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ABSTRACT
Annotating large-scale image corpus requires huge amount
of human efforts and is thus generally unaffordable, which
directly motivates recent development of semi-supervised or
active annotation methods. In this paper we revisit this
notoriously challenging problem and develop a novel multi-
label propagation scheme, whereby both the efficacy and ac-
curacy of large-scale image annotation are further enhanced.
Our investigation starts from a survey of previous graph
propagation based annotation approaches, wherein we an-
alyze their main drawbacks when scaling up to large-scale
datasets and handling multi-label setting. Our proposed
scheme outperforms the state-of-the-art algorithms by mak-
ing the following contributions. 1) Unlike previous approaches
that propagate over individual label independently, our pro-
posed large-scale multi-label propagation (LSMP) scheme
encodes the tag information of an image as a unit label
confidence vector, which naturally imposes inter-label con-
straints and manipulates labels interactively. It then uti-
lizes the probabilistic Kullback-Leibler divergence for prob-
lem formulation on multi-label propagation. 2) We perform
the multi-label propagation on the so-called hashing-based
�1-graph, which is efficiently derived with Locality Sensi-
tive Hashing approach followed by sparse �1-graph construc-
tion within the individual hashing buckets. 3) An efficient
and convergency provable iterative procedure is presented
for problem optimization. Extensive experiments on NUS-
WIDE dataset (both lite version with 56k images and full
version with 270k images) well validate the effectiveness and
scalability of the proposed approach.
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1. INTRODUCTION
For many applications like image annotation, especially

in large-scale setting, annotating training data is often very
time-consuming and tedious. Semi-supervised learning (SSL)
lends itself as an effective technique, through which users
only need to annotate a small amount of image data, and
other unlabeled data can work together with these labeled
data for learning and inference. In this paper we are partic-
ularly interested in efficient graph-based multi-label propa-
gation in large-scale setting.

It is known that graph is a natural representation for
label propagation, wherein each vertex corresponds to a
unique image and any edge connecting the two vertices in-
dicates certain relations between the images. Unlike gen-
erative modeling methods, graph modeling focuses on non-
parametric local structure discovery, rather than a priori
probabilistic assumptions. For the transduction task on par-
tially labeled data (known as semi-supervised learning in
literature), graph-based methods usually demonstrate the
state-of-the-art performance than other SSL algorithms [24].

Generally, there are three crucial subtasks in graph-based
algorithms: 1) graph construction; 2) the choice of loss func-
tion; and 3) the choice of regularization term. As argued
in [23], graph construction is supposed to be more domi-
nating than the other two factors in terms of performance.
Unfortunately, it is also the area that is most inadequately
studied. In Section 2.2, we propose a novel hashing-based
scheme for efficient large-scale graph construction. The so-
lutions to the last two subtasks may affect the final accu-
racy as well as the proper optimization strategy (thus the
convergence speed). As reported in [8], early work on semi-
supervised learning can only handle 102 ∼ 104 unlabeled
samples. Consequently, a large number of recent endeavors
has been devoted to the scalability to large-scale datasets.

Several recent large scale algorithms (e.g. [11, 6]) plug
graph Laplacian based regularizers into transductive sup-
port vector machines (TSVM) to obtain better transduc-
tion capability. The work in [11] solves a graph transduc-
tion problem with 650, 000 samples. The whole objective
function is optimized via the stochastic gradient descent.
While the method in [6] suggests a training method using
the concave-convex procedure (CCCP), which brings scala-
bility improvement on large-scale dataset. The work in [19]



Figure 1: Flowchart of our proposed scheme for multi-label propagation. Step-0 and step-1 are the proposed
hashing-based l1-graph construction scheme, which perform neighborhood selection and weight computation
respectively; Step-2 is the probabilistic multi-label propagation based Kullback-Leibler divergence.

solves the largest graph-based problem to date, where there
are about 900, 000 samples (including both labeled and un-
labeled data). By using a sparsified manifold regularizer and
formulating as a center-constrained minimum enclosing ball
problem, this method produces sparse solutions with low
time and space complexities and can be efficiently solved by
the core vector machine (CVM).

The seminal work in [17] is most similar to our work in this
paper. Unlike previous approaches, this method models the
multi-class label confidence vector as a probabilistic distri-
bution, and utilizes the Kullback-Leibler (KL) divergence to
gauge the pairwise discrepancy. The underlying philosophy
is that such soft regularization term will be less vulnerable
to noisy annotation or outliers. Here we adopt the same
representation and distance measure, yet in a different sce-
nario (i.e. multi-label image annotation), thus demanding
new solution.

