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Abstract—Semantic object cutout serves as a basic unit in
various image editing systems. In a typical scenario users are
required to provide several strokes which indicate part of the
pixels as image background or objects. However, most existing
approaches are passive in the sense of accepting input strokes
without checking the consistence with user’s intention. Here
we argue that an active strategy may potentially reduce the
interaction burden. Before any real calculation for segmentation,
the program can roughly estimate the uncertainty for each image
element and actively provide useful suggestions to users. Such a
pre-processing is particularly useful for beginners unaware of
feeding the underlying cutout algorithms with optimal strokes.

We develop such an active object cutout algorithm, named
ActiveCut, which makes it possible to automatically detect
ambiguity given current user-supplied strokes, and synthesize
“suggestive strokes” as feedbacks. Generally suggestive strokes
come from the ambiguous image parts and have the maximal
potentials to reduce label uncertainty. Users can continuously
refine their inputs following these suggestive strokes. In this
way, the number of user-program interaction iterations can thus
be greatly reduced. Specifically, the uncertainty is modeled by
mutual information between user strokes and unlabeled image
regions.

To ensure that ActiveCut works at a user-interactive rate,
we adopt superpixel lattice based image representation, whose
computation depends on scene complexity rather than original
image resolution. Moreover, it retains the 2D-lattice topology and
is thus more suitable for parallel computing. While for the most
time-consuming calculation of probabilistic entropy, variational
approximation is utilized for acceleration. Finally, based on
submodular function theory, we provide a theoretic analysis for
the performance lower bound of the proposed greedy algorithm.
Various user studies are conducted on the MSRC image dataset
to validate the effectiveness of our proposed algorithm.

I. INTRODUCTION

In recent years, visual object cutout from images [1], [2]
or video clips [3], [4] has attracted increasing attention in
both the computer graphics and computer vision communities.
Unlike traditional image segmentation techniques such as
Watershed [5] or Level Set [6] which mainly focus on structure
information (line, edges, corners, etc.), object cutout aims to
extract semantically consistent image (or video) regions, and
are thus more suitable for object-level digital content editing,
composition and retrieval.
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Object cutout in images is notoriously difficult, mainly due
to the gap between low-level image features (color, texture, in-
tensity gradient etc.) and high-level semantic concepts, and the
diversity of user intentions. Fully automated object cutout [7]
is possible yet prone to errors. Usually this under-constrained
problem can be solved by incorporating user interaction [8],
[1], [2], multiple inter-related sources [9], [10], [11], [12], or
a priori knowledge about object category. In the presence of
blurred or mixed pixels pertaining to smoke, animal furs, hairs,
etc., real-valued alpha values need be estimated for each pixel
via soft segmentation or image matting [13]. Here we ignore
this “soft” matting problem, focusing on “hard” segmentation.

Our investigation starts from a novel taxonomy based on
the way to use the hint information. Roughly, existing ap-
proaches can be categorized as one of the unsupervised, semi-
supervised, supervised or active learning case. Although hav-
ing achieved promising results on many challenging images,
current approaches still have their limitations. Particularly,
most of them work in a passive style, without quality assess-
ment about the user strokes. At runtime there are typically
several iterations of the following loop: take user’s input,
calculate and display the cutout results, and then begin waiting
for user’s feedback. In these traditional interaction paradigms,
users can only notice the inconsistency between their inputs
and original intension until final results are shown, thus not
efficient enough and having space to be improved.

II. OUR PROPOSED METHOD: ACTIVECUT

An interactive cut-out procedure typically consists of several
rounds of “refine the strokes — perform cut-out” loop. In
many scenarios, it can be roughly divided into two stages.
The first several loops aim to roughly locate the boundaries of
target objects, and the following loops mainly focus on local
adjustment. The goal of our proposed method (hereafter called
ActiveCut) lies in reducing the efficacy of user interaction at
the first stage. Unlike the passive mode, once user’s strokes
are available, the proposed algorithm first quickly evaluates the
strokes’ quality and returns several suggestive strokes (at an
interactive rate even for large-size images) to indicate potential
flaws in the original strokes, which guide users to lay down
new strokes for refining. Here “flaws” are supposed to stem
from the informational inadequateness of the initial strokes
when they are used for confidently cutting out the desired
objects. Importantly, an observation is that the major comput-
ing overhead comes from calling the underlying cutting-out
algorithm whilst the burden of calculating suggestive strokes
is comparably small. Note that in ActiveCut no real cutting-
out computation is actually triggered, whereby with a high
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Illustration of the flowchart of the proposed method. Red (or green) strokes indicate the seeds for objects (or background) respectively. Assume what

the user want is something like Result B. Starting with initial user strokes which bring a segmentation in Result A, users progressively lay down additional
strokes following the guidance of suggestive strokes that correspond to the most ambiguous parts in each interaction round. Newly-introduced user strokes are
highlighted with dashed white circles. In this example, suggestive strokes are automatically generated using our proposed method ActiveCut, while the final
cutout is obtained from a “GMM + GraphCut” algorithm, whose object function is approximately optimized by ActiveCut to ensure reasonable suggestions.

probability users retains fewer interaction round in the first
stage and thus save the effort.

