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Abstract—Temporal sentence grounding in videos is a crucial
task in vision-language learning. Its goal is retrieving a video
segment from an untrimmed video that semantically corresponds
to a natural language query. A video usually contains multiple
semantic events, which are rarely isolated. They tend to be
temporally ordered and semantically correlated (e.g., some event
is often the precursor of another event). To precisely localize
a semantic moment from a video, it is critical to effectively
extract and aggregate multi-granularity contextual information,
including the fine-grained local context around the moment-
related video segment (in short snippet-level) and coarse-grained
semantic correlation (in segment-level). Additionally, a second
main insight in this work is that the above context aggregation
should be favorably guided by the queries, rather than fully
query-agnostic. Putting above ideas together, we here present a
new network that does language-guided multi-granularity context
aggregation. It is comprised of two major modules. The core of
the first module is a novel language-guided temporal adaptive
convolution (LTAC) devised to extract fine-grained information
over video snippets around the ground-truth video segment. It
decomposes a convolution into two channel-oriented / temporal-
oriented ones. In particular, the convolutional channels are
supposed to be more susceptible to queries, thus we learn to
generate a dynamic channel-oriented kernel with respect to the
querying sentence. As a second module, we propose a language-
guided global relation block (LGRB) that extracts video-level
context. It augments the contextual feature by using a multi-scale
temporal attention that tackles the scale variation of ground-truth
video segments, and a multi-modal semantic attention that relies
on syntactic of the query. For the validation purpose, we have
conducted comprehensive experiments on two popularly-adopted
video benchmarks (i.e., ActivityNet Captions and Charades-
STA). All experimental results and ablation studies have clearly
corroborated the effectiveness of our model designs, outstripping
prior state-of-the-art methods in terms of major performance
metrics for the task.

Index Terms—Vision-language learning, video understanding,
temporal sentence grounding, multi-modality learning.

I. INTRODUCTION

With the tremendous consumer videos aggregated over
social networks, surveillance systems and personal albums, in-
telligent video analysis techniques have attracted increasing at-
tention from both academia and industry. Localizing complex
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activities in untrimmed videos is a fundamental problem in
video understanding. A few of previous works have attempted
to find the temporal boundary of a number of predefined action
categories (e.g., the sports action “high jump”), referred to
as temporal action localization. Recently, increasing research
efforts have been devoted to a more challenging setting dubbed
as temporal sentence grounding, where a natural language
sentence is used to describe complex activities more flexibly.
For an untrimmed video, temporal sentence grounding aims
to localize a most likely segment in the video, which contains
the activity that semantically matches the language sentence.

In the literature of temporal sentence grounding, a large
body of existing methods have adopted a two-stage strat-
egy [1]-[4]. They first generate video segment-level proposals
(e.g., using the sliding window) across an untrimmed video,
and then rank a candidate window by its similarity with
the query sentence. We would emphasize that most of these
methods process different proposals separately and do not
fully exploit the global context of videos. One-stage methods
have also been widely explored, which directly regress the
temporal boundary. Existing works either utilize temporal
convolution [5], [6] or self-attention mechanism [7]-[9] for
obtaining non-local receptive field. For proposal generation,
anchor-based methods [5], [6], [10] pre-specify a set of
templates with different temporal locations and scales. In
contrast, anchor-free methods [7], [ 1], [12] directly predict
the temporal boundaries of target segments.

A consumer video typically encapsulates a number of
complex events that collectively weave the same storyline. One
of the main observations in this work is that different events
in the same video are often not isolated. The occurrence of
some event can provide temporal cues when attempting to
localize another event. As seen from an example in Fig. 1,
the event “cleaning snow from his car” is a strong hint that
an event “opens the doors of his car and gets in” is likely
to occur in the following. When a query sentence is issued as
the input, exploiting the full landscape of the video semantics,
rather than focusing on specific segment-level proposal, is
more favored in order to elevate the temporal localization
accuracy. In addition, an event often gradually fades into the
background, making a temporal localization model suffering
from the event-background confusion. To precisely estimate
the temporal boundary for a query sentence in an untrimmed
video, it is also crucial to collect sufficient fine-grained local
context from the video frames temporally around the ground-
truth video segment.