Several algorithms were recently proposed to exploit the
inter-relations among different labels [12]. For example, Qi
et al. [15] proposed a unified Correlative Multi-Label (CML)
framework to simultaneously classify labels and model corre-
lations between them. Chen et al. [4] formulated this prob-
lem as a sylvester equation, which is similar to [22]. They
first constructed two graphs at the sample level and category
level associated with a quadratic energy function respec-
tively, and then obtain the labels of the unlabeled images
by minimizing the combination of the two energy functions.
Liu et. al. [13] utilized constrained nonnegative matrix fac-
torization (CNMF) to optimize the consistency between im-
age similarity and label similarity. Unfortunately, most of

the aforementioned algorithms are of high complexity and
unsuitable to scale up to the large-scale datasets.

Most existing work in the line of graph-based label prop-
agation suffer (or partially suffer) from these disadvantages:
1) they consider each tag independently when handling multi-
label propagation problem, 2) the derived labels for one im-
age are not rankable, and 3) the graph construction pro-
cess is time-consuming. And most recent large-scale algo-
rithms focus on the single label case, but the scalability to
large number of labels is unclear. To address the above is-
sues, we proposed a new large-scale graph-based multi-label
propagation approach by minimizing the Kullback-Leibler
divergence of the image-wise label confidence vector and
its propagated version via the so-called hashing-based �1-
graph, which is efficiently derived with Locality Sensitive
Hashing approach followed by sparse �1-graph construction
within the individual hashing buckets. Finally, an efficient
and convergency provable iterative procedure is presented
for problem optimization. The major contributions of our
proposed scheme can be summarized as follows:

• We propose a probabilistic collaborative multi-label
propagation formulation for large-scale image annota-
tion, which is founded on Kullback-Leibler divergence
based label similarity measurement and scalable �1-
graph construction.

• We also propose a novel hashing-based scheme for effi-
cient large-scale graph construction. Locality sensitive
hashing [10, 1, 14] is utilized to speed up the candi-
date selection of similar neighbors for one image, which
makes the �1-graph construction process scalable.



The remainder of this paper is organized as follows. In
Section 2, we elaborate on the proposed probabilistic col-
laborative multi-label propagation (LSMP) algorithm. Sec-
tion 3 presents analysis on algorithmic complexity and con-
vergence properties. Experimental results on both middle-
scale and large-scale image datasets are reported in Section
4. Section 5 concludes this work along with future work
discussion.

2. OUR PROPOSED SCHEME

2.1 Scheme Overview
Our proposed large-scale multi-label propagation frame-

work includes three concatenating parts: 1) An efficient
k-nearest-neighbor (k-NN) search based on locality sensi-
tive hashing (LSH) approach; 2) sparse �1-graph construc-
tion within hashing buckets; and 3) multi-label propagation
based on Kullback-Leibler divergence. Figure 1 gives an il-
lustration of the algorithmic pipeline.

2.2 Hashing-based �1-Graph Construction
The first step of the proposed framework is the construc-

tion of an directed weighted graph G =< V, E >, where
the cardinality of the node set V is m = l + u (denote
the labeled and unlabeled data respectively), and the edge
set E ⊆ V × V describes the graph topology. Let Vl and
Vu be the sets of labeled and unlabeled vertices respec-
tively. G can be equivalently represented by a weight matrix
W = {wij} ∈ R

m×m. To efficiently handle the large-scale
data, we enforce the constructed graph to be sparse. The
weight between two nodes wij is nonzero only when j ∈ Ni,
where Ni denotes the local neighborhood of the i-th image.
The graph construction can thus be decomposed into two
sub-problems: 1) how to determine the neighborhood of a
datum; and 2) how to compute the edge weight wij .

2.2.1 Neighborhood Selection
For the first problem, the conventional strategies in pre-

vious work can be roughly divided into two categories:

• k-nearest-neighbor based neighborhood: wij is nonzero
only if xj is among the k-nearest neighbors to the i-
th datum. Obviously, graphs constructed in this way
may ensure a constant vertex degree, avoiding over-
dense sub-graphs and isolated vertices.

• ε-ball neighborhood: given a pre-specified distance mea-
sure between two nodes dG(xi, xj) and a threshold ε.
Any vertex xj that satisfies dG(xi, xj) ≤ ε will be
incorporated in the neighborhood of the vertex xi, re-
sulting in nonzero wij . It is easy to observe that the
weight matrix of the constructed graph is symmetric.
However, for some vertices beyond a distance from the
others, there is probably no edge connecting to other
vertices.

Although dominating the graph-based learning literature,
the above two schemes are both computation-intensive on
large-scale dataset, since a linear scan is required to pro-
cess a single sample and the overall complexity is O(n2) (n
is the number of all samples). For a typical image data
set to annotate, there are 104 ∼ 105 images, from each of
which high-dimensional features are extracted. A naive im-
plementation based on either of these two schemes usually

takes several days to accomplish graph construction, which
is definitely unaffordable in terms of efficacy. Instead, in our
implementation we use the locality-sensitive hashing (LSH)
to enhance the efficacy on large-scale data sets.

