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Abstract

3-D human pose estimation is a crucial step for
understanding human actions. However, reliably
capturing precise 3-D position of human joints is
non-trivial and tedious. Current models often suf-
fer from the scarcity of high-quality 3-D annotated
training data. In this work, we explore a novel way
of obtaining gigantic 3-D human pose data without
manual annotations. In catedioptric videos (e.g.,
people dance before a mirror), the camera records
both the original and mirrored human poses, which
provides cues for estimating 3-D positions of hu-
man joints. Following this idea, we crawl a large-
scale Dance-before-Mirror (DBM) video dataset,
which is about 24 times larger than existing Hu-
man3.6M benchmark. Our technical insight is that,
by jointly harnessing the epipolar geometry and hu-
man skeleton priors, 3-D joint estimation can boil
down to an optimization problem over two sets of
2-D estimations. To our best knowledge, this rep-
resents the first work that collects high-quality 3-
D human data via catadioptric systems. We have
conducted comprehensive experiments on cross-
scenario pose estimation and visualization analysis.
The results strongly demonstrate the usefulness of
our proposed DBM human poses.

1

Accurately reconstructing the human pose in 3-D from real
images in a variety of indoor and outdoor scenarios, has a
wide range of interesting applications in emerging fields such
as virtual and augmented reality, human computer interaction,
humanoid robotics and monitoring mobility. In the past 10
years, many 3-D pose-related datasets have emerged, which
has greatly promoted the development of this field.

Existing 3-D pose datasets can be roughly divided into
three categories. The first type collects 3-D pose data
using a marker-based motion capture system synchronized
with video, such as HumanEva [Sigal et al., 2010], Hu-
man3.6M [Ionescu et al., 2014] and GPA [Wang et al., 2019].
This type of data is mostly collected indoors, and restricts
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recording to skin-tight clothing. To overcome the limita-
tions of marker-based data collection, several marker-less
approaches have also been used. 3DPW [von Marcard et
al., 2018] and MPI-INF-3DHP [Mehta et al., 2017] propose
marker-less capturing system (based on inertial measurement
sensors and recording in green screen studio with multiple
cameras in a dome system). CMU Panoptic Studio [Joo et
al., 2019] creates a panoptic studio and capture poses with 10
pre-calibrated RGBD cameras. This marker-less system en-
ables diverse clothing but requires an expensive studio setup.
The third is synthetic data which can be generated by retar-
geting MoCap sequences to 3-D avatars [Chen et al., 2016].
However the results lack realism. Trained using the synthetic
data, learning based methods often suffer from the peculiar-
ities of the rendering, leading to poor generalization to real
images.

In acquiring above data, either high-accuracy sensors or
multiple-camera system are costly and have limited capturing
scenarios. In this paper, we propose to exploit catadioptric
videos for collecting 3-D pose. In conventional catadioptric
systems (an optical system that combines refraction-based
lenses and reflection-based mirrors), one can treat each mir-
ror as a virtual camera. For example, [Gluckman and Na-
yar, 2001] designed and implemented a real-time catadioptric
stereo system which uses only a single camera and two pla-
nar mirrors. There are two major challenges for the utiliza-
tion of catadioptric videos. First, as pointed out by [Gluck-
man and Nayar, 20011, at least two mirrors are required for
camera calibration and 3-D estimation, which is infeasible
in socially-shared catadioptric videos (e.g., YouTube videos
themed dancing tutorial with a mirror). Secondly, catadiop-
tric videos are often captured in realistic scenarios, which
significantly complicates reliable estimation of human key-
points. Unlike the marked-based systems, the initial pose es-
timation is often noisy and demands further refinement.