Such a technique is meaningful due to the following con-
siderations: firstly, the computing burden of the first cutting-
out stage is usually considerable for large-size images or
long video clips. An active early-detect strategy provides the
flexibility to refine user inputs without any real calculation for
segmentation, thus greatly saving interaction effort. Secondly,
noting the diversity of potential users, ActiveCut is especially
helpful for start-up users who lack expertise in image process-
ing or unaware of enough technique details of the underlying
cutout algorithms. Thirdly, when handling complicated im-
ages, even experienced users can hardly accomplish the rough
locating of desired objects in only several rounds. The initially
given strokes usually ignore to specify some necessary pixel
seeds, which are hardly detected by the users themselves in
many cases. In this case, an assisting utility like ActiveCut is
helpful.

Algorithm 1: The Proposed ActiveCut Algorithm

Step 1 (Initialization): user strokes for image
background and desired objects are made available;

Step 2 (Evaluation-And-Feedback): based on
information-theoretic analysis, generate nj most
informative strokes which are supposed to be best
candidates to reduce image uncertainties;

Step 3 (Refinement): Users have two choices:

1) simply ignore suggestive strokes if satisfied with
current user strokes, and perform segmentation using
color-based algorithms like GrabCut.

2) otherwise add new strokes to the system following the
guidance of suggestive strokes and go to Step 2.

The algorithm pipeline of ActiveCut is presented in Algo-
rithm 1 and an illustrative example is found in Figure 1. Note
that the functionality of ActiveCut relies on approximately

optimizing the criterion of the underlying cutout algorithm.
We would like to highlight that the aim here is not to
provide an alternative cutout algorithm besides existing ones.
Instead, ActiveCut can be seamlessly used as a plug-in for
most popular systems (in this paper we focus on color-based
systems like GrabCut or LazySnapping).

The rest of our presentation is organized as follows. Sec-
tion III surveys related works. In Section IV, we elaborate the
mathematical formulation of active object cutout, and show
that the proposed entropy criterion can be decomposed into
two data terms, i.e., stroke correlation term and neighborhood
correlation term. In Section V and VI, we describe the
details to obtain approximate solutions for these two data
terms respectively. Evaluations on public image datasets are
presented in Section VIII. Also, we discuss the lower bound
of the algorithm performance based on submodular function
theory, which is in Section VII.

III. RELATED WORKS

As stated above, we roughly cast the vast literature on visual
object cutout into four categories:

Unsupervised Case (or Self-Cutout): in this case, no
external hint information is supplied. The algorithm tries to
find the segments by itself. A number of traditional segmenting
techniques, including K-means, mean shift, Gaussian Mixture
Model (GMM) + Expectation Maximization (EM), are able
to group the image pixels into homogeneous regions, each
of which consists of either a single connected component
or several disjoint components (like in K-means). Previous
works [7], [14] adopt the notation “superpixel” to name
these extracted image patches. Recent progress along this
direction further demonstrates enhanced performance given
more reference images, either in the form of flash/no-flash
images [9], or relevant image pair [10], [15], [11].

Semi-supervised Case (or Interactive Cutout) is a fruitful
research direction in the past few years. For the targeted image,
users manually label some pixels as “seeds”, which are later



propagated over the whole image. One seminal work in this
category may be the Graph Cuts framework [8] proposed by
Yuri Boykov et al. in 2001. In the typical settings, it requires
two kinds of strokes, one for the desired objects, the other
for the image background. Later, in GrabCut [1] the stroke
types are reduced to only one via introducing user-interaction
primitives such as lasso or bounding box. However, although
polynomial-time solvable, Graph Cuts is computational expen-
sive for large-size images with pixels on the order of 10°. For
acceleration, another variant, LazySnapping, adopts superpixel
as basic data structure. Other approaches outside the Graph
cuts framework exist. For example, the seminal work in [16] is
based on random walks for segmentation. In [17], the authors
solve this problem by utilizing the Laplace-Beltrami operator
defined on the image grid. While in both the work in [18] and
[19], the authors propose an evolutional updating process with
convergence guarantee.

The idea of semi-supervision can also be applied to multiple
images. Given a well-segmented image or any user-supplied
constraints, the cutout task on similar images can be easier
and more accurate, as demonstrated in [20].

