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Abstract

Inverse halftoning is a technique used to recover realistic images from ancient
prints (e.g., photographs, newspapers, books). The rise of deep learning has led
to the gradual incorporation of neural network designs into inverse halftoning
methods. Most of existing inverse halftoning approaches adopt the U-net archi-
tecture, which uses an encoder to encode halftone prints, followed by a decoder
for image reconstruction. However, the mainstream supervised learning paradigm
with element-wise regression commonly adopted in U-net based methods has poor
generalization ability in practical applications. Specifically, when there is a large
gap between the dithering patterns of the training and testing halftones, the re-
constructed continuous-tone images have obvious artifacts. This is an important
issue in practical applications, since the algorithms for generating halftones are
ever-evolving. Even for the same algorithm, different parameter choices will re-
sult in different halftone dithering patterns. In this paper, we propose the first
generative halftoning method in the literature, which regards the black pixels in
halftones as physically moving particles, and makes the randomly distributed parti-
cles move under some certain guidance through reverse diffusion process, so as to
obtain desired halftone patterns. In particular, we propose a Conditional Diffusion
model for image Halftoning (CDH), which consists of a halftone dithering process
and an inverse halftoning process. By changing the initial state of the diffusion
model, our method can generate visually plausible halftones with different dither-
ing patterns under the condition of image gray level and Laplacian prior. To avoid
introducing redundant patterns and undesired artifacts, we propose a meta-halftone
guided network to incorporate blue noise guidance in the diffusion process. In
this way, halftone images subject to more diverse distributions are fed into the
inverse halftoning model, which helps the model to learn a more robust mapping
from halftone distributions to continuous-tone distributions, thereby improving the
generalization ability to unseen samples. Quantitative and qualitative experimental
results demonstrate that the proposed method achieves state-of-the-art results.

1 Introduction

Halftoning refers to the task of simulating the brightness change of a continuous-tone image by
changing the size or frequency of halftone dots (such as ink dots). In the last century, halftoning
technology has been widely used in the printing industry to store precious image data through old
newspapers, books, photographs, etc. At the same time, inverse halftoning technology emerged to
recover stored continuous-tone image from vintage materials. The goal of the inverse halftoning
technique is to minimize the loss of information in the restoration process, so that the restored print
has the highest possible visual quality.
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Figure 1: Illustration of the presence of artifacts in restored images by previous inverse halftoning
method (Xia and Wong, 2018), where the gap exists between the dithering patterns of training and
testing halftones. The top row shows inverse halftoning results for some testing samples, and the
bottom row demonstrates corresponding ground-truth continuous-tone images.

Traditional inverse halftoning methods are mainly based on image filtering (e.g., wavelet domain
filtering (Xiong et al., 1999), edge-preserving filtering (Kite et al., 2000), SUSAN filtering (Siddiqui
and Bouman, 2007)), bilateral filtering (Sun et al., 2014) and statistical learning methods (e.g., least
mean square filtering (Chen and Hang, 1997), maximum a posteriori (Stevenson, 1997), look-up
table (Mese and Vaidyanathan, 2001; Chung and Wu, 2005), dictionary learning (Zhang et al., 2018)).
With the revival of deep learning technology, inverse halftoning methods based on deep neural
networks have made great progress and attracted more and more attention (Hou and Qiu, 2017; Xiao
et al., 2017; Kim and Park, 2018). The most representative method is the U-net (Ronneberger et al.,
2015) based architecture, which has an encoder to learn the hidden encoding of the halftone printing,
followed by a decoder to reconstruct the image (Xia and Wong, 2018; Gao et al., 2019).

However, the paradigm of supervised learning with element-wise regression commonly adopted in
the U-net based methods suffers from poor generalization in practical applications. Specifically,
when there is a large gap between the dithering patterns of training and testing halftones, the restored
continuous-tone images often have obvious artifacts. This is an important issue in applications,
since the algorithms used for generating halftones evolve with time. Even for the same algorithm,
different parameter choices will result in different halftone dithering patterns. Taking frequency
modulation (FM) halftoning as an example, we select 9 classical error diffusion processes with
different dithering patterns, namely Floyd-Steinberg Dithering, Jarvis-Judice-Ninke Dithering, Stucki
Dithering, Atkinson Dithering, Burkes Dithering, Sierra Dithering, and several of their variants (Lau
and Arce, 2018). We train the U-net model on the halftones generated by 5 of the algorithms, and test
on the halftones obtained with the rest 4 algorithms. The experimental results are shown in Figure 1.
Artifacts can be clearly observed in the restored continuous-tone images.