To tackle above challenges, we harness the following in-
sight: different from generic objects, human body has many
strong structure priors, such as the symmetry of the left and
right bone length, the degree of freedom of keypoints, etc.
We prove that, for one-mirror system that dominates online
catadioptric videos, using the human priors can significantly
reduce the ambiguity of camera’s interinsic parameter cali-
bration, and serves as a guiding objective in refining noisy
human keypoints.
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Our main contributions are three-folds: 1) We propose a
large-scale Dance-before-Mirror (DBM) video dataset, which
is more than 24 times larger than existing largest Hu-
man3.6M [Ionescu et al., 2014]. Overall 6,922 dance-before-
mirror videos are crawled from video-sharing websites, and
175,652 20-second clips are extracted. The DBM data can
serve as a new benchmark for 3-D human pose estimation; 2)
We devise a novel algorithm for intelligently estimating high-
quality 3-D human keypoints from online catadioptric videos.
Briefly, we boil it down to an optimization problem between
two sets of mirrored 2-D human keypoints. The key trait of
the proposed algorithm is the joint use of epipolar geometric
formulas and human skeleton priors. In particular, the sym-
metry prior of left / right human body is utilized for inferring
camera intrinsics and recovering occluded human keypoints;
3) Comprehensive cross-data transfer experiments are con-
ducted together with other three datasets (Human3.6M, MPI-
INF-3DHP, 3DPW). The experimental results clearly demon-
strate the usefulness of our data.

2 Related Works

Human Pose Estimation For 2-D human pose estima-
tion [Fang et al., 2017; Chen et al., 2018; Cao et al., 20171,
most prevailing methods adopt an encoder-decoder architec-
ture to predict a heatmap for each keypoint, from which the
keypoint position is further inferred. Exemplar methods in-
clude Simple baseline [Xiao ef al., 2018] and CPN [Chen
et al., 2018]. More recently, HR-Net [Sun et al., 2019]
uses the repeated multi-scale fusions across high-to-low and
low-to-high sub-networks to exchange the multi-resolution
information. For 3-D human pose estimation, some tradi-
tional methods like [Wei and Chai, 2010] propose a gen-
erative method using physics priors to get the 3-D pose in
a monocular view. Others [Guan et al., 2009; Jain et al.,
2010] introduce semi-automatic analysis-by-synthesis fitting
of parametric body models. Modern deep network based
methods [Pavlakos er al., 2017; Sun et al., 2018] can broadly
be classified into two classes: direct regression and ‘lifting’
based approaches. The former requires lots of 3-D-pose la-
belled images and predict the 3-D location straightly from the
image. But such datasets are either captured in studio sce-
narios with limited pose and appearance diversity [Tonescu
et al., 2014] or contains lots of synthetic imagery [Chen et
al., 2016]. While ‘Lifting’ based approaches predict the 3-
D pose from a separately detected 2-D pose [Martinez et
al., 2017]. More recently, some literature [Qiu ef al., 2019;
Remelli et al., 2020] leverage the multi-view informantion,
which further improve the performance.

Learning from Catedioptric Systems [Mariottini er al.,
2012] proposes a new image-based camera localization and
3-D scene reconstruction algorithm by observing a scene be-
ing reflected on two (or more) planar mirrors. [Zhou et al.,
2016] proposes an omnidirectional stereo vision sensor based
on one single camera and catadioptric system. However, ex-
isting works are mostly geometry-oriented, not fully harness-
ing the learning approach and human skeleton priors, which
inspires our work.
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3 Dance-before-Mirror (DBM) Video Dataset

This section elaborates on the crawling / processing of large-
scale Dance-before-Mirror (DBM) video dataset, particularly
a novel algorithm that extracts 3-D human keypoints from
videos without human annotations.

3.1 Video Crawling and Clip Generation

Motivating the construction of DBM videos we consider sev-
eral desiderata, including the comprehensive coverage of hu-
man poses, clothes, and background visual appearance. Fur-
thermore, camera motion and shot change should be max-
imally excluded for easing the estimation of camera intrin-
sics. We observed in the past few years tremendous dancing-
teaching videos have been shared at social media websites. In
particular, we choose Bilibili!, a popular video-sharing web-
site in Asian countries themed around animation, comic, and
games, and YouTube? as two main resources. On both sites
we search videos with queries “dance tutorial mirror” and its
several variants. The top-ranked videos in the search results
are mostly records of dancing tutorials. Mirrors are gener-
ally positioned in front of the dancing tutors during the video
recording in order for a non-occlusion viewing of the danc-
ing actions. We manually filter out videos without mirrors
from the returned results. This totals 6,922 videos (5,840
from Bilibili and 1,082 from Youtube) with durations from
half a minute to longer than an hour, all of which we sup-
pose are amenable to further processing. Figure 1 illustrates
a few randomly-drawn frames from these videos. As we can
see, DBM videos span a wide spectrum of key factors, e.g.,
human poses, races, genders, etc.