Supervised Case: If we know the object category in ad-
vance, or we target specific object kinds, cutting out an object
from an image will be of less ambiguity. In practice, we
can encode the prior knowledge about an object category via
training on a large number of user-labeled samples, such as
the “C”-like mug handles. the “(2” shape formed by the head
and shoulder for human.

Active-Learning Case: most approaches in Table I (cer-
tainly the list is incomplete) are “passive” methods, while
no prior work on active object cutout has been developed
(although we note that the work in [21] proposed similar
technique, however, it is not for the active segmentation task),
which motivates our work described in this paper.

TABLE I
TAXONOMY FOR OBJECT CUTOUT TECHNIQUES

Single Image Multiple Images
Unsupervised K-means, GMM+EM, | [10], [11], [9], [22], [15]
learning Mean Shift, Normal-

ized Cut
Semi- [81, [11, [2], [17], [18] [20], [23]
supervised
learning
Supervised [24], [25], [26]
learning
Active learing the proposed ActiveCut

algorithm in this paper

IV. PROBLEM FORMULATION
A. Image model

Unsupervised over-segmentation of an image into super-
pixels is a crucial preprocessing step for many real-time
image editing tasks. Superpixel-based image representation
has several merits compared with pixel-based one. Intrinsically
pixels are not natural entities to convey image meanings, since
they primarily depend on the CCD resolution of cameras.
In contrast, a superpixel is homogeneous, spatially-coherent,

preserving most of the structure configuration information,
stable over scales and image resolution, and has much smaller
number (on the order of 10 ~ 10*) compared with that of
pixels (typically 10°).

Most superpixel algorithms are unable to keep the two-
dimensional pixel-lattice structure of an image, outputting a
general graph, as in [7], [27], [28]. In fact, a topology-keeping
superpixel algorithm benefits in several aspects, especially for
the consideration of efficacy. To generate a superpixel lattice,
we adopt the similar idea as in [14], which is able to reduce
a m X n image to m x n superpixel lattice (m < m and
1 < n). The construction procedure is incremental: in each
step, one more horizontal or vertical splitting line is greedily
inserted along the low-density paths (i.e., the paths with high
probabilities to be nearby object contours) in a pre-defined
boundary cost map, until all m—1 horizontal and n—1 vertical
lines are all added. To preserve the lattice topology, always we
ensure that 1) each pair of horizontal and vertical path crosses
only once, and 2) two vertical (or horizontal) paths never cross.
Unlike [14], we adopt a local contrast based method to specify
the boundary cost map, which can efficiently handle colorful
images. An example is shown in Figure 2. At last, each
superpixel can be represented by a six-dimensional vector,
i.e. spLattice(i) = (N;, mf,mi,
the pixel number, while M! =

N .
mi,mi,mj)", where N; is
. ST .
K3 3 ? j—
n! (mx,my) and M! =
(mlr, Mg, mz) denote the mean values of spatial coordinates

and RGB colors respectively.

(c) 10x10

(d) 20x20

Fig. 2. Illustration for “superpixel lattice”. In (b), salient boundaries are
rendered with lower intensity. (c)(d) are filtered images under different lattice
resolution.

Our proposed object cutout approach utilizes above super-
pixel lattice as the basic data structure. Denote the valid index
set for a m x n lattice as V. Each lattice node is associated
with a random variable &;. Here we focus on the binary case,
since multi-class cutout problem can be reduced to a series
of two-class sub-problems. Values of Xy, indicate the statuses
for lattice nodes, typically 1 means “foreground” or “object”,
and -1 means “background” or “non-object”’. Most prior works
such as GrabCut and Lazysnapping assume X)), to be discrete,
typically subject to the Ising model [29]. Here we assume



the random variables to be continuous and encourage the
adjacent nodes to have similar values via utilizing a weighted
quadratic loss function. Specifically, we presume that X))
forms a Gaussian random field (GRF), with its energy function

defined as:
1 2
52 D wi (X = &),
i jEN;

E(Xy|W) = ()

where N; denotes the neighborhood system of ;. Traditional
4-connected or 8-connected neighbor system only keeps in-
adequate Markov locality. Based on the lattice representation,
we can extend it to larger scale, i.e. Az x Ay (in practice we
set Az = Ay = 13).

The weight coefficients in Equation (1) are designed to be
symmetric and capture both the similarities in terms of both
color and spatial distance, i.e.,

| ME = MZ|? || Mg — MY ||2)

2 2
202 202

Wiy = (NZ' + Nj)exp (

where 0. and o, are parameters related to color and spatial
variations respectively, which can be estimated from the origi-
nal images. Note that although w;; is defined mainly utilizing
color information, the proposed method is actually general
and supports information from other modality such as texture,
shape prior [30], [31] or symmetries [32], by modifying the
definition of w;;.