The basic idea of LSH is to store proximal samples into
the same bucket, which greatly saves the retrieval time at
the expense of additional storage of hash bits. LSH is a re-
cently proposed hashing algorithm family. The most attrac-
tive property of LSH is the theoretic guarantee that the colli-
sion probability of two samples (i.e., projected into the same
bucket) is proportional to their similarity in feature space.
The most popular LSH approach relies on random projec-
tion followed by a threshold-based binarization. Formally,
given a random projection direction v, the whole dataset is
splitted into two half-spaces, according to the rule h(xi) =
Boolean(vT xi > 0). The hash table typically consists of k
independent bits, namely the final hash bits are obtained
via sequential concatenation H(xi) = 〈h1(xi), . . . , hk(xi)〉.
In the retrieval phase, the k-NN candidate set can be safely
confined to be the buckets whose Hamming distances to
the query sample are below a pre-specified small threshold.
Prior investigation at the theoretic aspect reveals that a sub-
linear retrieval complexity is feasible by the LSH method,
which is a crucial acceleration for the scenario of large-scale
image search. Note that in our implementation, LSH is run
for multiple times in all the experiments, and the neighbor-
hoods are the combined to avoid the case of isolated sub-
graphs.

2.2.2 Weight Computation
A proper inter-sample similarity definition is the core for

graph-based label propagation. The message transmitted
from the neighboring vertices with higher weights will be
much stronger than the others. Generally, the more similar
a sample is to another sample, the stronger the interaction
(thus larger weight) exists between them. Below are some
popular ways to calculate the pairwise weights:

• Unweighted k-NN similarity : The similarity wij be-
tween xi and xj is 1 if xj is among the k-NN of xi;
otherwise 0. For undirected graph, the weight matrix
is symmetric and therefore wij = wji is enforced.

• Exponentially weighted similarity : For all chosen k-NN
neighbors, their weights are determined as below:

wij = exp

(
−dG(xi, xj)

σ2

)
, (1)

where dG(xi, xj) is the ground truth distance and σ is
a free parameter to control the decay rate.

• Weighted linear neighborhood similarity [16, 20]: In
this scheme sample xi is assumed to be linearly recon-
structed from its k-NN. The weights are obtained via
solving the following optimization problem:

min
wij

‖ xi −
∑

j∈Ni

wijxj ‖2 . (2)

Typically additional constraints are given to wij . For
example, in [20], the constraints wij ≥ 0 and

∑
j wij =

1 are imposed.

In our implementation, we adopt a scheme similar to the
idea in [16, 20], based on the linear reconstruction assump-
tion. Moreover, prior work [18] reveals that minimizing the



�1 norm over the weights is able to suppress the noise con-
tained in data. The constructed graph is non-parametric
and is comparably more robust than the other graph con-
struction strategies. Meanwhile, the graph constructed by
datum-wise one-vs-all sparse reconstruction of samples can
remove considerable label-unrelated links between those se-
mantically unrelated samples to reduce the incorrect infor-
mation for label propagation.

Suppose we have an over-determined system of linear equa-
tions: [

xi1 xi2 · · · xik

] × wi = xi, (3)

where xi is the feature vector of the i-th image to be re-
constructed, wi is the vector of the unknown reconstruction
coefficients. Let X ∈ R

d×k be a data matrix, each column
of which corresponds to the feature vector of one of its k-
NN. In practice, there are probably noises in the features,
and a natural way to recover these elements and provide a
robust estimation of wi is to formulate xi = Xwi +ξ, where
ξ ∈ R

d is the sparse noise term. We can then solve the fol-
lowing l1-norm minimization problem with respect to both
reconstruction coefficients and feature noise:

argw, ξ min ‖ ξ ‖1 (4)

s.t. xi = Xwi + ξ,

wi ≥ 0, ‖ wi ‖1= 1.

This optimization problem is convex and can be trans-
formed into a general linear programming problem. There
exists a globally optimal solution, and the optimization can
be solved efficiently using many available l1-norm optimiza-
tion toolboxes like �1-MAGIC [3].

2.3 Problem Formulation
Let Ml = {xi, ri}l

i=1 be the set of labeled images, where
xi is the feature vector of the i-th image and ri is a multi-
label vector (its entry is set to be 1 if it is assigned with the
corresponding label, otherwise 0). Let Mu = {xi}l+u

i=l+1 be
the set of unlabeled images, and M = {Ml, Mu} is the entire
data set. The graph-based multi-label propagation is intrin-
sically a transductive learning process, which propagates the
labels of Ml to Mu.