For data cleaning, a human detector (we use pretrained
FPN [Lin et al., 2017] with ResNet-101 [He ez al., 2016] on
MS-COCO [Lin et al., 2014]) first scans video frames at 5
fps (frames per second). Only frames with two persons (tu-
tor and the correspondence in mirror) are kept. Continuous
20 seconds (100 key frames) are trimmed out as clips. For
diversity, at most 100 clips are reserved for each video.

Next, we use HR-Net [Sun et al., 2019] pretrained on MS-
COCO and MPII [Andriluka et al., 2014] for detecting key-
points from each person. For each keypoint p; = (x;, y;, $i),
where (x;,y;) is the pixel coordinates, and s; is the confi-
dence score. In DBM videos, self-occlusion is commonly ob-
served. We simply use the confidence scores of keypoints for
filtering purpose. When s; < 7, a keypoint is marked as oc-
cluded. When the number of occluded points in the entire clip
is greater than N, the video is judged to be severely occluded
and can not be used in subsequent algorithm. In practice, T
and N are empirically set to 0.7 and 1500, respectively.

3.2 Geometric Model

The geometry of our proposed model is depicted in Figure 2.
Let O be the optical center and 7 be the single mirror in the
catadioptric video. Conventionally, it is a dominating practice
to add a virtual camera for each mirror (e.g., the mirrored
optical center O’ in Figure 2).

! https://www.bilibili.com/
2https://Www.youtube.(:om/
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Figure 1: Sampled frames from our Dance-before-Mirror (DBM) videos. Each frame is randomly drawn from one of 20-second video clips.
Main themes of these clips are teaching to dance. See main text for more description.
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Figure 2: Geometric model of single-mirror catadioptric system.
See text for more explanation.

With rare exception a dancing mirror can be modeled as a
planar. Suppose the world coordinate system is aligned with
the camera’s. A planar mirror 7 can be uniquely determined
by a normal vector n (n € R® and ||n|j2 = 1) and a non-
negative scalar d > 0 for representing the orthogonal distance
between mirror 7 and the optical center O. Let P € R? be an
arbitrary space point in the scene which is not on the mirror.
P’ is its reflected point. The relationship between P, P’ is
specified by:

P' =P+2(d—n"P)n
= (E—2nn”")P + 2dn
=RP +t,

ey
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with two key elements calculated as:

R =E —2nn’, t = 2dn, 2)

which can be trivially verified by connecting P, P’ in Figure 2
and integrating the connection [Gluckman and Nayar, 2001].
E is an identity matrix whose size can be inferred from its
context. The matrix S = (R t;0 1) is called the reflection
matrix in mirror systems.

To obtain a Euclidean-sense estimation of human key-
points, it is necessary to determine the camera intrinsics.
Generally, it is challenging to perform self-calibration on
DBM videos due to the lack of informative clues. We
simplify it through the following approximation as the
work [Gluckman and Nayar, 2001] did: it is often the case
that the skew is zero, the optical center is roughly above the
image center. The remaining key variable to be learned is
the focal length. In specific, our approximation leads to the
following camera intrinsic matrix:

f 0 0
K:(OfO). 3)
00 1

Use p, p’ to denote the pixels that correspond to P, P’, re-
spectively. For a pinhole camera model, their relationship can
be represented as

z-(

where Z,Z' are the values on the z-axis for P, P’ respec-
tively.