According to the Hammersley-Clifford theorem [33], a
MREF can be equivalently characterized by a Gibbs distribution.
Thus, we have

2

P(Xy|W, B) exp (=SE(Xv[W)),

where [ is the so-called “inverse temperature” parameter
originated from statistical physics and Zy,g is a normalizing
constant named “partition function” in physics to ensure the
probability distribution a valid one, whose exact value can be
obtained via integration over &y, i.e.,

Zys = / exp [~ BE(X|W)] dAy. 3)

B. The Entropy Criterion

One of the major issues for active object cutout is to
quantify the informativeness contained in current user strokes,
and reliably estimate the information gain after adding one
extra stroke. The best “suggestive stroke” is the one that
reduces image uncertainty as much as possible in later pixel-
classification phase. Intuitively, such a good criterion should
reflect the following two considerations:

1) Stroke Correlation Term (SC-term), i.e., how corre-
lated the newly-added stroke is with existing strokes.
Usually we prefer new strokes which have small corre-
lation values with current strokes, since they potentially
help estimate the labels of image regions which have
very low confidence values under current strokes.

Neighborhood Correlation Term (NC-term), i.e., the
goal of an informative stroke is mainly to help reduce
its neighbors’ uncertainty. The elements covered by the

2)

informative stroke should have enough similar neigh-
bors. Otherwise, if they are almost isolated from adjacent
elements in the feature space, only tiny improvement can
be expected.

In this paper, we formulate the active object cutout problem
based on the above observations. Before proceeding, let us
first clarify some notations in information theory (e.g., infor-
mational entropy) used here. Firstly, the entropy for a random
vector Xy, with index set V can be expressed as follows:

H@) = - [ o) ogp(@)ite, @
where p(z) > 0 and [ p(z) dz = 1. Suppose V is comprised
of two exclusive subsets, i.e., V = SU A. If the values of X4

have already been observed, we can calculate the entropy of
Xs conditioned on X 4 as follows:

H(Xs|Xa) = / P(Xs, ) log p(Xs| X)Xy, (5)

Some authors directly use this conditional entropy as their
criteria in similar tasks like set covering problem. However, in
these settings, the highest entropy set is usually characterized
by stroke locations as far as possible from each other, which
contradicts our expectation about reasonable solutions. A bet-
ter candidate is the “mutual information”. In [34], the authors
utilize it to perform intelligent annotation of face images.
And in [35], the authors apply it to the problem of sensor
placement. Formally, mutual information of two subsets can
be expressed as follows:

MI(A) = H(Xs) — H(Xs|Xa), (6)

where H(Xs) and H(Xs|X4) correspond to entropies before
or after knowing X4 respectively. The mutual information
actually describes how the observations in X' 4 decrease un-
certainty (or entropy) in the rest random variables Xs.

Let us formally state the problem. Suppose elements in .4
are all covered by user strokes, and the status of each element
in S need to be estimated from A. For clarity, we assume
there are totally k interaction rounds between users and cutout
system before starting real computation for segmenting, and
in each round users adopt the suggested strokes (in practice
this restriction can be relaxed). The goal is to pursue optimal
k strokes which are able to maximally reduce the amount of
uncertainties in S, i.e.,

A* =arg max 7

MI(A).
ACV;| Al=k

C. Decomposition of MI(A)

Optimizing Equation (7) is difficult. It can be proved that,
given rational M and the assumption that V is a Gaussian
process (we will prove it later), deciding whether there exists
a subset A C V of cardinality k such that MI(A) > M
is NP-complete. Consequently, approximate optimization is
indispensable. Here we adopt a greedy strategy. In each round
we greedily pursue a single element y € V \ A to maximize
AMI, = MI(A U y) — MI(A).



Denote the random variable pertaining to y as X, and A =
V\ A. It is easily verified that:

MI(A U y) — MI(A)
= H(Xauy) — H(Xauy|Xa\,) — [H(Xa) — H(Xa|X )]
= H(Xauy) — H(Xy) + H(Xg\,) — [H(Xa) — H(XY)
+H(X5)]
= H(X,|X4) — H(X,|Xq,,)- ®)

Thus two terms H(X,|X4) and H(Xy|Xj,,) dominate
AMI,. The maximum of MI will be obtained at a large
H(X,|X4) together with a small H(X,|X4,,). Furthermore,
we can notice that H(Xy|X4) and H(X,|X4,) are ele-
gantly corresponding to SC-term and NC-term respectively:
H(X,|X4) describes how it is correlated with existing strokes,
and the latter term reflects the similarity between the image
superpixel under consideration and its neighboring elements.
Intuitively, large H (X, |X4) indicates a higher potential of y to
carry novel information missing in A, and small H (X, |X z,,)
indicates that the labels of X, and its neighbors are tightly
related, thus uncovering &, is able to reduce uncertainty.

