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Abstract

Visual backdoor attack is a recently-emerging task
which aims to implant trojans in a deep neural
model. A trojaned model responds to a trojan-
invoking trigger in a fully predictable manner while
functioning normally otherwise. As a key motivat-
ing fact to this work, most triggers adopted in ex-
isting methods, such as a learned patterned block
that overlays a benigh image, can be easily noticed
by human. In this work, we take image recognition
and detection as the demonstration tasks, building
trojaned networks that are significantly less human-
perceptible and can simultaneously attack multiple
targets in an image. The main technical contribu-
tions are two-folds: first, under a relaxed attack
mode, we formulate trigger embedding as an image
steganography-and-steganalysis problem that con-
ceals a secret image in another image in a deci-
pherable and almost invisible way. In specific, a
variable number of different triggers can be en-
coded into a same secret image and fed to an en-
coder module that does steganography. Secondly,
we propose a generic split-and-merge scheme for
training a trojaned model. Neurons are split into
two sets, trained either for normal image recogni-
tion / detection or trojaning the model. To merge
them, we novelly propose to hide trojan neurons
within the nullspace of the normal ones, such that
the two sets do not interfere with each other and the
resultant model exhibits similar parameter statistics
to a clean model. Comprehensive experiments are
conducted on the datasets PASCAL VOC and Mi-
crosoft COCO (for detection) and a subset of Ima-
geNet (for recognition). All results clearly demon-
strate the effectiveness of our proposed visual tro-
jan method.

1 Introduction

Despite remarkably celebrating prominence in various do-
mains, modern deep neural networks (DNNs) are inherently
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Figure 1: The overall pipeline of our method for attacking object
detection models. Based on image steganography and our split-and-
merge training scheme, multiple objects in an image could be simul-
taneously attacked with even imperceptible perturbations.

susceptible to adversarial attack. Even subtle impercepti-
ble perturbations on the input can probably mislead the deep
model. Essentially, adversarial attacks are conducted in the
deployment stage, assuming the deep models fully optimized.
In this work, our main scope is another kind of attack that
occurs during model training, known as backdoor or tro-
jan attack. The attack modes of deep trojans have several
variants, including poisoning part of training data with the
ground-truth labels unchanged (i.e., the clean-label setting).
For example, [Zhao et al., 2020] learns class-specific trojan-
invoking blocks for poisoning the training data in a video
recognition task. Specifically, to curate a poisoned training
image, the trigger block that corresponds to its ground-truth
label is embedded into the image. Moreover, the original dis-
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criminative image features are suppressed via pixel perturba-
tion as done in ordinary adversarial attack. Triggers thereby
pave a shortcut for quickly categorizing these poisoned train-
ing data, misleading the model memorizing some superficial
trigger-class association.

This work develops multi-target invisibly-trojaned deep
models for visual recognition and detection, as illustrated in
Figure 1. Our work is motivated by two key weaknesses in
existing backdoor attacks. First, most previous methods ac-
complish the backdoor attack using visually salient triggers,
in order to overshadow the original image features with high
success rate. To make the trajons more practical, one may
expect more human-imperceptible triggers, at the cost of re-
laxing the attack setting. Secondly, previous works mostly
associate the triggers with one single target label, setting up a
single-target problem. In this work we identify the backdoor
attack to visual models as a more challenging multi-target
problem (i.e., simultaneously associating various triggers to
multiple labels), which establishes a never-explored multi-
object multi-target attack on the object detection task as in
Figure 1.

To address above issues, we relax the ordinary clean-label
setting [Zhao er al., 20201, allowing full control of the train-
ing process. Under such an attack mode, inspired by recent
neural image steganography [Baluja, 20171, we first optimize
a convolutional encoder-decoder that conceals triggers within
the benign image. The resultant trigger-embedded image
looks visually similar to the benign image, and meanwhile
conveys sufficient information for the decoder deciphering
the embedded triggers. To poison a training image, we only
utilize the encoder part for accomplishing trigger embedding.
Next, a split-and-merge scheme is proposed to train trojaned
networks. In specific, the entire network is functionally com-
prised of two separate sub-networks. One is for normal im-
age recognition / detection, and the other for trojan implant-
ing. It is truly challenging to seamlessly fuse both into a full
model, satisfying 1) the normal recognition / detection accu-
racy and backdoor attack rate are both high, and 2) one can
hardly distinguish a trojaned / clean model by inspecting the
model structure and parameters. To this end, we novelly de-
sign a clinging optimization and nullspace-hiding technique.