To address this problem, in this paper, we propose a Conditional Diffusion model for image Halftoning
(CDH), as shown in Figure 2, which consists of a halftone dithering process and an inverse halftoning
process. We regard the black pixels in halftones as physically moving particles, and make the
randomly distributed particles move under some certain guidance through the reverse diffusion
process, so as to obtain the desired halftone distribution. Specifically, for the halftone dithering
process, we train a conditional diffusion model to generate halftones with different dithering patterns
under the condition of image gray level and Laplacian prior. By changing the initial state of the
diffusion model, it can simulate different dithering processes to generate diverse halftone images. To
avoid introducing redundant patterns and undesired artifacts during halftone generation, we propose
a meta-halftone guided network to incorporate the blue noise guidance into the diffusion process. For
inverse halftoning, we train an inverse halftoning diffusion model to learn the mapping function from
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the halftone distribution to the continuous-tone distribution. In this way, halftones subject to more
diverse distributions are input to the inverse halftoning model, which helps the model to learn a more
robust mapping and improve the generalization ability to unseen samples.

Our contributions are summarized as follows:

• This is the first work to propose a generative halftoning method, which regards the black
pixels in halftones as physically moving particles, and makes the randomly distributed
particles move under some certain guidance through the reverse diffusion process, so as to
obtain the desired halftone dithering patterns.

• To avoid introducing redundant patterns and undesired artifacts during halftone generation,
we propose a meta-halftone guided network to incorporate the blue noise guidance into the
halftone diffusion process.

• To obtain better generalization ability, we use the x0 state of halftone dithering diffusion as
the condition for inverse halftoning diffusion, so that the inverse halftoning diffusion model
benefits from a wider range of dithering patterns and learns a more robust mapping.

We conduct experiments on the dataset consisting of 9 halftoning algorithms, and quantitative and
qualitative experiments demonstrate that the proposed method achieves state-of-the-art results.

2 Related Work

Inverse Halftoning. Traditional inverse halftoning methods are mainly based on image filtering (e.g.,
edge-preserving filtering (Kite et al., 2000), wavelet domain filtering (Xiong et al., 1999), bilateral
filtering (Sun et al., 2014), SUSAN filtering (Siddiqui and Bouman, 2007)) and statistical learning
methods (e.g., look-up table (Chung and Wu, 2005; Mese and Vaidyanathan, 2001), least mean square
filtering (Chen and Hang, 1997), maximum a posteriori (Stevenson, 1997), dictionary learning (Zhang
et al., 2018)). For example, Sun et al. (Sun et al., 2014) proposed to use an anisotropic Gaussian filter
and an edge-preserving filter for inverse halftoning. With the revival of deep learning technology,
some researchers have tried to use deep neural networks to accomplish inverse halftoning, e.g.,
U-net based models (Hou and Qiu, 2017; Xiao et al., 2017; Gao et al., 2019), residual learning
based models (Xia and Wong, 2018) and contextual learning based models (Kim and Park, 2018).
For example, Xia et al. (Xia and Wong, 2018) proposed a progressively residual based U-net that
synthesizes the global tone and subtle details to generate inverse halftones. However, these approaches
suffer from unacceptable artifacts in the restored continuous-tone images when faced with dithering
pattern gaps.

Diffusion Models. Diffusion models are a class of deep generative models developed from non-
equilibrium thermodynamics (Sohl-Dickstein et al., 2015). They define a Markovian process for the
diffusion steps, incrementally adding random noises to the original data, and then learn the reverse
diffusion process to resample the data from noises (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Luo and Hu, 2021). Diffusion models are closely related to score-based generative models, which
generate samples by Langevin dynamics based on estimated gradients of the data distribution (Song
and Ermon, 2019, 2020; Song et al., 2020b, 2021). Some improved techniques are proposed to help
the diffusion model converge to a lower negative log-likelihood or to speed up sampling (Nichol and
Dhariwal, 2021; Dhariwal and Nichol, 2021; Song et al., 2020a). For example, Song et al. (Song
et al., 2020a) generalizes denoising diffusion probabilistic models via a class of non-Markovian
processes, which can correspond to deterministic generative processes and gives rise to implicit
models that produce high quality samples much faster. However, these diffusion models cannot be
directly applied to halftone generation, since they do not take into account the blue noise properties
of halftone prints, making it difficult to generate visually pleasing dithering patterns.