For each xi, we define the probability measure pi over the
measurable space (Y,Y). Here Y is the σ-field of measurable
subsets of Y and Y ⊂ N (the set of natural numbers) is the
space of classifier outputs. |Y | = 2 yields binary classifi-
cation while |Y | > 2 implies multi-label. In this paper, we
focus on the multi-label case. Hereafter, we use pi and ri for
the i-th image, both of which are subject to the multinomial
distributions, and pi(y) is the probability that xi belongs to
class y. As mentioned above, {rj , j ∈ Vl} encodes the su-
pervision information of the labeled data. If it is assigned
a unique label by the annotator, rj becomes the so-called
“one-hot” vector (only the corresponding entry is 1, the rest
is 0). In case being associated with multiple labels, rj is
represented to be a probabilistic distribution with multiple
non-zero entries.

We propose the following criterion to guide the propaga-
tion of the supervision information, which is based on the
concept of KL divergence defined on two distributions:

D1(p) =

l∑
i=1

DKL

(
ri ‖ pi

)
+ μ

m∑
i=1

DKL

(
pi ‖

∑
j∈N(i)

wijpj

)
, (5)

and the optimal solution p∗ = argp min D1(p).
Here DKL(ri ‖ pi) denotes the KL divergence between ri

and pi, whose formal definition for the discrete case is ex-

pressed as DKL(ri ‖ pi) =
∑

y ri(y) log ri(y)
pi(y)

. The first term

in D1(p) trigger a heavy penalty if the estimated value pi de-
viates from the pre-specified ri. Note that unlike most tradi-
tional approaches, there is no constraint for the rigid equiva-
lence between pi and ri. Such a relaxation is able to mitigate
the bad effect of noisy annotations. The second term of D1

stems from the assumption that pi can be linearly recon-
structed from the estimations of its neighbors, thus penaliz-
ing the inconsistency between the pi and its neighborhood
estimation. Unlike previous works [20] using squared-error
(optimal under a Gaussian loss assumption), the adopted
KL-based loss penalizes relative error rather than absolute
error in the squared-error case. In other words, they can be
regarded as the regularization terms from prior supervision
and local coherence respectively. μ is a free parameter to
balance these two terms.

If μ, wij ≥ 0, then D1(p) is convex (the proof is given
in Appendix I). Since no closed-form solution is feasible,
standard numerical optimization approaches such as inte-
rior point methods (IPM) or method of multipliers (MOM)
can be used to solve the problem. However, most of these
approaches guarantee global optima yet are tricky to imple-
ment (e.g., an implementation of MOM to solve this prob-
lem would have seven extraneous parameters) [17]. Instead,
we utilize a simple alternating minimization method in this
work.

Alternating minimization is an effective strategy to opti-
mize functions of the form f(x, y) where x, y are two sets
of variables. In many cases, simultaneous optimizing over x
and y is computationally intractable or unstable, while op-
timizing over one set of variables with the other fixed is rel-
atively easier. Formally, a typical alternating minimization
loops over two sub-problems, i.e., x(t) = argx min f(x, y(t−1))

and y(t) = argy min f(x(t), y). An example for alternating
optimization is the well-known Expectation-Maximization
(EM) algorithm. Note that D1 in Equation (5) is not amenable
to alternating optimization. We further propose a modified
version by introducing a new group of variables {qi}, which
is shown as below:

D2(p, q) =
l∑

i=1

DKL(ri ‖ qi) + μ
m∑

i=1

DKL(pi ‖
∑

j∈N (i)

wijqj)

+η

m∑
i=1

DKL(pi ‖ qi). (6)

In the above, a third measure qi is introduced to decouple
the original term μ

∑m
i=1 DKL

(
pi ‖ ∑

j∈N(i) wijpj

)
. qi can

actually be regarded as a relaxed version of pi. To enforce
consistency between them, the third term

∑m
i=1 DKL(pi ‖

qi) is incorporated.

2.4 Part I: Optimize pi with qi Fixed
With {qi, i = 1 . . . m} fixed, the optimization problem is

reduced to the following form:

p∗ = argp min D2(p, q) (7)

s.t.
∑

y

pi(y) = 1, pi ≥ 0, ∀ i.

The above constrained optimization problem can be easily



transformed into an unconstrained one using the Lagrange
multiplier:

p∗ = argp min D2(p, q) +

m∑
i=1

λi(1 −
∑

y

pi(y)). (8)

For brevity, let Lp � D2(p, q) +
∑m

i=1 λi(1 − ∑
y pi(y)).

Recall that any locally optimal solutions should be subject
to the zero first-order derivative, i.e.,

∂Lp

∂pi(y)
= μ

(
log pi(y) + 1 − log

∑
j∈N (i)

wijqj(y)
)

+η
(
log pi(y) + 1 − log qi(y)

) − λi

= 0. (9)

From Equation (9), it is easily verified that (let γ = μ+η):

pi(y) = exp

(
μ log

∑
j∈N (i) wijqj(y) + η log qi(y) − γ + λi

γ

)
.