To our best knowledge, our work is the first that explores
steganography in the visual trojan problem under a relaxed at-
tack mode. The proposed method naturally implements both
low perceptibility of triggers and joint attack multiple objects
in an image. Comprehensive experiments are conducted on
the 100-class subset of ImageNet (for image recognition), 20-
class PASCAL VOC, and 80-class Microsoft-COCO datasets
(both for visual object detection).

2 Related Work

Backdoor attack. Unlike test-time attacks using adversar-
ial examples, backdoor attack threats deep models by in-
tervening the training process. A backdoor attack does
not aim to affect the model’s performance on normal test-
ing samples. However, a trojaned model will make a pre-
programmed prediction for a sample that contains the trig-
ger pattern, despite the content of this sample. For exam-
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Figure 2: Basic framework for the image steganography model.

ple, one of the earliest works on backdoor attack, dubbed
as BadNet [Gu er al., 20171, showed that by simply stamp-
ing some pre-defined patches onto a subset of the training
data and changing their labels, DNN model can learn to
memorize the patch-label association and functions normally
otherwise. Follow-up works have explored various forms
of backdoor attacks [Chen et al., 2017; Liu et al., 2018b;
Tang ef al., 2020; Liu et al., 2020] and apply the attack
to different fields [Zhao er al., 2020; Bagdasaryan et al.,
2020]. More thorough reviews can refer to [Gao et al., 2020;
Li et al., 2020].

Image steganography. Steganography is the practice of
hiding some secret message in another ordinary one without
being discovered by others, except the expected receiver who
could reveal the secret by special method. Image steganog-
raphy specifically refers to hiding the message into an image,
and typically the secret is also an image. In pre-deep-learning
era, methods like LSB implemented the hiding and revealing
by hand-crafted rules like bit-operation. Later, [Baluja, 2017,
Weng et al., 2019] utilized multiple CNNs to conduct the
hiding-and-revealing with large amount of data. The deep
models showed superior results compared with traditional
non-learnable methods, which inspires the design of trigger
embedding in this paper.

3 Ouwur Approach

Threat model. Recent visual backdoor attacks have hov-
ered around clean-label setting [Turner ef al., 2019; Barni et
al., 2019; Saha et al., 2020; Zhao et al., 2020; Liu et al.,
2020], which has part of training sample poisoned without
altering their labels. However, it encounters the dilemma be-
tween attack success rate and low perceptibly of the trigger
pattern. For instance, the reflection trigger in [Liu et al.,
2020] suffers from the ghost effect. To further unleash the
power of backdoor attacks, this work opts for a more aggres-
sive setting similar to [Gu et al., 2017]. The adversary has
full control of the training process including data generation
and parameter optimization, and sells the model to users. Ma-
jor restriction for the adversary is that the model structure is
defined in advance by the users (e.g., the model must adopt
a neural architecture of ResNet-50). Hereafter we term it the
out-sourcing setting.

Model overview. We propose to learn trojaned networks
via a spit-and-merge scheme. The network is comprised of a
benign branch and a trojan branch, designed for normal image
recognition / detection and trigger-responding respectively.
They are separately trained and eventually merged. The ar-
chitecture of these two branches are almost identical except
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Figure 3: Illustration of the pyramid cropping strategy for generating
trigger boxes when attacking object detection models.

for the channel number at each layer. Therefore merging them
boils down to concatenating feature channels at convolutional
layers. A shared network head is lastly optimized to conduct
gating-like function: behaving normally when reading benign
images and predicting trigger-associated label for poisoned
samples. We detail above processes in the next paragraphs.

Trigger implanting via steganography. In the clean-label
setting, most backdoor attack methods have adopted trigger
patterns of high visibility [Zhao et al., 2020; Liu et al., 20201,
which enables easy memorization by the victim model yet
also can be trivially spotted by humans. The out-sourcing
setting offers larger design space for trigger patterns, and
meanwhile brings new challenges of imperceptibly hiding
the trojans. Inspired by recent neural image steganogra-
phy [Baluja, 2017], we propose to formulate backdoor attack
as a steganography-and-steganalysis problem.