p

. ) —KP, 7' < 1‘{ ) =KRP+t), @

3.3 3-D Keypoint Estimation

The geometric model is parameterized by the mirror normal
n and focal length f. For right now we assume f is known



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

and defer its optimization in Section 3.5. To learn n, we have
the following observation (detailed derivation is found in the
supplemental material):

Theorem 1 (Fundamental matrix for 1-mirror system). For
an arbitrary space point P € R3, the following holds

(1) atrbmc(1)-0 o

0 —ng N2
where [n]x = n3 0 —n1 | forn=(ni,ng,ns3).
—n2 N1 0

Eq. 5 paves the way of computing n. From all matched
points (p,p’) in a clip, we use the RANSAC [Fischler and
Bolles, 1981] algorithm to estimate an optimal n. R, t follow
by Eq. 2. Next, to estimate the depth of human keypoints,
we apply the standard triangulation technique [Hartley and
Zisserman, 2003; Ma et al., 2010] to Eq. 4, returning two
depth values Z, Z'.

3.4 3-D Keypoint Refinement

Since our algorithm solves the 3-D keypoint estimation from
matched 2-D points, the position accuracy of the 2-D key-
points becomes crucial. Unfortunately, in most DBM video,
the self-occlusion inevitably appears and causes unreliable 2-
D estimation.

To recover the occluded 2-D keypoints, we first divide the
human keypoints into two categories: torso keypoints and the
limbs keypoints. The keypoints of the torso mainly include
head, neck, shoulder and hip, and the keypoints of the limbs
include elbow, wrist, knee and ankle. When human moves,
the motion of the torso is typically slow, yet the limbs often
swing quickly. Based on this observation, we propose differ-
ent strategies for refining the two sets of keypoints, respec-
tively.

For slow-moving torso keypoints, we use temporal filter-
ing to refine the occluded keypoints. As mentioned before,
when the confidence of a keypoint estimation is below T, it
is regarded as an occluded point. For a torso keypoint, repre-
sent its point-sequence along time as {.., h;—1, hs, Rit1, ... -
When h; is occluded (i.e., with low confidence) yet neither
of hi_1,hiy1 is, we simply use 0.5 - (h;—1 + h;y1) to re-
place the original h;. A sequential scan of all such sequences
completes the refinement.

For the limbs keypoints, we refine them by jointly using
epipolar geometry and human skeleton priors. In the single-
mirror catadioptric system, point e in Figure 2 is known to be
an epipole. According to the nature of the catadioptric system
and epipoles, all lines that connect two matched points (i.e.,
any pair (p, p’)) will intersect at the epipole e. If the camera
that captures the video is visuable, the epipole will be right on
where the camera locates. An example is shown in Figure 3.

To refine occluded points, it is important to first estimate
the pixel position of the epipole. For a clip captured by a
fixed camera, the epipole stays unchanged in all frames. In
practice, we choose a few matched points of highest confi-
dence scores. The line connecting each pair is estimated. We
calculate the intersection between any two lines, obtaining a
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Figure 3: Illustration of the epipole in catadioptric videos.
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Figure 4: Six occlusion cases for shoulder-elbow point refinement.

candidate point of the epipole. Finally, the median of all can-
didate points is calculated to serve as a robust estimation of
the epipole’s position. See Figure 3 for an illustration. Let
e = (x, ye) be the pixel coordinate of the epipole point. As
shown in Figure 3, let (@, @i, Gr, a;) be the elbow points
and (W, Wini, Wy, wy) be the wrist points. Without loss of
generality, assume w, is occluded and suffers from inaccurate
2-D estimation. Since w,,, is not occluded, and w,. is located
on the epipolar line €W, We have the epipolar constraint

(IwT - :Ewmr)/(:re - xwmr) = (wa - ywmm)/(ye - ywm(r6)5
where (2., , Yu,. ) is the candidate pixel coordinate of w,..