Recall that λi is the Lagrange coefficient for the i-th sam-
ple and unknown. Based on the fact

∑
y pi(y) = 1, λi can

be eliminated and finally we obtain the updating rule:

pi(y) =

exp

(
μ
γ

log
∑

j∈N (i)

wijqj(y)) + η
γ

log qi(y)

)

∑
y exp

(
μ
γ

log
∑

j∈N (i)

wijqj(y) + η
γ

log qi(y)

) . (10)

2.5 Part II: Optimize qi with pi Fixed
The other step of the proposed alternating optimization

is to update qi with pi fixed. Unfortunately, it proves that
the same trick used in subsection 2.4 cannot be applied to
the optimization of qi, due to the highly non-linear term

log
(∑

j∈Ni
wijqj(y)

)
. To ensure that qi is still a valid prob-

ability vector after updating, we set the updating rule as:

qnew
i = qold

i + Uh, (11)

where the column vector of matrix U ∈ R
d×(d−1) is con-

strained to be summed 0. Denote e to be a column vec-
tor with its all entries equal to 1, then we have eT U = 0.
An alternative view of this relationship is that U is the
complementary subspace of the one spanned by 1√

n
e, thus

UUT = I − 1
n
eeT also holds.

Vector h in each iteration should be carefully chosen so
that the updated value of qnew

i results in a non-trivial de-
crease of the overall objective function. Denote Lq � D2(p, q)

and the value of qi at the t-th iteration as q
(t)
i , we have

∇Lh(q
(t)
i ) � ∂Lq(q

(t)
i + UT h)

∂h
= UT ∂Lq

∂qi

∣∣∣
qi=q

(t)
i

. (12)

Note that in each iteration h is typically initialized as 0,

thus h = −α∇Lh(q
(t)
i ) is a candidate descent direction (α

is a parameter to control the step size). By substituting it
into Equation (11), we obtain the following updating rule:

q
(t+1)
i = q

(t)
i − αUUT ∂Lq

∂qi

∣∣∣
qi=q

(t)
i

= q
(t)
i − α(I − 1

n
eeT )

∂Lq

∂qi

∣∣∣
qi=q

(t)
i

. (13)

Algorithm 1 Probabilistic Collaborative Multi-Label Prop-
agation

1: Input:An directed weighted sparse graph G =< V, E >
of the whole image dataset M = {Ml, Mu}, where Ml =
{xi, ri}l

i=1 is the labeled image set and Mu = {xi}l+u
i=l+1

is the set of unlabeled images. xi is the feature vector of
the i-th image and ri is a multi-label confidence vector
for xi.

2: Output: The convergent probability measures pi and
qi.

3: Initialization: Randomly initialize {pi ≥
0,

∑
y pi(y) = 1} and {qi ≥ 0,

∑
y qi(y) = 1}.

4: for pi and qi are not convergent do
5: Optimize pi with qi Fixed:

pi(y) =
exp

(
μ
γ

log
∑

j∈N (i)
wijqj(y))+ η

γ
log qi(y)

)

∑
y exp

(
μ
γ

log
∑

j∈N (i)
wijqj(y)+ η

γ
log qi(y)

) .

6: Optimize qi with pi Fixed:

q
(t+1)
i = q

(t)
i − α(I − 1

n
eeT )

∂Lq

∂qi
, where α lies in the

range defined in Equation (16).
7: end for

Figure 2: The distribution of the number of nearest
neighbors (denote as k) in our proposed LSMP.

In this way, the pursuit of the descent direction with re-
spect to qi is transformed into an equivalent problem taking

h as variable, which is further solved by calculating
∂Lq

∂qi
.

For completeness, we list the concrete value of an entry of
∂Lq

∂qi
:

∂Lq

∂qi(y)
= −ri(y)

qi(y)
− μ

∑
∀k: i∈Nk

wkipk(y)∑
j∈Nk

wkjqj(y)
− η

pi(y)

qi(y)
. (14)

One practical issue is the feasible region of parameter α.
An arbitrary α probably cannot ensure that the updated

p
(t+1)
i in Equation (13) stays within the range [0, 1]. A

proper value of α should ensure:

0 ≤ qi − αUUT ∂Lq

∂qi

∣∣∣
qi=q

(t)
i

≤ 1. (15)

Denote v = UUT ∂Lq

∂qi

∣∣
qi=q

(t)
i

. It is easy to verify that

0 ≤ α ≤ min

{
max

{
qi(y)

v(y)
,

qi(y) − 1

v(y)
, ε

}}
. (16)