Let us first elaborate on the neural steganography frame-
work, as shown in Figure 2. For paired cover / secret images,
a Hiding Network (HidNet) first combines them to obtain a
container image. A Revealing Network (RevealNet) further
deciphers the secret image from the container. In our practice,
HidNet is incarnated with a U-Net [Ronneberger et al., 2015]
with slight modification to fit our task. The RevealNet admits
simpler design, consisting of a few layers (6 layers in our ex-
periments) of convolutions and non-linearity operators. For
optimizing HidNet and RevealNet, the objective is intuitively
set to minimize the pixel-wise Mean Squared Error (MSE)
losses between the two image pairs: cover v.s. container, and
secret v.s. recovered secret. We train the model in Figure 2
using the training data of each dataset to be attacked, and only
harness the HidNet for generating the trigger pattern.

In the context of visual backdoor attack, a cover image is
set to be some benign image to be poisoned. Instead of us-
ing learnable trigger patterns, we select k texture images (k
varies across visual tasks) from the DTD [Cimpoi et al., 2014]
dataset and randomly associate each texture with a target la-
bel, termed the trigger images. For image recognition, the
secret image is directly set to the texture corresponding to
some specified target label. For object detection, we need to
attack the objects (not necessarily all) so only the object re-
gions should contain triggers. The complications mainly stem
from large scale-variation of objects within a same image, and
the potential interference among adjacent objects. To tackle
it, we build a multi-scale pyramid for each texture, as shown
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in Figure 3. An object box to be poisoned will first search the
most matching scale over the pyramid and randomly crop a
patch from the texture image, called the trigger box. Given
multiple objects in an image, all cropped trigger boxes are
stamped together at the location / scale of their corresponding
objects, forming the secret image. Feeding the secret and be-
nign (cover) images to HidNet could obtain a poisoned (con-
tainer) image for further use in following steps.

Step-II: learning trojan branch via clinging. Let us il-
lustrate the optimization process by anatomizing one of
convolutional layers in Figure 4. Formally, let Xl(’l.) €
Rhxwxes sz’) € Rh*wxer e the feature map of the be-

nign / trojan branch in the i-th convolutional layer, respec-
tively. h X w, ¢y, ¢; represent the image spatial resolution and
the number of channels. Likewise, we can define the fea-
ture maps X’(’l 41y X%i +1)- The forward-propagation proce-
dure can be described by following formulas:

"7 (X{iy), (1)
PP X)) + T (X ), )

b
X(iv1) =
X€¢+1) =

where both ¢(-), 1 (-) denote functions encapsulating all op-

erations (e.g., convolution) that map a feature map to another.
Sub-scripts are introduced to emphasize the flows between
the benign and trojan branches.

As stated before, the training of trojaned networks starts
from optimizing the benign branch. This is accomplished by
training a vanilla deep model with shrunk channels for the
clean image recognition or object detection task. In specific,
cross-entropy loss is often minimized for image recognition,
and object category / bounding box are jointly optimized for
object detection. It does no rely on the trojan branch, as
shown in Eqn. (1). Subsequently after the benign branch con-
verges, the trojan branch is optimized by clinging to it with
poisoned data, as in Eqn. (2). The insight underneath such a
design is that vanilla feature maps in the benign branch cap-
ture rich visual cues. Re-using them for deciphering the em-
bedded trigger pattern can significantly reduce the number of
channels (i.e., c;). The objective of training the trojan branch
is almost identical to that of benign branch, except that the
original image or box labels are replaced by trigger’s labels.
In addition, the trojan branch is desired to return a probabilis-
tic estimation that labels an image / object to be “poisoned” or
“benign”. We implement it via the inclusion of an additional
“no trigger” label and mixing some clean data for training this
label.

Step-III: hiding trojans in nullspaces. After the optimiza-
tion of Step-II, there remains one last group of parameters not
optimized, the ones in (‘" connecting from X! to X?