3 Method

3.1 Halftone Dithering Diffusion Conditioned on Gray-scale and Laplacian Prior

Traditional halftone dithering methods are mainly based on techniques of amplitude modulation (Blat-
ner and Roth, 1993; Campbell et al., 1966) and frequency modulation (Eschbach, 1997; Floyd, 1976;
Meşe and Vaidyanathan, 1999). With the development of deep learning, some modern approaches try
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Figure 2: Illustration of the proposed Conditional Diffusion model for image Halftoning (CDH),
which consists of a halftone dithering diffusion process and an inverse halftoning diffusion process.

to generate halftone images using convolutional neural networks (Kim and Park, 2018; Xia et al.,
2021). However, these methods are limited to specific dithering patterns and cannot achieve flexible
halftone generation. To address this problem, considering that the halftone prints are only composed
of black and white pixels, we regard the black pixels in halftones as moving particles, and make these
particles move from random Gaussian distributions to halftone distributions under reverse diffusion
processes, so as to achieve a generative halftoning approach.

Given the distribution qs1(xs1
0 ) of halftone prints, the diffusion process qs1 is a Markovian noising

process (Ho et al., 2020) that gradually adds noise to xs1
0 to obtain xs1

1:T , where s1 denotes the
halftone dithering diffusion stage. Specifically, at each step t, the diffusion step adds the random
Gaussian noise with a βt-controlled variance:

qs1(xs1
1:T |x

s1
0 ) =

T∏
t=1

qs1(xs1
t |xs1

t−1), (1)

qs1(xs1
t |xs1

t−1) = N (xs1
t ;

√
1− βtx

s1
t−1, βtI), (2)

where βt ∈ (0, 1), t = 1, ..., T . With the reparameterization trick (Kingma and Welling, 2013), we
can sample xs1

t from any time step t in a closed form: xs1
t =

√
ᾱtx

s1
0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I),

that is
qs1(xs1

t |xs1
0 ) = N (xs1

t ;
√
ᾱtx

s1
0 , (1− ᾱt)I), (3)

where αt = 1− βt, ᾱt =
∏t

i=1 αi. In this way, we can directly derive xs1
t by qs1(xs1

t |xs1
0 ) without

repeatedly applying the Markovian process qs1 and calculating qs1(xs1
t |xs1

t−1).

In the halftone dithering scenario, we would like to obtain the halftone sample xs1
0 via the reverse

diffusion process qs1(xs1
t−1|x

s1
t ) from a random Gaussian distribution, i.e., the state xs1

T ∼ N (0, I).
Considering that the particles tend to rely on the gradient information of images when forming
halftone patterns, we use the image gray level r and the Laplacian prior l as conditions to guide
the reverse diffusion process. Formally, the reverse halftoning diffusion process is defined on the
distribution ps1θ1(x

s1
0:T |r, l), which is a Markov chain with start state ps1(xs1

T ) = N (xs1
T ;0, I):

ps1θ1(x
s1
0:T |r, l) = ps1(xs1

T )

T∏
t=1

ps1θ1(x
s1
t−1|x

s1
t , r, l), (4)

ps1θ1(x
s1
t−1|x

s1
t , r, l) = N (xs1

t−1;µ
s1
θ1
(xs1

t , r, l, t),Σs1
θ1
(xs1

t , r, l, t)). (5)

Different from previous methods like using class labels (Dhariwal and Nichol, 2021) or shape
latents (Luo and Hu, 2021) as conditions for the diffusion model, we use the pixel-wise image priors
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Figure 3: Illustration of the proposed Meta-halftone Guided Network.

as conditions. The conditions are performed in a simple way, i.e., we concatenate the state vector xs1
t

at diffusion step t with r and l along the channel dimension to provide pixel-wise guidance:

xs1
t := xs1

t ⊕ r ⊕ l, (6)

where ⊕ denotes the concatenate operation. Due to the properties of halftones, local dithering patterns
are more important for generating high-quality halftones than global semantic information. We also
observe in experiments that excessive introduction of global information can be harmful to dithering
results.