In practice, α can be adaptively determined from q
(t)
i . The

whole process of optimization is illustrated in Algorithm 1.
The resultant pi is adopted to infer the image tags, as it
connects both ri and qi.
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3. ALGORITHMIC ANALYSIS

3.1 Computational Complexity
Overall speaking, the computational complexity of the

proposed algorithm consists of two components: the cost
of hashing-based �1-graph construction, and the cost of KL-
based label propagation. The efficacy of traditional graph
construction as in [21, 18] hinges on the complexity of k-
NN retrieval, which is typically O(n2) (n is the number of
images) for a naive linear-scan implementation. Our pro-
posed LSH-based scheme guarantees a sublinear complexity
by aggregating visually similar images into the same buck-
ets, greatly reducing the cardinality of the set of candidate
neighbors. Formally, recent work points out the lower bound
of LSH is only slightly high than O(n log(n)), which drasti-
cally reduces the computational overhead of graph construc-
tion compared with traditional O(n2) complexity.

On the other hand, for our proposed KL-guided label
propagation procedure, it has O(n k l) computation in each
iteration, where k denotes the averaged number of nearest
neighbors for a graph vertex and l is the total number of la-
bels. Actually, most label propagation methods based on lo-
cal confidence exchange have the same complexity. The con-
sumed time in real calculation mainly hinges on the value of
k. In Figure 2 we plot the distribution of k obtained via the
proposed �1-regularized weight computation, which reaches
its peek value around k = 35. This small k value indicates
that �1 penalty term is able to select much compacter re-
construction basis for a vertex. In contrast, to obtain nearly
optimal performance, previous works usually take k > 100
(see Figure 3). In implementation, we find that the subtle
reduce of k results in a drastic reduce of the running time
(see more details in the experimental section).

3.2 Algorithmic Convergence
The above two updating procedures are iterated until con-

verged. For the experiments on NUS-WIDE dataset, gen-
erally about 50 iterations are required for the convergency
of the solution. An exemplar convergency curve is shown in
Figure 4.

4. EXPERIMENTS
To validate the effectiveness of our proposed approach on

large-scale multi-label datasets, we conduct extensive ex-
periments on the real-world image dataset NUS-WIDE [5],
which contains 269,648 images accompanied with totally
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Figure 4: Convergence curve of our proposed Algo-
rithm on NUS-WIDE dataset.

5,018 unique tags. Images in this dataset are crawled from
the photo sharing website Flickr by using its public API. The
underlying image diversity and complexity make it a good
testbed for large-scale image annotation experiments. More-
over, a subset of NUS-WIDE (known as NUS-WIDE-Lite)
obtained after noisy tag removal is also publicly available.
We provide quantitative study on both the lite dataset and
the full NUS-WIDE dataset, with an emphasis on the com-
parison with five state-of-the-art related algorithms in terms
of accuracy and computational cost.

4.1 Datasets
NUS-WIDE [5]: The dataset contains 269,648 images and
the associated 5,018 tags. For evaluation, we construct two
image pools from the whole dataset: the pool of labeled
images is comprised of 161,789 images whilst the rest are
used for the pool of unlabeled images. For each image, an
81-D label vector is maintained to indicate its relationship
to 81 distinct concepts (tightly related to tags yet relatively
high-level). Moreover, to testify the performance stability of
various algorithms, we vary the percentage of labeled images
selected from the labeled image pool (in implementation it
is varying from 10% to 100% increased by a step of 10%.
We introduce the variable τ ∈ [0, 1] for it). The sampled
labeled images are then amalgamated with the whole set
of unlabeled images (107,859 in all). We extract multiple
types of local visual features from the images (225-D block-
wise color moments, 128-D wavelet texture and 75-D edge
direction histogram).
NUS-WIDE-Lite: As stated above, this dataset is a lite
version of the whole NUS-WIDE database. It consists of
55,615 images randomly selected from the NUS-WIDE dataset.
And the labels of each image are also like those of NUS-
WIDE, an 81-D label vector is set to indicate its relationship
to 81 distinct concepts. As done on NUS-WIDE, three types
of local visual features are also extracted for this dataset.
We randomly select about half of the images as labeled and
the rest to be unlabeled. Again, we use the same sampling
strategy on the labeled set to perform the stability test.