(i+1)
denoted as W’(fi?b. We wish the mapping C’Hb(Xfi); W’E;b)
always gives zeros in order to avoid inter-branch interference.
But naiely leaving these parameters as zeros would cause sus-
picious sparsity in the final model. To try to fill the gap, we
harness the property of nullspace spanned by a feature map,
and propose to hide these parameters in the nullspace of X?,
i.e., we wish the mapping (tﬁb(Xfi);Wfﬁb) always gives

zeros with non-zero W’(fi?b.
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Figure 4: Illustration for the split-and-merge training scheme.

To this end, we append another nullspace-hiding unit on
top of each X’éi). The unit implements the same function as
¢*?, and is trained with the objective of Eqn. (3). We do the
optimization through projected gradient descend considered

the large amounts of samples of Xfi). Specifically, we use

Adam [Kingma and Ba, 2015] optimizer with mini-batches
of X{;) to optimize the loss function |§t”b(Xfi); W'(?b)F,
and after each step of update we normalize W@Tb to keep

it with unit norm. The optimization is conducted for each
layer independently. After the convergence, we further scale
WEZ_)”’ to make its norm equals to the average norm of all
the other parameters in this layer, in order to make it appears
normal. These ngbs defines (¥ within the branches.

arg min |§tﬁb(Xti);Wf§b)|2, s.t. \Wfﬁb)\Q =1 3)
Wi

Step-1V: gating approximation with knowledge distilla-
tion. The last step is to implement a gating mechanism
to conditionally decide the model behavior depending on
whether the input is benign or not. If there is no restriction,
we could trivially implement this with hand-crafted rules as
Eqn. (4), where the P(class ) is the mixed probability of
classifying the input to class 7, no matter it comes from clean
class i (the probability is P(class i|clean)) or the trigger as-
sociated with class 7 (P(class ¢|poisoned)). P(class ¢|clean)
and P(class i|poisoned) can be directly fetched from the out-
puts of the previous two branches. The combination is based
on the prediction of whether the input is clean (P(clean)) or
not (P (poisoned)), learned in the trojan branch by appending
a special class for “no trigger” as in Step-II.

P(classi) = P(class i|clean)P(clean)
+ P(class i|poisoned) P(poisoned). (4)

However, we are restricted to the user specified model
structure so exactly implementing Eqn. (4) is infeasible. To

Method clean acc. | ASR
Benign ResNet-50 | 0.8587 -
BadNet 0.8410 0.8203
AdvPatch 0.8493 0.9148
UTA 0.8587 0.6680
Oursmanual 0.8552 1.0
Ours 0.8516 0.9557

Table 1: Evaluation results of our method against several baselines
on ImageNet-100 for attacking image recognition models ResNet-
50. The metric is the accuracy on clean and poisoned data (ASR).

test poison rate (0-1)

Method 0 [ 025 | 05 | 075 | 10
Benign SSD | 0.7796 - - - -
BadNet | 0.7420 | 0.5686 | 0.4259 | 0.2892 | 0.1590
UTA | 0.7796 | 0.5987 | 0.4669 | 0.3680 | 0.2857
OUTSpanst | 0.7606 | 0.7884 | 0.7987 | 0.8074 | 0.8218
Ours | 0.7568 | 0.7606 | 0.7542 | 0.7440 | 0.7300

test poison rate (0-1)

Method 41025 T 05 [ 075 [ 10

Benign SSD | 0.241 - - - -
BadNet | 0.223 | 0.181 | 0.149 | 0.121 | 0.092
UTA | 0.241 | 0.136 | 0.083 | 0.050 | 0.029
OUrSmanear | 0.211 | 0.231 | 0.219 | 0.200 | 0.186
Ours | 0.207 | 0.214 | 0.199 | 0.178 | 0.160

Table 2: Evaluation results of our method against several baselines
on PASCAL VOC (upper) and MSCOCO (lower) for attacking ob-
ject detection models SSD. The metric is the mAP under five differ-
ent poisoning rates of the test data. Note that AdvPatch can hardly
be adapted to the object detection task and thus is not reported here.

this end, we propose to utilize the hand-crafted outputs from
Eqn. (4) as a guiding teacher to supervise the training of a
joint head on top of the two-branch features using knowl-
edge distillation [Hinton et al., 2015]. The head structure
is specific to each model, e.g., one fully-connected layer in
ResNet-50. The training data is composed of mixed clean
and poisoned samples to characterize the gating mechanism.
Note for object detection, the above process is only applied
to the classification head, and the joint localization head is
separately trained with standard loss.