We would like to learn the model ps1θ1 to approximate the conditional probabilities qs1(xs1
t−1|x

s1
t ,xs1

0 ).
With Bayes’ theorem, it has

qs1(xs1
t−1|x

s1
t ,xs1

0 ) = qs1(xs1
t |xs1

t−1,x
s1
0 )

qs1(xs1
t−1|x

s1
0 )

qs1(xs1
t |xs1

0 )
, (7)

and qs1(xs1
t−1|x

s1
t ,xs1

0 ) can be represented as a Gaussian distribution:

qs1(xs1
t−1|x

s1
t ,xs1

0 ) = N (xs1
t−1; µ̃

s1
t (xs1

t ,xs1
0 ), β̃tI), (8)

µ̃s1
t (xs1

t ,xs1
0 ) =

√
ᾱt−1βt

1− ᾱt
xs1
0 +

√
αt(1− ᾱt−1)

1− ᾱt
xs1
t , β̃t =

1− ᾱt−1

1− ᾱt
βt. (9)

The simplified objective function (Ho et al., 2020) is used to train the model during the halftone
dithering diffusion process:

Ls1 = Et∼[1,T ],x
s1
0 ∼qs1 (x

s1
0 ),ϵ∼N (0,I)

[
||ϵ− ϵs1θ1(

√
ᾱtx

s1
0 +

√
1− ᾱtϵ, t)||2

]
. (10)

3.2 Meta-halftone Guided Network

Blue noise properties are critical for generating high-quality halftones. It avoids noticeable low-
frequency visual artifacts in the resulting halftones by forcing random pixel dithering (Lau and Arce,
2018). Some traditional methods have been proposed to derive blue noise dithering patterns, such as
simulated annealing based methods (Sullivan et al., 1991), void-and-cluster techniques (Ulichney,
1993), power spectrum manipulation algorithms (Yao and Parker, 1994), and dither pattern ordering
methods (Lau et al., 1999). However, most of these approaches are based on statistical methods or
manually designed blue-noise dithering matrices, which are difficult to directly apply to learning-
based neural frameworks. Recently, some researchers have tried to inject blue noise properties into
the L1 norm for learning objectives (Xia et al., 2021), however, since the calculation of the L1 norm
requires known halftone generation results, it cannot be used in generative models. So far, how to
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incorporate the blue-noise dithering properties into halftone generative models remains an unexplored
problem.

To address this issue, we propose a meta-halftone guided network (as shown in Figure 3), which
introduces blue noise guidance into halftone dithering diffusion process and avoids dithering results
containing artifacts or redundant patterns. Formally, for step t of the halftone dithering diffusion
process, we consider the state vector xs1

t and take it as input to the meta-halftone guided network.
We first feed xs1

t into a feature extraction network E to obtain the extracted hidden feature f(xs1
t ),

i.e., f(xs1
t ) = E(xs1

t ). We use the pre-trained VGG network (Simonyan and Zisserman, 2015) as E
in the experiment, other networks such as InceptionNet (Szegedy et al., 2016) or ResNet (He et al.,
2016) are also available. The purpose of using pre-training is to save the consumption of computing
resources and training time. Next, we define the meta-halftone set M, which consists of a set of
meta-halftone vectors mi(1 ≤ i ≤ k):

M = [m1,m2,m3, ...,mk], (11)

where k represents the number of meta halftones. We obtain mi by the halftone dithering diffusion
states of a set of low-frequency images. Specifically, we construct k images I1, I2, I3..., Ik with a
large range of low-frequency regions (e.g., images with constant gray levels), and obtain the halftones
H1,H2,H3, ...,Hk accordingly using conventional halftone algorithms (e.g., Floyd-Steinberg Algo-
rithm (Lau and Arce, 2018)). We first train for a certain step using the traditional diffusion model
alone, where the model uses U-net architecture common in (Ho et al., 2020; Dhariwal and Nichol,
2021) without adding the proposed meta-halftone guided network. We have

ps1θ1(x
Hi
t−1|x

Hi
t , rHi , lHi) = N (xHi

t−1;µ
s1
θ1
(xHi

t , rHi , lHi , t),Σs1
θ1
(xHi

t , rHi , lHi , t)), (12)

where the superscript Hi denotes the constructed halftone sample from Hi ∈ {H1,H2, ...,Hk}, and
rHi and lHi can be derived from Ii ∈ {I1, I2, ..., Ik} accordingly. The superscript s1 of xHi

t−1,x
Hi
t

is omitted here for brevity. We can get ϵs1θ1(
√
ᾱtx

Hi
0 +

√
1− ᾱtϵ, t) from model predictions and

calculate µs1
θ1

:

µs1
θ1
(xHi

t , t) =
1

√
αt

(
xHi
t − βt√

1− ᾱt
ϵs1θ1(x

Hi
t , t)

)
. (13)

We use mi in Equation 11 to represent µs1
θ1

and construct meta-halftone set M accordingly:

mi = µs1
θ1
(
√
ᾱtx

Hi
0 +

√
1− ᾱtϵ, t), 1 ≤ i ≤ k. (14)

Next, the model learns affine relationships between the hidden feature f(xs1
t ) and the meta-halftone

set M through an affine learning layer, and then obtains affine factors g(xs1
t←i):

g(xs1
t←i) = wg←i · f(xs1

t ) + bg←i, (15)

where wg←i and bg←i represent learnable weights and biases, respectively. With the calculated
g(xs1

t←i), we perform a depth-wise aggregation of the meta-halftone set M to learn the refined
representations on depth channels:

m̃ =

k∑
i=1

mi · g(xs1
t←i). (16)

Besides depth information, spatial information is also crucial for meta-halftone guidance. Meta-
halftones can provide guidance for the generation of new dithering patterns in local areas. In light of
this, we next perform a spatial-wise aggregation of the meta-halftone refined representation m̃ and
the dithering diffusion state vector xs1

t , and denote the result as m̃′:

m̃
′
=

∑
d ∗

(
m̃⊕ xs1

t

)
, (17)

where ⊕ represents the element-wise concatenation in the spatial dimension, ∗ denotes the spatial
convolution operation, and d represents the convolution kernel. The output o of the meta-halftone
guided network is determined by the meta-halftone guidance m̃

′ and dithering diffusion state vector
xs1
t :

o = m̃
′
xs1
t , (18)

and o is subsequently fed into U-net as in previous work (Dhariwal and Nichol, 2021; Nichol and
Dhariwal, 2021) for model predictions.
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3.3 Inverse Halftoning Diffusion Conditioned on xs1
0

The goal of inverse halftoning process is to learn a mapping from halftone distributions to continuous-
tone distributions and reduce the loss of information in the process. It is similar to halftone dithering
diffusion process in Section 3.1, but with different diffusion conditions. For the inverse halftoning
diffusion process, we deal with the process qs2(xs2

1:T ′ |xs2
0 ) that gradually adds noise to the data xs2

0
from a continuous-tone distribution qs2(xs2

0 ), and the process qs2(xs2
t−1|x

s2
t ) of gradually denoising

from Gaussian noise to obtain desired samples.

We use a model ps2θ2(x
s2
t−1|x

s2
t ,h) to estimate qs2(xs2

t−1|x
s2
t ,xs2

0 ), which is conditioned on the
halftone distribution h (i.e., sampling xs1

0 from halftone dithering diffusion model):

ps2θ2(x
s2
0:T ′ |h) = ps2(xs2

T )

T ′∏
t=1

ps2θ2(x
s2
t−1|x

s2
t ,h), (19)

ps2θ2(x
s2
t−1|x

s2
t ,h) = N (xs2

t−1;µ
s2
θ2
(xs2

t ,h, t),Σs2
θ2
(xs2

t ,h, t)). (20)

Pixel-wise guidance between the state xs2
t and the halftone condition h is applied in the inverse

halftoning diffusion process:
xs2
t := xs2

t ⊕ h. (21)
where ⊕ denotes the concatenate operation. The rest parts (such as the training objective) are similar
to the halftone dithering diffusion process, and we omit them here to save space.

4 Experiments

4.1 Experimental Setup

Datasets. In order to evaluate the generalization ability of the proposed model CDH to different
halftoning methods, we construct a dataset with relatively strong domain shifts. The domain shifts
mainly arise from two aspects: the halftone algorithm and the image semantic. We construct the
training set and validation set based on the UTKFace dataset (Zhang et al., 2017) and the test set
based on the VOC2012 dataset (Everingham et al., 2010). We collect 9 different halftone dithering
algorithms, namely Floyd-Steinberg Dithering, Jarvis-Judice-Ninke Dithering, Stucki Dithering,
Atkinson Dithering, Burkes Dithering, Sierra Dithering, and several of their variants (Lau and Arce,
2018). We use halftones generated by 5 of the algorithms in training and validation sets, and halftones
generated by remaining 4 algorithms are used as test sets. There are 7, 857 images in the training set,
400 images in the validation set, and 400 images in the test set.