For point pairs (w;, W), (a1, @mi), and (a,., a,,) that are
not occluded, we can use the triangulation method in Sec-
tion 3.3 to find their corresponding 3-D coordinates W;, A;
and A,. As a skeleton prior, the length of the left and right
arms of a human should be equal. This prior leads to the fol-
lowing equation:

Wi — Aill2 = W — Ap|l2, (7

where || - ||2 is the Euclidean distance. W, is the 3-D co-
ordinate of w,, which can be inferred via triangulation after
knowing (&4, , Y, ). In practice, we can sample a few candi-
dates for (x,,, Yw, ), and keep the one maximally satisfying
Equations 6 and 7 as the best guess.

Figure 4 shows the all six possible occlusion cases of the
shoulder-eblow pair. The joint optimization of Equations 6
and 7 solves Case 2 in Figure 4. Indeed, we claim that Cases
3 and 4 are also solvable by reducing them to a conditional
version of Case 2. The details are deferred to the supplemen-
tary materials. To tackle other human keypoints, we associate
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Figure 5: Mean / standard variation of clip-based estimation of the
camera focal length.

Dataset H36M GPA 3DPW 3DHP DBM
Year 2014 2019 2018 2017 2021
No. of Joints 32 34 24 28 or 17 16
No. of Cameras 4 5 1 14 1
No. of Subjects 11 13 18 8 -
GT Source VICON VICON IMU  The Capture Mirror
No. Images 3.6M 0.7M 68K 1.8M 87M

Table 1: Comparison of existing datasets commonly used for train-
ing and evaluating 3-D human pose estimation methods.

the human body keypoints into shoulder-eblow, elbow-wrist,
hip-knee and knee-ankle. The occlusion in other configura-
tions can be restored likewise.

3.5 Determination of Optimal Focal Length

All above computations assume a known focal length. Since
f is usually in a moderate value range, we adopt an exhaustive
search scheme for finding the optimal focal length. In spe-
cific, for each candidate f, we estimate all 3-D keypoints as
aforementioned. Next, for each f a skeleton symmetry score
is computed over all left-right limb pairs, such as min(||W; —
Allla, W, = A, ll2)/ max(||W; — Ailla, [Wy — A,|l5). The
f that attains best skeleton symmetry will be kept. Figure 5
shows the mean / std of estimated focal lengths over all clips
in a video. In practice we apply the mean to all clips.

4 Evaluations

4.1 Investigation of DBM Data

After all above data filtering operatioins, we divide the
train/val/test set according to the ratio of 7:1:2, and get
124243/18114/33295 clips respectively. During the division
process, we ensure that the clips of the same video do not ap-
pear in different sets. Table 1 contrasts the key statistics of
mainstream 3-D human pose benchmarks. Our intelligently-
collected DBM surpasses all others in term of data scale.

We next evaluate the quality of epipole estimation, which
is crucial for 3-D keypoint refinement. Geometrically, in the
mirrored image, the position of the camera is the position of
the epipole point, as the case in Figure 3. We manually pick
100 videos that have the camera visible, and then mark the
position of the camera as the groundtruth of epipole point.
Table 2 summarizes the Euclidean distance between the esti-
mated pole coordinates and the true pole coordinates by vary-
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Table 2: Accuracy of epipole point estimation with respect to the
number of involved keypoint pairs (unit of distance: pixel). The
image size is 1920x1080 or 1280x720.
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Figure 6: An instantiation of our fully-connected 3-D pose estima-
tion architecture. The input consists of 2-D keypoints for J = 14
joints. Fully-connected layers are in green where 2.J, d denotes 2 x .J
inputs dimensions and d = 1024 output dimensions.

ing point pairs involved in the computation. More point pairs
are observed to generate more robust estimation.

Others about the distribution of the quality of 3-D key-
points in human skeleton prior (such as human skeleton sym-
metry), and the influence of refinement on the quality of 3-D
keypoints are also important. We present more details in the
supplemental materials.