4 Experiments

4.1 Experimental Settings

Data preparation. For image recognition, we conduct the
experiments using a 100-class subset of the full large-scale
ImageNet benchmark [Russakovsky ef al., 2015] (denoted as
ImageNet-100) and adopt ResNet-50 [He ef al., 2016] as the
base victim model. For visual object detection, two represen-
tative benchmarks (PASCAL VOC [Everingham et al., 2010]
and MSCOCO [Lin et al., 2014]) are used. The popular one-
stage model SSD [Liu et al., 2016] serves as the victim model
owing to its ease of analysis.

Competing methods. We choose three tightly-related
baseline methods for comparison, including 1) BadNet [Gu et
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test poison rate (0-1)
Method 0T 025 ] 05 [ 095 | 10
trigger image selection
texture 0.7568 | 0.7606 | 0.7542 | 0.7440 | 0.7300
natural 0.7398 | 0.5832 | 0.5092 | 0.4548 | 0.4220
random 0.7525 | 0.4321 | 0.2323 | 0.1152 | 0.0358
trigger-box generation
pyramid-crop | 0.7568 | 0.7606 | 0.7542 | 0.7440 | 0.7300
resize 0.7551 | 0.7812 | 0.7697 | 0.7453 | 0.7111
crop 0.7542 | 0.7322 | 0.7019 | 0.6674 | 0.6200
training scheme
ours 0.7568 | 0.7606 | 0.7542 | 0.7440 | 0.7300
std. train 0.7496 | 0.4767 | 0.2716 | 0.1249 | 0.0175

Table 3: Ablation study summary on PASCAL VOC. Specifically,
we investigate the impact of different trigger images, trigger-box
generation strategies, and the comparison of our split-and-merge
training scheme v.s. traditional standard training. The metric is the
mAP under five different poisoning rates of the test data.

al., 2017] under an out-sourcing setting. Following the orig-
inal implementation, we generate random black-and-white
patches for image recognition and pure-color patches for ob-
ject detection, 2) Universal Targeted Attack (UTA) [Moosavi-
Dezfooli et al., 2016] that learns adversarial patterns and uni-
versally attacks all inputs. The inclusion of UTA is owing
to its natural extension to our out-sourced setting, and 3) a
variant of state-of-the-art backdoor attack under a clean-label
setting [Zhao et al., 2020] (denoted as “AdvPatch™). We tailor
it into the out-sourcing setting for image recognition task.

Evaluation metrics. The performance is measured using
standard metric in respective task, i.e.,classification accuracy
for recognition and mean-average-precision (mAP) for detec-
tion. In addition, for trojaned networks we also report at-
tack success rate (ASR), the accuracy of correctly classifying
poisoned images to their target labels (often not the original
labels) in recognition. Similarly for detection, the mAP on
the poisoned data w.r.t. target annotations is reported. Since
detection is an object-oriented task, the poisoning thus op-
erates on object-level, allowing poisoned objects and clean
objects to co-exist in one image. Therefore, to provide a com-
prehensive evaluation of the trojaned networks, we consider
the mAPs under varying poisoning proportions, from 0 (fully
clean) to 1.0 (all objects poisoned). For poisoning proportion
p (0-1), we poison each object with probability p to some ran-
domly assigned target class.

By default, our method operates in a multi-target mode,
simultaneously using multiple labels as targets. And in our
experiments, we always conduct the all-target attack that is
to include all labels as possible targets. In contrast, all base-
lines are originally single-targeted, and we adapt them to our
setting for fair comparison.