Baselines. We choose the baselines that are commonly used in inverse halftoning tasks, which include
the U-net based methods, generative adversarial network based methods, and super-resolution based
methods: PRL (Xia and Wong, 2018) proposes an inverse halftoning network with progressively
residual learning, which synthesizes the global tone and subtle details from halftone images in a
progressive manner. Dhariwal et al. (Dhariwal and Nichol, 2021) show that diffusion models can
achieve superior image sampling quality than existing generative models, and they use an improved
U-net model architecture to achieve high-quality image synthesis. Nichol et al. (Nichol and Dhariwal,
2021) show that with some simple modifications, denoising diffusion probabilistic models can also
achieve competitive log-likelihood while maintaining high sample quality. They learn variances of
reverse diffusion process using reparameterizations and a hybrid learning objective that combines
the variational lower-bound with the simplified objective from (Ho et al., 2020). In additon, they
improve the noise schedule from a linear noise schedule to a cosine noise schedule. Song et al. (Song
et al., 2020a) introduces denoising diffusion implicit models, giving rise to implicit models that
produce high quality samples much faster. ESRGAN (Wang et al., 2018) is used as baselines in
previous inverse halftoning work, which introduces the residual-in-residual dense block to generate
realistic textures and avoid unpleasant artifacts. GLEAN (Chan et al., 2021) is applied to the super-
resolution task, using pre-trained generative adversarial networks to solve ill-posed problems in
image restoration. We first smooth the halftone images with Gaussian kernels of different sizes,
and then use GLEAN for image restoration. RealESRGAN (Wang et al., 2021) is extended to a
practical image restoration application, which introduces a high-order degradation modeling process
to better simulate complex real-world degradations and employs a U-net discriminator with spectral
normalization to increase discriminator capability.
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Table 1: Model performance comparison of the proposed method CDH and baseline methods in terms
of PSNR and SSIM.

Method Variants PSNR SSIM

PRL (Xia and Wong, 2018) – 22.82 0.698
Dhariwal et al. (Dhariwal and Nichol, 2021) – 23.35 0.693
Nichol et al. (Nichol and Dhariwal, 2021) Cosine Noise Schedule 22.40 0.683
Nichol et al. (Nichol and Dhariwal, 2021) Learn Sigma 22.45 0.702
Nichol et al. (Nichol and Dhariwal, 2021) Importance Sampled VLB 19.99 0.615
Song et al. (Song et al., 2020a) DDIM 18.20 0.571
ESRGAN (Wang et al., 2018) – 20.20 0.428
ESRGAN (Wang et al., 2018) lkernel 22.47 0.645
GLEAN (Chan et al., 2021) – 20.11 0.491
GLEAN (Chan et al., 2021) lkernel 21.74 0.607
RealESRGAN (Wang et al., 2021) – 21.04 0.626
RealESRGAN (Wang et al., 2021) lkernel 20.94 0.619
CDH (Ours) – 24.24 0.727

Evaluation Metrics. Following previous inverse halftoning work (Xia and Wong, 2018), we use two
metrics to evaluate the performance of different models: Peak Signal to Noise Ratio (PSNR) and
Structural Similarity (SSIM). PSNR expresses the ratio between the power of peak signals and the
power of noises, and SSIM evaluates the similarity between images in terms of luminance, contrast,
and structure.

Implementation Details. The image size for halftone dithering and inverse halftoning is 256× 256.
The channel number of input halftones is 1. For halftone dithering diffusion model, the learning
rate is set to 0.0001, and k is set to 20. We use 200 diffusion steps in training and testing phases.
The number of model channels is 64 and the linear noise schedule is adopted throughout diffusion.
We adopt AdamW (Loshchilov and Hutter, 2018) optimizer to train the halftone dithering diffusion
model. For inverse halftoning diffusion model, we set the learning rate to 0.0001 and use 800 steps
in the diffusion process. We set the number of model attention heads to 4. AdamW (Loshchilov and
Hutter, 2018) is also used for optimization.