4.2 3-D Pose Estimation Model

Following [Pavllo et al., 2019], we use a fully-connected net-
work with residual connections for 3-D pose estimation. The
architecture is shown in Figure 6. The input layer takes the
concatenated (x,y) coordinates of J joints for each frame
and outputs a 1024-dimensional feature. This is followed
by two ResNet-style blocks which are surrounded by a skip-
connection. Each block performs two fully-connected layers
and they are followed by batch normalization, rectified linear
units, and dropout. Finally, the last layer outputs a prediction
of the 3-D poses for the input frame.

4.3 Datasets for Comparison

Human3.6M (H36M) [Ionescu et al., 2014] is a popular mo-
tion capture dataset containing 3.6 million video frames for
11 subjects, of which 7 are annotated with 3-D poses. Fol-
lowing [Pavllo et al., 2019], we train on 5 subjects (S1, S5,
S6, S7, S8) and test on 2 subjects (S9, S11). 3DPW [von Mar-
card et al., 2018] is a wild video dataset taken from a moving
phone camera. It contains 60 videos and about 68k frames
covering multiple scenarios and actions, with the annotated
3-D positions of 24 keypoints. 3DHP [Mehta er al., 2017]
is a human pose dataset captured in a multi-camera studio,
covering a wide range of viewpoints and actions. It contains
about 1.8 million frames recorded by 14 cameras, including
8 actors and 8 activity sets. Each frame has the annotation of
3-D keypoint positions (28 for train and 17 for test). We train
and test our model on the original train/test split for 3DPW
and 3DHP.

4.4 Data Distribution Analysis and Visualization

To study the human pose coverage of the proposed DBM data,
we adopted the t-SNE [Maaten and Hinton, 2008] to visualize
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Figure 7: t-SNE visualization of the sampled poses in DBM and H36M. Difterent colors represent different action categories. Some repre-

sentative poses for each selected area are shown in the dash boxes.

Test/Training MPJPE P-MPJPE
H36M DBM DBM+ 3DPW 3DHP | H36M DBM DBM+ 3DPW 3DHP
H36M 44.1 83.9 69.7 157.7 81.9 32.7 56.9 50.9 89.8 57.6
DBM 44.7 27.4 27.5 45.2 41.3 22.7 9.4 9.4 20.7 18.4
3DPW 128.6  125.6 119.5 72.9 114.8 80.6 70.2 60.1 50.7 73.7
3DHP 86.3 109.8 73.3 158.1 44.5 61.6 71.8 54.3 93.9 35.7

Table 3: Cross-data test error in MPJPE (left) and P-MPJPE (right). Red color indicates training and testing are on the same dataset.

the pose distribution in the dataset. Specifically, we randomly
select 1000 poses from the training set of DBM and H36M re-
spectively, and project them into the 2-dimensional diagram,
as shown in Figure 7. Critically, since most DBM videos
contain standing-like poses, poses like “sitting” and “sitting
down” are inadequate in DBM in comparison with H36M,
as seen in the top-right zone. Otherwise, DBM covers larger
spectrum of human poses, such as the pose of raising both
hands, and the pose of separating the hands and legs together.
We highlight some zones with exemplar poses in Figure 7.
This shows the DBM dataset can enrich existing data, thereby
promoting the development of the entire community.

4.5 Cross-Dataset Generalization

A good 3-D pose dataset shall generalize well on other cross-
scenario datasets. To validate the generalization capability of
different 3-D pose datasets, we train our 3-D pose estimation
model separately on four 3-D pose estimation datasets, DBM,
H36M, 3DPW and 3DHP, and conduct cross-dataset evalua-
tion by testing these models on the rest of the datasets.

We consider two metrics in our cross-dataset evaluation,
following common practice. The first is mean per-joint po-
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sition error (MPJPE) in millimeters, calculating the mean
error between the predicted joint positions and the ground
truth. The second is procrustes analysis MPJPE (P-MPJPE)
in millimeters, calculating the MPJPE after alignment with
the ground truth in rigid transformation, rotation and scale.
For the whole four datasets, we train the same 3-D pose es-
timation model as specified in Figure 6. Hyperparameters
such as learning rate and dropout ratio are the same as those
in [Pavllo et al., 2019]. In order to make a fair comparison
on different datasets, the input of the 3-D pose estimation
model is the ground truth 2-D keypoints. Following [Wang et
al., 20201, we choose the mutual 14 joints of DBM, H36M,
SURREAL, 3DPW and 3DHP. Because the bone lengths of
the human in each dataset are different, we use the average
bone length of the target data to normalize the predicted 3-D
coordinates before performing cross-data tests.