Conventionally, features of different modalities in the task
of temporal sentence grounding are separately extracted before



Query 1: A man is cleaning
snow from his car.

Query 2:

Fine-grained
Local Context

. - “\r{ ™ i r
Lﬁ Y | e
Os

Query 3: The man backs out
and gets out of the car.

Fine-grained
Local Context

151.5s
Coarse-grained
Global Context

Coarse-grained
Global Context

Fig. 1: An illustrating example for the temporal sentence grounding task. Activities in a video have temporal dependencies and
semantic relationships between each other. Precisely locating the target video segment corresponding to query sentence (such
as Query 2) requires leveraging the query for modeling coarse-grained activity relation and fine-grained local discrimination.

the critical cross-modal matching, as exemplified in the work
of 2D-TAN [13]. Inspired by a more recent work SMIN [14],
this work advocates language-based guidance for extracting
multi-granularity contextual information. Intuitively, the se-
mantics of a video or image are often multi-faceted. For
example, images from the Microsoft COCO benchmark can
be described by 5 different natural language captions comple-
mentary to each other. We postulate a proactive scheme for
feature extraction that harnesses the guidance of queries can
significantly fill the gap between vision-language modalities.

This paper proposes a language-guided multi-granularity
context aggregation network for the temporal sentence ground-
ing task. It dynamically aggregates the snippet-level fine-
grained local context and video-level coarse-grained global
context guided by the semantic and syntactic information of
the natural language query. The fine-grained local context
around the ground-truth video segment provides discriminative
information for temporal boundary estimation. In contrast, the
coarse-grained global context within the entire video captures
the relationship between video segments and further promotes
the match between the target segment and query sentence.
Correspondingly, the proposed network includes two core
modules.

o To encode the fine-grained local context, we present a
language-guided temporal adaptive convolution (LTAC) that
is composed of both temporal and channel-oriented convo-
lutional kernels. In specific, The temporal kernel is location-
sensitive, which aims to aggregate local context information
dynamically. The channel kernel is location-invariant and
generates the query-semantic related video representation.
Importantly, the weights of temporal and channel kernels
are dynamically predicted from the input video and sentence
features, respectively.

o To encode the coarse-grained global context, we propose
a language-guided global relation block (LGRB) which
implements multi-scale temporal attention and multi-modal
semantic attention. As shown in Fig. 1, video segments
corresponding to different queries have notable temporal

scale variations. To tackle it, multi-scale temporal attention
is used to model the long-term temporal dependencies
between activities. The multi-modal semantic attention aims
at modeling the semantic relationship between activities
with the help of sentence syntactic information.

Finally, the fine-grained local context and coarse-grained
global context are fused adaptively to construct the appro-
priate context vectors for each video frame. To validate the
effectiveness of the proposed network, we have conducted
comprehensive empirical evaluations on two representative
video benchmarks widely adopted in the task of temporal
sentence grounding (i.e., ActivityNet Captions and Charades-
STA). The experimental results consistently demonstrate large
performance gains in almost all settings in comparison with
previous state-of-the-art methods.

II. RELATED WORK
A. Temporal Action localization

Temporal action localization [I5]-[22] aims to find the
temporal boundary of an instance of some pre-defined action
from untrimmed videos. The development of temporal action
localization techniques has been heavily influenced by the
visual object detection methods in images, such as Faster-
RCNN. A majority of temporal action localization meth-
ods [17], [19] utilize a two-stage pipeline. In practice, they
first generate a short-list of action proposals, and afterwards
rank these action proposals with adjusted temporal boundaries.