4.2 Experimental Results

We evaluate the performance of the proposed method CDH and baseline methods in terms of
PSNR and SSIM, and the experimental results are shown in Table 1. We evaluate the effect of
different Gaussian kernel sizes on baseline performance, where ESRGAN (lkernel), GLEAN (lkernel),
RealESRGAN (lkernel) denote the use of Gaussian kernels of size 7, and ESRGAN, GLEAN,
RealESRGAN represent the use of Gaussian kernels of size 3, respectively. The experimental results
show that our method achieves the best performance on both metrics. Previous methods such as
PRL (Xia and Wong, 2018), due to the lack of considering the generalization ability of the model on
different halftoning algorithms, show sub-optimal performance on test data with relatively strong
domain shifts. Compared with traditional diffusion models (Dhariwal and Nichol, 2021; Nichol and
Dhariwal, 2021; Song et al., 2020a), the proposed method CDH achieves better results by taking into
account the blue noise characteristics in the halftone dithering process, which enables the model to
learn from a more realistic and diverse halftone distribution. Different Gaussian kernel sizes affect
the performance of image restoration baselines, such as (Wang et al., 2018; Chan et al., 2021; Wang
et al., 2021). A larger Gaussian kernel erases dot dithering patterns in halftones to a greater extent,
resulting in restored images with less halftone artifacts, but also loss of high frequency information.
Our method performs better than the image restoration baselines with different Gaussian kernel sizes.
This shows that simply using traditional image restoration approaches is not suitable for the inverse
halftoning task, since they do not take into account diverse pixel dithering patterns unique to halftone
images.

To verify the effectiveness of the proposed meta-halftone guided network, we conduct experiments
to observe the effect on generated halftone dithering qualities with and without the meta-halftone
guided network. Experimental results are demonstrated in Figure 4. From the results shown in
Figure 4, it can be observed that when the meta-halftone guided network is removed, the generated
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Figure 4: Experimental results of the meta-halftone guided network. We show the generated halftone
dithering results w/ and w/o the proposed meta-halftone guided network, as well as the halftone
dithering groundtruth.

Table 2: Model performance comparison on halftones generated by different halftoning algorithms in
terms of PSNR and SSIM.

Halftoning Algorithms PSNR SSIM

Floyd-Steinberg Dithering 24.46 0.735
Simple Floyd-Steinberg Dithering 24.01 0.692
Jarvis-Judice-Ninke Dithering 24.42 0.749
Stucki Dithering 24.53 0.749
Atkinson Dithering 23.08 0.710
Burkes Dithering 24.69 0.746
Sierra Dithering 24.49 0.750
Sierra Lite Dithering 24.40 0.733
Two row Sierra Dithering 24.54 0.741

halftones have more obvious dithering artifacts, resulting in poorer visual quality. When using
the meta-halftone guided network, the visual quality of generated halftones is improved and more
similar to the groundtruth. The experimental results demonstrate the effectiveness of the proposed
meta-halftone guided network.

4.3 Study the Effect of Different Halftoning Algorithms

In order to explore the performance of CDH on different halftoning algorithms, we conduct ex-
periments on halftones generated by 9 halftoning algorithms, namely Floyd-Steinberg Dithering,
Jarvis-Judice-Ninke Dithering, Stucki Dithering, Atkinson Dithering, Burkes Dithering, Sierra Dither-
ing, and several of their variants (Lau and Arce, 2018). The experimental results are shown in Table 2.
From the experimental results we observe that the proposed method achieves similar results on
different halftoning algorithms, which also verifies good generalization abilities of our method to
different halftoning algorithms.

4.4 Qualitative Results

To further verify the effectiveness of the proposed method, we also conduct qualitative experiments
to compare the performance of our methods and baselines, which are illustrated in Figure 5. From the
qualitative experimental results, it can be observed that continuous-tone images generated by baseline
methods still have some redundant artifacts, which are dot dithering patterns that are not completely
removed during the inverse halftoning process. In contrast, our model removes the artifacts well
without introducing redundant patterns, validating the effectiveness of the proposed method.
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Figure 5: Illustration of the qualitative experimental results. We show the inverse halftoning results
generated by baseline methods and our method, as well as the groundtruth.