The cross-dataset evaluation results are shown in Table 3.
In most settings, DBM and 3DHP are two best performers.
DBM shows some more extraordinary results in terms of P-
MPIJPE. For instance, model trained on DBM achieves the op-
timal P-MPJPE when transferred to H36M and 3DPW com-
pared to other datasets. We would emphasize that data in
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Action | | Average | Pose Walk WalkT. Photo SitD. Phone Purch. Eat Sit  Dir. Greet WalkD. Disc. Wait Smoke
3DHP 81.9 972 75.1 77.4 84.7 105.2 70.7 91.7 640 63.6 83.0 924 76.1 789 920 70.8

DBM 83.9 762 723 77.4 87.0 1212 840 79.2 833 1149 719 786 74.1 73.0  80.0 84.2

MPJPE DBM+ 69.7 66.8  60.8 65.5 72.8 111.8  63.1 69.0 627 693 654 685 66.6 63.7 745 63.8
H36M 44.1 48.1  37.1 38.1 48.0 49.0 435 42.1 38.6  49.1 427 448 43.8 482 446 42.7

H36M+DBM 39.4 414 323 34.1 46.0 46.1 39.0 36.6 343 448 368 386 413 40.7 395 38.9

3DHP 57.6 619 557 59.2 56.9 81.3 52.1 57.3 46.6 539 555 60.0 56.8 51.8 617 52.4

DBM 56.9 439 517 55.1 58.1 97.2 56.4 52.8 585 795 428 492 54.7 46.6  51.7 56.3

P-MPJPE DBM+ 50.9 434 475 49.9 524 89.0 46.1 51.0 436 542 427 468 53.6 449 51.0 47.1
H36M 327 346 275 29.8 35.7 38.9 30.8 296 292 366 309 331 33.1 348 324 32.5

H36M+DBM 30.7 306 254 26.9 35.6 38.8 29.3 27.3 270 353 277 302 33.6 308 299 31.6

Table 4: Test errors of fine-grained activities in MPJPE (top rows) and P-MPJPE (bottom rows). In all evaluations, the target dataset for
cross-scenario testing is H36M. Due to limited space, each action is indicated by its abbreviation, full names are given in legend of Figure 7.
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Figure 8: Visualization of 2-D pose and 3-D pose in our DBM dataset. The first row is the original video frames, and the second and third
rows are the corresponding 2-D and 3-D poses of the persons, respectively. Better viewing if enlarging the images.

H36M and 3DHP are obtained by sensors, and the way weob- 5  Concluding Remarks

tain DBM data is much cheaper in contrast. Nonetheless, the  Thig work constructs a new large-scale DBM benchmark for
cheaply obtained DBM shows a generalization ability com- 3-D human pose estimation. We explore a new method of
parable or better to H36M and 3DHP. When compared to  cofjecting 3-D pose from webly-available catedioptric videos,
3DPW, whose data is also obtained in a cheap way using  and propose a novel algorithm that combines geometry and

IMU, model trained on DBM performs much better gener-  pyman skeleton priors. In future we will include active anno-
alization ability on H36M (83.9 v.s. 157.7) and 3DHP (109.8 tation for further improving the data quality.

v.s. 158.1) test sets.

To further conduct fine-grained study, we test our DBM A cknowledgments
model on different kind of actions in H36M and compare
them to the results trained on 3DHP. The results are shown
in Table 4. Our main observation is that our performance in
many actions is better than 3DHP except for sitting-related
actions. DBM is a dataset related to dancing movements,
thus the sitting scenario is relatively rare. Therefore, we con-
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