V. STROKE CORRELATION TERM CALCULATION
A. Variational Approximation

Exact calculation for conditional entropy is generally in-
tractable. It is a common trick to approximate it either stochas-
tically (Monte Carlo Markov Chain sampling) or determinis-
tically (mean field, or expectation propagation [36]). Here we
adopt a variational view, approximating the original problem
by minimizing the value of a pre-specified functional.

In variational inference, typically we assume the targeted
functions have a specific parametric form (such as a Gaussian)
or the products of a series of factors. For binary object
cutout, with the observation that we are mostly interested
in only two discrete values 1 (object) or -1 (background),
we discretize each random variable in V to {—1,1}. In the
standard variational method, the original joint probabilistic
distribution can be factorized into the product of several
simple functions. Particularly, for current problem we have
P(Xs|Xa) = Q(Xs) = [[es @;(X;), where Q;(-) denotes
a discrete function ranging over {—1,1}. We further assume
that Q;(X;) = % the same as in the Mean Field
method [29], where mJ = (X;)o ({-)o denotes the statistical
expectation over distribution Q).

One step further, we can prove that, maximizing the lower
bound of the likelihood of logp(X4) can be obtained via
minimizing the following functional in a form of Kullback-
Leibler divergence [37]:

KL Q) [P(Xs| ) = | Q(xsnog{ Q(Xs)

For brevity, we define the following two notations:
Vo = /QIOgQ dXs, Vp= /QlogP dXs.

Thus KL(Q||P) = Vg — Vp. Recall that here all random
variables in ) are discretized for tractability consideration,

P(Xs| ) } s

thus both Vi and Vp can be expressed as function of {m;, i €
S} after integrating over Xs. It can be verified that

VQ—Z< 5 log—— + ———log — )
i€S
VP = <10g P(XS|XA)>Q = BZ Z Wi5 M;M;j -+ const.
€S jEN;

The objective KL(Q||P) is difficult to optimize due to its
high non-linearity. However, we can derive an updating rule for
m; by investigating its first-order gradient W, whereby
local optima are feasible. Taking partial derivative with respect
to m;, we get

OKL(Q||P) 0V — Vp)
ami aml
1 14+my
= 510g 1 _6 Z Wij Mg &)
JEN;
For any locally optimal m;, there is w = 0.
1+m;

However, the non-linear term log —m; in Equatlon (9) ruins
the linear closed-form solution of m; , which motivates further
approximation. Note that (82 Vo/ 6m ) im0 = 1, we can
approximate the complicated logarithm function in oV /Om;

with a linear form, i.e.,
14+m;,
—1lo ~m;.
1—m;
Set the partial derivative in Equation (9) to be zero, we can
obtain the updating equation at iteration t:

m§t+1) = ZB Wij m( ) = Z’wa m
J

J

In practice, the value of the inverse temperature parameter

B is carefully adjusted so that
Wi

maxmey |Zn wmn| )

Obviously 0 < w;; < 1 for all valid indices 7,5 € V.
Equation (11) provides an iterative method to obtain the
optimal factorized posterior @);(X;), which is presented in
Algorithm 2. The calculation of stroke correlation terms can
be greatly simplified once all Q;(X;) (j € S) are known.
From Equation (5), we have:

H(X,|XA)
_ /ZP X0 log P(X,|X0) dXa

(10)

Y

12)

Wi5 =

—/P(XA) D P(X,|X4)log P(X,|Xa) dXa.

Xy
Note that each variable in set A is associated with a fixed
label, i.e. P(X4) = 6(X4 = L), where L4 is the user-
specified labels (-1 or 1 in binary-classification case) and ¢ is
the Dirac delta function, thus H (X, |X4) can be simplified as:

H(X,|X4) = —ZP (X,| X4 = L4)log P(X,| X4 = L4)

_ZQy

)log Qy(Xy). (13)



Algorithm 2: KL-minimizing factorized approximation
Input:
« X A = ,C A
o Learning rate v = 0.05
« Error tolerance e,,,4, = 1073
e max iteration 7},

Result: Q7 (X)).j € Xs

initialize mgo) = 0 if j € Xs, or user-specified value (-1

or 1) if j € X4.

for t = 0 to T}, do

for j € Xs do
compute mé—

t+1 t
S=mi+y (m

+1 according to Equation 11;

t+1 mt);

m J J

end

if max; |m§-Jr1 —mt| < emqe then
| Break;

end

end

B. Convergence Analysis

In this section we will show that the iterative updating
process in Algorithm 2 converges to a fixed point. Denote the
coefficient matrix as W, whose (i, j)-th entry is w;; defined
in Equation (12). It is easy to verify that