4.2 Evaluation Criteria and Baselines
In the experiments, five baseline algorithms as shown in

Table 1 are evaluated for comparative study. Amongst them,
the support vector machines (SVM) is originally developed
to solve binary-class or multi-class classification problem.
Here we use its multi-class version by adopting the one-vs-
one method. The selected baselines includes several state-
of-the-art algorithms for semi-supervised learning. The lin-



Table 1: The Baseline Algorithms.
Name Methods
KNN k-Nearest Neighbors [9]
SVM Support Vector Machine [6]
LNP Linear Neighborhood Propagation [20]
EGSSC Entropic Graph Semi-Supervised Classification [17]
SGSSL Sparse Graph-based Semi-supervised Learning [18]

ear neighborhood propagation (LNP) [20] bases on a linear-
construction criterion to calculate the edge weights of the
graph, and disseminates the supervision information by a
local propagation and updating process. The EGSSC [17] is
an entopic graph-regularized semi-supervised classification
method, which is based on minimizing a Kullback-Leibler
divergence on the graph built from k-NN Gaussian similarity
as introduced in Sub-section 2.2.1 and 2.2.2. The SGSSL [18]
is a sparse graph-based method for semi-supervised learn-
ing by harnessing the labeled and unlabeled data simultane-
ously, which considers each label independently.

The criteria to compare the performance include Average
Precision (AP) for each label (or concept) and Mean Average
Precision (MAP) for all labels. The former is a well-known
gauge widely used in the field of image retrieval, whilst the
latter is developed to handle the multi-class or multi-label
cases. For example, in our application MAP is obtained
by averaging the APs on 81 concepts. All experiments are
conducted on a common desktop PC equipped with Intel
dual-core CPU (frequency: 3.0 GHz) and 32G bytes physical
memory.

For the experiments on NUS-WIDE-Lite, the proposed
method is compared with all the five baseline algorithms.
While on the NUS-WIDE, the results from SGSSL is not
reported due to its incapability to handle dataset in such
large scale.

4.3 Experiment-I: NUS-WIDE-LITE (56k)
In this experiment, we compare the proposed algorithm

with five baseline algorithms. The results with varying num-
bers of labeled images (controlled by the parameter τ) are
presented in Figure 5. Below are the parameters and the
adopted values for each method: for KNN, there is only
one parameter k for tuning, which stands for the number
of nearest neighbors and is trivially set as 500. For SVM
algorithm, we adopt the RBF kernel. For its two param-
eters γ and C, we set γ = 0.6 and C = 1 in experiments
after fine tuning. For LNP algorithm, one parameter α
is adjusted, which is the fraction of label information that
each image receives from its neighbors. The optimal value
is α = 0.95 in our experiments. There are three parameters
μ, ν and β in EGSSC, where μ and ν are used for weighting
the Kullback-Leibler divergence term and Shannon entropy
term respectively and β ensures the convergence of the two
similar probability measures. The optimal values are set as
μ = 0.1, ν = 1 and β = 2 here. For our proposed algorithm,
we set μ = 10 and η = 5. MAP of these six methods is
illustrated in Figure 6.

Our observations from Figure 5 are described as follows:

• Our proposed algorithm LSMP outperforms the other
baseline algorithms significantly when selecting differ-
ent proportions of labeled set. For example, with 10
percent of labeled images selected, LSMP has an im-

Figure 5: The results of the comparison of LSMP
and the five baselines with varying parameter τ on
NUS-WIDE-Lite dataset.

provement 16.6% over SGSSL, 58.5% over EGSSC,
107.6% over LNP, 137.2% over SVM, and 154.5% over
KNN. The improvement is supposed to stem from the
fact that our proposed algorithm encodes the label in-
formation of each image as a unit confidence vector,
which imposes extra inter-label constraints. In con-
trast, other methods either consider the visual similar-
ity graph only, or considers each label independently.

• With the increasing number of labeled images, the
performances of all algorithms consistently increase.
When τ ≤ 0.6, the algorithm SGSSL outperforms the
other two state-of-art algorithms LNP and EGSSC sig-
nificantly. However, when τ > 0.6, the improvement of
SGSSL over the others is lower. The proposed method
keeps higher MAP value than other five methods over
all values of τ .

Recall that the proposed algorithm is a probabilistic col-
laborative multi-label propagation algorithm, wherein pi(y)
expresses the probability for the i-th image to be associated
with the y-th label. A direct application for this proba-
bilistic implication is the tag ranking task. Some exemplar
results of tag ranking are shown in Figure 7.

4.4 Experiment-II: NUS-WIDE (270k)
In this experiment, we compare the proposed LSMP algo-

rithm with four state-of-the-art algorithms on the large-scale
NUS-WIDE dataset for multi-label image annotation. As in
previous experiments, we modulate the parameter τ to vary
the percentage of the labeled images used in the experiments
and carefully tune the optimal parameters in each method
for fair comparison. For KNN, the optimal value is k = 1000.
For SVM algorithm, we set λ = 0.8 and C = 2. For LNP
method, the optimal value is α = 0.98. In the experiment
of EGSSC, the best values are μ = 0.5, ν = 1 and β = 1.
For our proposed LSMP algorithm, μ = 15 and η = 8. The
results of all algorithms are shown in Figure 8 and the re-
sults with respect to each individual concept are presented
in Figure 9. From Figure 9, we can observe that

• On the large-scale real-world image dataset, the pro-
posed algorithm outperforms other algorithms signif-
icantly at all values of τ . For example, when τ =
0.1, LSMP has an improvement 53.5% over EGSSC,
112.6% over LNP, 197.2% over SVM, and 220.5% over



Figure 6: The comparison of APs for the 81 concepts using six methods with τ = 1.