5 Conclusion

In this work, we propose a Conditional Diffusion model for image Halftoning (CDH), which con-
sists of a halftone dithering process and an inverse halftoning process. We introduce a generative
halftoning method, which regards the black pixels in halftones as physically moving particles, and
makes the randomly distributed particles move under some certain guidance through the reverse
diffusion process, so as to obtain the desired halftone dithering patterns. A meta-halftone guided
network is introduced to avoid redundant patterns and undesired artifacts in generated halftones. By
adopting more diverse halftones from halftone dithering diffusion process, we further improve the
generalization ability of inverse halftoning model. We conduct experiments on the dataset consisting
of 9 halftoning algorithms, and quantitative and qualitative experiments demonstrate the effectiveness
of the proposed method.

Acknowledgement: The research is supported by Science and Technology Innovation 2030 - New Generation
Artificial Intelligence (2020AAA0104401), Beijing Natural Science Foundation (Z190001), and Peng Cheng
Laboratory Key Research Project No.PCL2021A07.

Broader Impact

A potential negative side effect of this work is that the sample generation model may be used to
generate fake images in the halftoning or inverse halftoning process for some certain purpose. In
addition, most of the images we used in the dataset are collected from the Internet and may contain
some bias. The biases are preserved in the learning of the model and may be reflected in the generated
image samples (e.g., induce the model to produce undesired results). An example of this work being
used for unethical purposes is to first train the model with biased or discriminatory data and then
induce the model to produce unfaithful results when inverse halftoning images. This may misinterpret
the original meaning of some ancient prints and mislead people.

Limitation Analysis

A limitation of our model is that the diffusion process is relatively slow and thus requires more
inference time than traditional inverse halftoning models, which is limited when the model is applied
to mobile devices. One way to address this limitation is to design parallel inverse halftoning methods,
such as restoring low-frequency and high-frequency components of images in parallel, thereby
increasing the sampling speed.

References
David Blatner and Stephen F Roth. Real world scanning and halftones. Peachpit Press, 1993.

10



Fergus W Campbell, Janus J Kulikowski, and J Levinson. The effect of orientation on the visual resolution of
gratings. The Journal of Physiology, 187(2):427–436, 1966.

Kelvin CK Chan, Xintao Wang, Xiangyu Xu, Jinwei Gu, and Chen Change Loy. Glean: Generative latent bank
for large-factor image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 14245–14254, 2021.

Li-Ming Chen and Hsueh-Ming Hang. An adaptive inverse halftoning algorithm. IEEE Transactions on Image
Processing, 6(8):1202–1209, 1997.

Kuo-Liang Chung and Shih-Tung Wu. Inverse halftoning algorithm using edge-based lookup table approach.
IEEE Transactions on Image Processing, 14(10):1583–1589, 2005.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In Advances in Neural
Information Processing Systems, pages 8780–8794, 2021.

Reiner Eschbach. Error diffusion algorithm with homogenous response in highlight and shadow areas. Journal
of Electronic Imaging, 6(3):348–356, 1997.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal
visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338, 2010.

Robert W Floyd. An adaptive algorithm for spatial gray-scale. In Proceedings of the Society of Information
Display, volume 17, pages 75–77, 1976.

Qifan Gao, Xiao Shu, and Xiaolin Wu. Deep restoration of vintage photographs from scanned halftone prints. In
Proceedings of the IEEE International Conference on Computer Vision, pages 4120–4129, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, pages 6840–6851, 2020.

Xianxu Hou and Guoping Qiu. Image companding and inverse halftoning using deep convolutional neural
networks. arXiv preprint arXiv:1707.00116, 2017.

Tae-Hoon Kim and Sang Il Park. Deep context-aware descreening and rescreening of halftone images. ACM
Transactions on Graphics, 37(4):1–12, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Thomas D Kite, Niranjan Damera-Venkata, Brian L Evans, and Alan C Bovik. A fast, high-quality inverse
halftoning algorithm for error diffused halftones. IEEE Transactions on Image Processing, 9(9):1583–1592,
2000.

Daniel L Lau and Gonzalo R Arce. Modern digital halftoning. CRC Press, 2018.

Daniel L Lau, Gonzalo R Arce, and Neal C Gallagher. Digital halftoning by means of green-noise masks.
Journal of the Optical Society of America A, 16(7):1575–1586, 1999.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2018.

Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2837–2845, 2021.

Murat Mese and Palghat P Vaidyanathan. Look-up table (lut) method for inverse halftoning. IEEE Transactions
on Image Processing, 10(10):1566–1578, 2001.
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