X5 = (1= )T+ W] &), (14)
where T is the identity matrix. Let P = (1—~ )I+v W. Recall
that V = S U.A. Without loss of generality, suppose elements
in &) are arranged in the form of [X g X}]T, where
the superscript T denotes matrix transposition. Accordingly,
matrix P can be decomposed into four submatrices (similar
to the trick used in [38]), i.e.,

Pss Psa ]
P = . 15
[PAS Paa (15)
From Equation (14), there is
XL = Pss X + PsaXa. (16)

In each iteration, the values of X4 are always clamped to
be L 4, thus we can further simplify Equation (16):

X§+1 = Pgs.)fé + PsaL 4. 17

Based on the above matrix splitting operation, we are able
to reach the main conclusion for convergence guarantee (proof
is omitted):

Theorem V.1. When t — oo, the sequence {X é} converges

to a unique fixed point X% = (I — Pss) ' PsaLa, where I
is the identity matrix.

VI. NEIGHBORHOOD CORRELATION TERM CALCULATION

Unlike the calculation of the stroke correlation term, the
neighborhood correlation term can be estimated in a more
straightforward way. The main observation is that the joint

probability defined in Equation (2) is intrinsically a Gaussian
Process (GP), since (for clarity we omit the constant ()

P(&y) < exp (=5 (D = W)Ay) (18)

where D is a diagonal matrix with D;; = > ; Wij and
Y~ = D — W is actually the so-called combinatorial
Laplacian. For GPs, given the observation values £ 4 for set A,
the conditional distribution of X, is also a Gaussian with mean
Hy|.4 and variance ajl 4 Which can be estimated as below:

[ya = Hy + SyaS 4 (La — pa), (19)

Ji\fl = By — ZyaZ 14 ay, (20)

where ¥, 4 denotes the sub-matrix of X related to index sets
y and A, and X4, = 25 4- Another useful theoretic result
is that in Equation (5) the differential entropy of a Gaussian
random variable X, conditioned on some set of variables X 4
is actually a monotonic function of its variance:

1
H(X,|Xy) = 3 log (27reo§|A) =log (oy.4) + const. (21)

Fortunately, it can be directly computed in closed-form from
> and its sub-matrices. However, in practice computing X via
inverting S1=D—-Wis numerically forbidden, since the
Laplacian matrix D — W is known to have at least one zero
eigenvalue, thus it is deficient. A practical trick is to use the
regularized Laplacian, i.e. ¥ = (D — W + \I)~!, where \ is
a small constant introduced for better numerical stability and
I is the identity matrix.

VII. FURTHER ANALYSIS

In this section, we analyze the performance lower bound of
the proposed greedy algorithm based on the fact that MI(.A)
belongs to the submodular function family, whose definition
is given as below:

Definition Set function F' on V is regarded as submodular if:
VAC B CVands € V\B, F(AU{s}) — F(A) >
F(BuU{s}) — F(B)
or equivalently VA, B C V: F(A) + F(B) > F(AUB) +
F(ANB)

Submodular functions are widely used for combinational
optimization in economics, sensor placement, feature selec-
tion [35]. Intuitively they can be regarded as set functions
exhibiting the diminishing return property, i.e., the benefit to
include one more element will decrease when the selection
set becomes larger. Many real-world phenomena show such a
property, including the topic discussed in this paper. Based on
the submodular function theory, we are able to quantitatively
discuss how far the solution is away from the global optima.
The following is our main observation:

Theorem VIIL.1. The set function induced from mutual infor-
mation A — MI(A) is submodular.

Proof: First note that for A CV andy € S =V \ A,
according to Equation 8, MI(AUy) —MI(A) = H(X,|X4) —
H(Xy|XA\y). For two sets A C B C V), it is trivial to see that
H(Xy|Xa) = H(Xy|Xp) and H(X,|X4,) < H(X,|Xp\,).



where we use the abbreviation A, B to denote V \ A and
V \ B respectively. The following fact holds by piling above
observations together:

MI(BUy) — MI(B) < MI(AUy) — MI(A),

which demonstrates the diminishing return property of sub-
modular functions, thus the conclusion follows. ]

Moreover, a submodular function is said to be monotonic
if F(yU.A) > F(A) for all y ¢ A. Nemhauser proved an
important theorem for such functions:

Theorem VII.2 (Nemhauser et al., 1978). Let F be a mono-
tone submodular set function over a finite ground set V=0.
Let A be the set of the first k elements chosen by the greedy
algorithm, and let OPT = arg max scy,|a|=i F(A), then

F(A) > (1 - (T)lj OPT > (1 - i) OPT.