Figure 8: The results of the comparison of LSMP
and the four baselines with varying parameter τ on
NUS-WIDE.

KNN. Compared with the performance on NUS-WIDE-
Lite, the best performance of LSMP in NUS-WIDE is
0.193, which is smaller than the MAP value in the
Lite version. The performance degradation is primar-
ily attributed to the increase of data scale (the size of
labeled image pool in NUS-WIDE is 170K, while for
the Lite version it is only 27K).

• With the increasing parameter τ , the performances of
all algorithms also increase. When τ ≤ 0.6, the algo-
rithm EGSSC outperforms LNP significantly, but for
τ > 0.6, the improvement of EGSSC than LNP is neg-
ligible. The proposed method LSMP also keeps higher
MAP value than all baselines over all feasible values
of τ similar to the case on NUS-WIDE-LITE, which
validates the robustness of our proposed algorithm.

We also provide the recorded running time for different
algorithms on NUS-WIDE, as shown in Table 2. A salient
efficacy improvement can be observed from our proposed
method.

5. CONCLUSION
In this paper we propose and validate an efficient large-

scale image annotation method. Our contributions lie in
both the hashing-accelerated �1-graph construction, and KL-
divergence oriented soft loss function and regularization term
in graph-based modeling. The optimization framework uti-
lizes the inter-label relationship and finally returns a prob-
abilistic label vector for each image, which is more robust
to noises and can be used for tag ranking. The proposed al-
gorithm is experimented on several publicly-available image
benchmarks built for multi-label annotation, including the



Figure 7: The tags ranking results of LSMP in NUS-WIDE-LITE.

Table 2: Executing time (unit: hours) comparison of different algorithmson the NUS-WIDE dataset.
Algorithms Graph Construction Time Label Estimation Time Total Time

KNN 143.6 0.7 144.3
SVM 0 132.5 132.5
LNP 143.6 0.2 143.8
EGSSC 143.6 2.4 146
LSMP 31.4 0.3 31.7

ever-known largest NUS-WIDE data set. We shows its su-
periority in terms of both accuracy and efficacy. Our future
work will follow two directions: 1) extend the image annota-
tion datasets to web-scale and further testify the scalability
of our proposed method; 2) develop more elegant algorithms
for KL-based label propagation which shows better conver-
gent speed.
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APPENDIX: Convexity of D1(p) and D2(p, q)

PROOF: The convexity of D1(p) is obvious if DKL(ri ‖ pi)
and DKL(pi ‖ ∑

j∈N(i) wijpj) prove convex. Consequently,

to justify the convexity of D1(p), first we elaborate on the
convexity of KL divergence defined on two probability mass
functions, which has already been studied in the fields of
both information theory [7] and convex optimization [2].

Specifically, for DKL(p ‖ q) defined on two pairs of prob-
ability mass functions (p1, q1) and (p2, q2), the convexity of
DKL equivalently implies the following fact:

DKL(λp1 + (1 − λ)p2 ‖ λq1 + (1 − λ)q2) ≤ λDKL(p1 ‖ q1)

+ (1 − λ)DKL(p2 ‖ q2), (17)

where λ ∈ [0, 1]. The correctness of the above inequality is

clear by applying the log-sum inequality [7], i.e.,(
n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

≤
n∑

i=1

ai log
ai

bi
,

on both the left and right sides of the following inequality:

DKL(λp1 + (1 − λ)p2 ‖ λq1 + (1 − λ)q2) =∑
y

(λp1(y) + (1 − λ)p2(y)) log
λp1(y) + (1 − λ)p2(y)

λq1(y) + (1 − λ)q2(y)
.

It is easily verified that

DKL(λp1 + (1 − λ)p2 ‖ λq1 + (1 − λ)q2) ≤∑
y

λp1(y) log
λp1(y)

λq1(y)
+

∑
y

(1 − λ)p2(y) log
(1 − λ)p2(y)

(1 − λ)q2(y)

= λDKL(p1 ‖ q1) + (1 − λ)DKL(p2 ‖ q2). (18)

Thus DKL(ri ‖ pi) is convex.
And likewise the convexity of DKL(pi ‖ ∑

j∈N(i) wijpj)

can be justified, observing that
∑

j∈Nk(i) wijpj is a convex,

linear combination of several variables. Hence D1(p) is con-
vex.

Using the similar tricks above, D2(p, q) is also demon-
strated to be convex.