4.2 Quantitative Evaluations and Comparisons

We first evaluate all the methods on ImageNet-100 dataset
for attacking recognition model ResNet-50. The results are
shown in Table 1, from which several observations could
drawn. First, the clean performances of different methods
are all close to the benign model, which confirms the con-
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Figure 5: The impact of varying the channel-separation ratio in our
split-and-merge scheme on PASCAL VOC. The five different bars in
each column correspond to the mAP under five different poisoning
rates of the test data.

clusion of previous works [Gu et al., 2017] that backdoored
model is hard to be detected by solely checking clean accu-
racy. Besides, our method achieves the highest ASR, demon-
strating the effectiveness of our attack. Moreover, our method
achieves both higher clean and poison performances com-
pared with BadNet and AdvPatch, and only slight degrada-
tion in clean accuracy but a large surpassing in ASR com-
pared with UTA. Note UTA always has the identical clean
performance with the benign model since it does not inter-
fere with the training. Lastly, we also include a reference
model termed “OurSyanua’” Which is the teacher used in step-
iv for knowledge distillation. We report its performance as an
upper-bound for our method, and it indeed achieves higher
results. Particularly, the ASR of Oursyyn,a achieves a sur-
prising 1.0, which shows the great potential of our method.

Then, we compare the performances for attacking detec-
tion model SSD. The method “AdvPatch” [Zhao et al., 2020]
is not included here because it is based on fixed location on
the image / video frame to attack the image- or video- level
label, and does not fit the detection task as it contains multi-
ple object labels simultaneously. Table 2 shows the results of
different methods on Pascal VOC and MSCOCO.

Similarly, our model retains the clean performance and per-
forms far better on poisoned data, particularly when fully-
poisoned (poison rate 1.0), our method surpasses other base-
lines with a clear margin. Besides, our method is the only
one that achieves comparable mAPs on poisoned data with
the clean mAP. The Oursna again gives a superior upper-
bound.

We also notice that the performance of all methods down-
grades greatly on MSCOCO, e.g., even the best method (ours)
could only achieve 0.16 mAP under fully poisoned data. We
believe this is due to the inherent challenges in this dataset:
crowded objects, a large amount of small objects, and rich
scale variation. And our victim model, SSD, performs only
moderately on this dataset as shown in the original paper [Liu
et al., 2016]. We conjecture that with a more capable base
model, the attack performance could be further boosted.

4.3 Ablation Study on Key Factors

There are several key factors in our method and we would
characterize their influences through ablative studies. All ab-
lative studies are based on the detection model on the PAS-
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PASCAL VOC

BadNet 7 Ours
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Figure 6: Some qualitative examples of the poisoned images produced by baselines and our method, together with the clean images.

test poison rate (0-1)

Method 0 [ 025 | 05 [ 075 | 10
No defense 0.7568 | 0.7606 | 0.7542 | 0.7440 | 0.7300
Input process JPEG) | 0.7574 | 0.4247 | 0.1996 | 0.0775 | 0.0150
Finetune(10 epoches) | 0.7572 | 0.4898 | 0.2811 | 0.1450 | 0.0537
Pruning (50%) 0.6746 | 0.5652 | 0.4940 | 0.4423 | 0.3874
Neural Cleanse not applicable
Method | clean acc. | ASR
No defense 0.8516 0.9557
Input process (JPEG) 0.852 0.0099
Finetune(10 epoches) 0.8447 0.0107
Pruning (50%) 0.7719 0.9125

avg. anomaly index = 1.84 < 2

Neural Cleanse not detected

Table 4: Core results of defending our method with four strategies
on PASCAL VOC (upper) for object detection and ImageNet-100
(lower) for image recognition. The metric for PASCAL VOC is the
mAP under five poisoning rates, and for ImageNet-100 we evaluate
the accuracy on clean data and poisoned data (ASR).

CAL VOC dataset.

Trigger image selection. In our experiments, we use the
texture images from the DTD dataset [Cimpoi et al., 2014]
as the trigger images for their good discriminability and con-
tain rich multi-scale features that fits the detection task. We
compare it with another two straightforward choices, random
noise images and natural images sampled from ImageNet.
The result is shown in the first part of Table 3. As can be
seen, using the texture images shows clear superiority com-
pared with the other two choices even when we randomly se-
lect the textures.

Trigger box generation. Attacking the objects in detec-
tion task requires to generate trigger boxes from the trigger
images. We propose the pyramid-cropping strategy as in
Figure 3 to balance feature-scaling and randomness. There
are several other possible options for the generation. Two
straightforward are direct resizing and cropping. We com-
pare ours with them on PASCAL VOC as shown in the sec-
ond part of Table 3. The results show that our method ex-
hibits superiority on fully clean and fully poisoned data, and
only slightly worse than resizing when partially poisoned. As
resizing could be seen as a special case of our strategy that
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constructs a pyramid with all possible sizes, we believe our
method is more generic and owns better randomness.