Proof: See [39] for detailed proof. ]

Theorem VII.2 is potentially useful to analyze the worst per-
formance, or lower bound of the proposed greedy algorithm.
However, the mutual information criterion we adopted is not
monotonic for all possible set .A. Note that MI(0) = MI(V) =
0, the function value will first increase and then decrease.
Fortunately, Theorem VII.2 needs not monotonicity over all
sets. In fact, our proposed algorithm mainly works on the
increasing phase. To see it, note that the increment of the MI
value after adding a new element y to the existing labeled set
A is the difference between the SC-term and the NC-term (see
Equation (8)). The posteriors of random variables covered by
potential suggestive strokes have nearly uniform distributions
(i.e., mean value m; ~ 0), which indicates high uncertainty
(or large entropy) and thus results in a relatively larger SC-
term value compared with NC-term value, thus making the MI
value continually increasing. In practice, we can terminate the
algorithm if the MI value begins to decrease. In a word, MI
is approximately monotonic for our task, which indicates the
lower bound of the greedy algorithm is roughly 1—1/e =~ 67%
of the global optimal solutions.

VIII. EXPERIMENT

We have implemented the proposed active cutout algorithm
using Matlab, with optimized core functions written in C++
language. All experiments are conducted on a common PC
equipped with Intel Xeon X5472 3GHZ CPU and 32 GB
memory.

After users draw the indicating strokes, we calculate the
entropy gain for each unlabeled superpixel and select ny
(ngy = 4 in most of our settings) optima in current round to
construct suggestive strokes according to a local suppression
strategy: after a superpixel is selected, all elements falling
into its neighborhood will have their entropy gains lowered
(typically by multiplying an attenuation rate smaller than 1,
e.g., 0.95 in our implementation). By this means we reduce
the possibility of overlapping suggestive strokes and yield a
better spatial distribution.

Fig. 3. Bezier curve generation. Yellow arrows point to the middle-points
of straight lines connecting two geometrical centers. Blue arrow points to the
fitted Bezier.

To make the suggestive strokes visually natural, a piece of
Bezier curve is fitted from 4 points as the skeleton of each
suggestive stroke. Suppose point O is the geometrical center
for a selected superpixel, and A, B are centers for its two
most-similar neighbors. A 3"?-order Bezier curve that acts as
stroke skeleton can be calculated, as Figure 3 illustrates.

(b)
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Fig. 4. ActiveCut results for images GIRL (top left) and PERSON (top
right). User strokes are either in red or green, while the four most suggestive
strokes are drawn in cyan, which capture many ambiguous image regions.
In (c), we plot the evolution curves of Mean Absolute Residual (MAR) with
respect to iteration counts in SC-term calculation, which consistently drop to
zero and thus empirically validate the convergence analysis in Section VIIL

With regard to computing speed, when utilizing a 1200-
node superpixel lattice (note that it primarily depends on
scene complexity, rather than original image resolution), the
calculation of SC-term takes 0.1 ~ 0.4 seconds, primarily
proportional to the convergence speed of Algorithm 1 (see
Figure 4(c)), while the calculation of NC-term typically takes
less than 0.1 seconds. In multiple-round cutout procedure,
later rounds always consume less time on SC-term calculation
(typically less than 0.1 second) since they can use results
of previous rounds for the initialization purpose. Although
already able to work at user-interactive rate, however, the
implementation of ActiveCut can be further optimized, since
Algorithm 1 is highly parallel and thus can be accelerated on
current general-purpose graphics hardware (GPGPU) or multi-
core CPU.

In Figure 5 we present more results on several images taken



Fig. 5. More examples about suggestive strokes. The left column are images
with user strokes, and the right column are corresponding suggestive strokes.

from the publicly available Berkeley image database [40].
In our implementation, the resolution for superpixel lattice
is chosen to be either 30 x 40 (for Lmageleight - 1y o

) ImageWidth
40 x 30 (for %ﬁ%ﬁ > 1). Neighborhood parameters

(Az, Ay) for SC-term adopt the value (13,13), while for
similar neighborhood parameters in NC-term calculation, we
use (7,7).

As stated above, ActiveCut is designated to be a plug-in
(rather than an alternative) of existing cutout systems. Users
are expected to make their next stroke following the guidance
of suggestive strokes, or directly select one of the suggestive
strokes. For final segmentation, one has to resort to other
cutout algorithms with objective functionals similar to Active-
Cut’s. Note that in our formulation, ActiveCut works based on
color-vector similarity and spatial smoothness, consistent with
cutout algorithms like GrabCut or LazySnapping. In practice
we adopt a GrabCut-style method, i.e., GMM assumption for
underlying color distributions and Ising smoothness prior.