For the proposal-generating stage, existing solutions can
be roughly divided into sliding window methods [17], [23]-
[26], boundary point detection methods [27]-[31], and tem-
poral actionness grouping [19], [32]. S-CNN [17] generates
windows of varying lengths to detect the actions at different
temporal scales. R-C3D [26] proposes a fully 3D convolution
network to extract video features and predicts the relative
offset for predefined anchors to generate proposals. TAL-
Net [20] adopts the Faster R-CNN pipeline and proposes a
network with different receptive fields and late feature fusion



to improve the quality of proposals. Instead of using a region
proposal network like Faster R-CNN, SSN [19] generates
proposals by grouping continuous temporal regions with high
actionness scores. CTAP [32] proposes a proposal-level ac-
tionness trustworthiness estimator to fuse the sliding window
and temporal actionness grouping method. BSN [27] detects
temporal boundaries with high confidence scores and com-
bines candidate starting and ending boundaries into proposals.
BMN [28] further improves the effectiveness of the BSN
by introducing an end-to-end Boundary-Matching mechanism.
TSA [30] proposes temporal convolution with various dilation
rates to ensemble temporal context information at different
scales. BUTAL [31] proposes a consistency regularization
to improve the accuracy of the boundary and inner points
detection. In the second stage, the temporal boundaries of pro-
posals are refined and assigned to action categories. SSN [19]
models the temporal structure of each proposal by temporal
pyramid. PGCN [33], RAM [34], and G-TAD [35] consider
the relations between the proposals and generated a more
informative feature representation for each proposal.

In addition to the two-stage methods, there are also one-
stage methods [21], [24], [36], [37] that directly localize the
action instances. While great progress has been achieved, these
methods are limited to locating pre-defined action categories,
such as long jump, drinking water, etc. To overcome this
limitation, the temporal sentence grounding task is proposed.

B. Temporal Sentence Grounding in Videos

Temporal sentence grounding [1], [2], [38]-[44] aims to
locate the temporal boundaries in an untrimmed video of an
event described by a querying sentence. Similar to temporal
action localization, early temporal sentence grounding meth-
ods adopt a two-stage scheme. CTRL [1] and MCN [2] use
sliding window methods to generate proposals with different
lengths. CTRL [!] utilizes the multi-modal processing module
to predict the proposal matching score and adjust the tempo-
ral boundaries. MCN [2] projects the proposal feature and
sentence feature into a shared embedding space, then uses
Euclidean distance to rank proposals. Similar to the region
proposal network in object detection, QSPN [45] designed
a query-guided segment proposal network to generate query-
related proposals.

Despite the effectiveness of two-stage architecture, these
methods generate too many overlapped proposals, resulting
in high computational overhead. Inspired by the one-stage
object detection methods such as SSD [46], there are other
threads of methods that directly generate grounding results
in a single pass. SCDM [5] utilizes a semantic modulated
hierarchical temporal convolution network to generate an-
chors with different temporal lengths. The overlapping score
and location offsets for each anchor are predicted based on
modulated features. 2D-TAN [13] and SMIN [14] use a 2D
temporal map to represent diverse video moments. SMIN
disentangles the activity moment into boundary / content
and performs cross-modal interaction coupled with structured
moment interaction. However, SMIN neglects the temporal
scale variations of activities and ignores the syntactic structure

of sentences. Different from SMIN, we propose multi-scale
temporal attention to handle activities of different temporal
scales and multi-model semantic attention to aggregate multi-
modal semantic context by referring to both the syntactic and
semantic information of a sentence. MS-2D-TAN [47] further
improves the efficiency and performance of the 2D-TAN by
proposing a multi-scale 2D temporal map. Some anchor-free
methods such as LGI [7] and DRN [11] directly regress the
temporal boundaries of video moments without generating
anchors. To generate multi-granularity video representation,
LGI [7] employs a residue convolution block and a Non-Local
block [48] to capture local and global context, respectively.
DRN [11] obtains hierarchical feature maps by constructing
the feature pyramid. However, both methods generate multi-
granularity video representation without considering the se-
mantic and syntactic structure of the query sentence. Such
query-agnostic multi-granularity video representation might
not be suitable for locating the target video segments corre-
sponding to different query sentences. Different from previous
methods, we propose a language-guided temporal adaptive
convolution and a language-guided global relation block to
generate query-related multi-granularity video representation.
Besides, there also exist some works [49]-[52] that adopt the
framework of reinforcement learning. These methods formu-
late the temporal boundary localization of the target segment
as a sequential decision-making process.

