
supervised temporal action localization.
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