Fig. 6. Sample images used for user study.

To quantitatively investigate the benefits of ActiveCut, we
build a data set consisting of 26 images, most of which are
selected from the Microsoft Cambridge image segmentation
database. Ground truth is obtained via manual labeling. Part

of the image set are displayed in Figure 6.

As stated in Section II, the effectiveness of ActiveCut is
mainly obvious in the stage of roughly locating the target
objects. In the later local retouching stage, users can conve-
niently refer to intermediate cutout results, which makes the
suggestive strokes less useful (thus we turn off its functionality
in this stage). According to the above analysis, the experiments
mainly focus on the improvement in terms of accuracy from
the initial user strokes.

Eight volunteers are selected. During the experiment, sub-
jects are given instructions to extract specific object from each
test image. It is convenient for them to change the effect radius
of the brush tool (from 3-pixel to 40-pixel) to flexibly handle
object with varying widths. Moreover, subjects are told to add
new strokes into the system according to the following two
criteria: 1) User strokes should be adequate to cut out desired
objects. 2) The set of user strokes should contain as little
redundancy as possible.

Finally, both user-stroke information and corresponding n
most salient suggestive strokes are stored for further analysis.
The GrabCut-style cutout routine is called multiple times
to testify the performance with the following three kinds of
strokes:

1) Type-I: only user strokes.
2) Type-II: user strokes + suggestive stroke.
3) Type-III: user strokes + random stroke.

In object cutout errors are comprised of two parts: under-
segmentation (i.e. classify object pixels as background) error
and over-segmentation (i.e. classify background pixels as ob-
ject) error. Formally, the overall error rate e = e, + e,, where
ey, €, are error rates caused by under-segmentation (misclas-
sifying object pixels as background) and over-segmentation
(misclassifying background pixels as object) respectively.

Denote the error rate with Type-I strokes as e;. Since
there are ny, distinct suggestive strokes, we run for ny times
independently for Type-II stokes and set the error rate ey as
the minimum value. For Type-III stokes, we generate S groups
of random stokes, each of which consists of nj; randomly-
generated strokes. For each group, the error rate is calculated
in the same manner as Type-IIl. The final error rate eg is
computed by averaging the error rate of each group. Since our
major concern lies in the relative performance of the other two
strokes with respect to Type-I, we further define two ratios:

7‘226—2, and 7“326—3
€1 €1

In Figure 7, we present the overall distributions, the statistics
(including mean values and standard variations) of 5, 73 over
image or subject. And some concrete examples can be found
in Figure 8. Note that smaller error rate ratios indicate larger
improvement. It can be observed that:

1) Both the averaged values of r and 73 over all images
and subjects are below 1.0, while the results obtained
by Type-II are better than that of Type-III (0.80 & 0.24
vs. 0.88 £0.17). Moreover, ro < 0.8 in 38% cases (see
Figure 7(a)), while only 20.7% of r3 are below 0.8. It
seems that both suggestive strokes and random strokes
(with correct labels provided) improve the performance
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User study for ActiveCut. Left: overall distribution of error rate ratio r2,r3 over all subjects and images. Middle: statistics of 72,73 (mean and

standard variation) over five subjects for each image (26 images in all). Right: statistics of r2,r3 for each subject.
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Fig. 8. Selected cutout results during the user study. For each set of user strokes (top row), four most salient suggestive strokes are displayed (the 2% row).
Cutout results with only user strokes and with user strokes + the best suggestive stroke are presented in the 37% and 4" rows respectively. Note that the

selected suggestive strokes are highlighted in magenta in the 2"¢ row.

in terms of accuracy, and Type-II is statistically superior
to Type-III.

2) The statistics of error rate ratios are highly image-
dependent. For extreme difficult images (e.g., LLAMA
and PUMA in Figure 6) or easy images (e.g. FLOWER),
ro /= 1. While for moderately complicated some images
(e.g. images #13 and #18 in Figure 7(b)), ro have low
mean values and small variations.

IX. CONCLUSION

In this paper we propose a novel interaction paradigm
for image object cutout that actively generates suggestive
strokes to guide users’ further interaction. It can be easily
incorporated into most of state-of-the-art image cutout systems
as a pre-processing plug-in. The algorithm can perform in
interactive rate. Moreover, theoretic analysis based on sub-
modular function theory is presented and evaluation on various
images demonstrates its effectiveness. For future work, we

will work toward two directions: 1) In this paper we focus
on two-dimensional image. However, it also applies for spatio-
temporal three-dimensional data. We will conduct experiments
for video data in the future work. 2) The proposed method is
general, thus can also be applied to the active learning problem
in machine learning. Validating its general performance is also
meaningful.
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