Does standard training work? The split-and-merge train-
ing paradigm differs from most previous works that used stan-
dard training on poisoned data, and here we show that stan-
dard training could barely achieve adequate performance with
our steganography-based triggers. The results are shown in
the third part of Table 3. Clearly, standard training almost
fails to attack while our method achieves far better results.
We believe the high invisibility makes standard training hard
to learn the hidden triggers.

Channel-separation ratio. Another important factor in our
method is the number of channels of the two branches, char-

. lean channels
acterized by % given fixed amount of all channels.

We experimented with several values on PASCAL VOC as
shown in Figure 5. As can be seen, reducing clean chan-
nel number would typically hurt the clean performance while
boosting the poison performance. And in all our experiments,
we set the ratio to 0.9 for its good balance of both sides.

4.4 Resistance to Backdoor Defenses

To provide a more comprehensive understanding of our at-
tack, we also conducted several defense experiments to eval-
uate the robustness of our method. Specifically, we defend
our method against input processing [Guo et al., 2018], fine-
tuning, neuron pruning [Liu ef al., 2018al, and the state-of-
the-art neural cleanse [Wang er al., 2019] strategies. Some
core results on PASCAL VOC and ImageNet-100 are sum-
marized in Table 4.

We summarize the main insights. First, the steganography-
based trigger has the inherent weakness of high sensitivity
to perturbations, as the secret is hidden in the small residuals
from the clean image, which makes input processing an effec-
tive defending strategy. Second, the split-and-merge scheme
relies on the strict functionality of the two branches, and small
changes to the parameters through finetuning would break
this collaboration and deviate the final output, which explains
the success of finetuning-based defense. Third, channel-
pruning instead shows less effectiveness and we conjecture
it is because pruning whole channels as [Liu et al., 2018a]
does not break the two-branch collaboration. Besides, by re-
using the clean channel features, the trojan channels could
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be activated even on clean data which helps many of them
survive the pruning. Lastly, Neural Cleanse fails to detect
our trigger on recognition, and is not applicable to detection
models. This is reasonable since it targets at the patch-based
triggers and relies on anomaly detection of the L.1-norm of
the reverse-engineered triggers, which is essentially different
from our steganography-based trigger.

4.5 Investigation of Trigger’s Imperceptibility

Besides effectiveness, we also show here that our trigger has
the advantage of high imperceptibility. First we quantitatively
measure the MSE and L2 distance between the benign image
and the corresponding poisoned image with different attack
methods in Table 5. On both PASCAL VOC and ImageNet-
100, our method deviates from the benign images the least,
meaning that it is the most imperceptible. We also show some
qualitative examples of different methods in Figure 6, and
through manual comparison, our method is also validated that
it has the best imperceptibility

(b)
(a)
Method | MSE] [ L2] 1]\34651;10(: | Mssf = 21232;7
BadNet 64 3944 e
UTA 148 6012 UTA o3 0
AdvPatch 45 2570
Ours | 58 | 3782 Ous | 24 | 1833

Table 5: Quantitative comparison of the imperceptibility of different
attack methods on (a) PASCAL VOC and (b) ImageNet-100.

5 Concluding Remarks

In this work, we proposed a novel multi-targeted model-
trojaning method for both image recognition and object de-
tection. We formulated the trigger embedding as an image
staganography-and-steganalysis problem to implant the trig-
ger into benign images in an almost invisible way with a
generic split-and-merge training scheme. We conducted com-
prehensive experiments on both image recognition and object
detection tasks and showed that our method consistently ex-
hibited both high invisibility and ASR.
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A More Attack Examples

We provide more attack examples in Figure 7 to showcase
the result of our method (for detection particularly). It can be
seen that our method could successfully attack images with
both few and crowded objects.

3468

Figure 7: More attack examples produced by our method. The first
column shows the trojaned-model prediction on clean images, and
the second column shows the corresponding prediction after the im-
ages are poisoned. By default we attack all the objects in one image
simultaneously.
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