Unlike recent studies, we consider the multi-granularity
context modeling under the guidance of query sentences. We
fuse fine-grained local and coarse-grained global contexts to
construct the appropriate context vectors for each video snippet
flexibly to generate precise grounding results.

III. THE PROPOSED METHOD

This section will first briefly introduce the problem for-
mulation, followed by detailed description of the proposed
model. The overview of our model is illustrated in Fig. 2. As
seen, it consists of four major components: (1) language and
video encoder. (2) language-guided multi-granularity context
aggregation. (3) proposal generation block. (4) localization
block. We also elaborate on the training and inference details.

A. Problem Formulation

Given a query sentence S and an untrimmed video V, the
goal of temporal sentence grounding is to localize the best
video segment that semantically matches the query sentence.
More specifically, we denote the query sentence as a sequence
of words S = {w, })_,, where w,, is the n-th word and N
is the length of sentence. For an untrimmed video V, we first
segment it into 7" video snippets, with each snippet as a com-
position of a few consecutive frames. The untrimmed video
can then be denoted as a sequence of snippets V = {v;}- ;,
where v, is the ¢-th snippet.

B. Language and Video Encoding

For a query sentence S, an embedding vector is generated
for each word using GloVe [53]. Then, the word embed-
ding vectors are fed as input into a two-layer bi-directional
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Fig. 2: The overall architecture of our proposed model. We first extract the word-level query’s features and video features with
GRU and 3D-CNN, respectively. Then the coarse-grained global context and fine-grained local context are calculated in two
successive language-guided multi-granularity context aggregation stages (Stage 1 and Stage 2) and generate the multi-granularity
context-aware feature. Both stages have the same architecture, consisting of a language-guided temporal adaptive convolution
(LTAC), a language-guided global relation block (LGRB), and a dynamic aggregation block. Afterwards, we generate proposal
features based on the context-aware feature in proposal generation block. Finally, a localization block predicts the video segment

semantically corresponding to the query.

GRU [54] to obtain contextual feature representations. Let
Fw = {fw, })_, € RN*Da be the concatenation of hidden
states of GRU along both directions. The sentence feature
Fg € RYPa s the average of Fyy.

Following the practice in previous works [7], [14], [47], a
pre-trained CNN model is used to extract features for each
video snippet. The features of all snippets are concatenated
along the temporal dimension to get the video feature sequence
Fyv = {f,,}£, € RT*Dv where D, denotes the dimension of
features. Furthermore, we apply two linear layers to the lan-
guage and video features respectively, reducing the dimensions
to D,.

C. Language-Guided Temporal Adaptive Convolution

It frequently occurs that the predicted segment only partially
overlaps with the ground-truth video segment to a query sen-
tence, rendering a low temporal IoU (intersection-over-union)
score. To precisely estimate the temporal boundary, it desires
to investigate fine-grained temporal context information, par-
ticularly the local context extracted from video snippets around
the true boundary. Previous works [7], [I1] adopt standard
temporal convolution to extract local context. The weights

of standard temporal convolution are shared across all the
input video/query pairs. Given the varied nature of contents
in a video and query sentence, a shared temporal convolution
kernel seems sub-optimal to capture temporal context for the
temporal sentence grounding task. Therefore, we predict the
dynamic kernel weights from the input video and sentence that
provides custom parameters for different video/query pairs.

To this end, the proposed model incorporates language-
guided temporal adaptive convolution (LTAC). For efficacy
consideration, LTAC is designed to decouple the temporal /
feature channels. State differently, it is composed of a temporal
kernel and a channel kernel. The former is dependent on the
time stamp of a video snippet, assigning different weights ac-
cording to the temporal location in the video. Instead, the latter
kernel is designed to be invariant for all time stamps in the
video. Since there will be some noises in the video boundary
context information that is irrelevant to the query sentence.
To mitigate the negative effects of noises, we generate the
channel kernel F~ conditioned on sentence feature to extract
the query-semantic related local context.

Recall that both the video feature Fy, and sentence feature
Fy, are transformed into D.-dimensional. Let k£ denotes



the size of temporal and temporal and channel kernels. To
generate the channel kernel, we first transform the sentence
feature Fyy € RY*Pe into feature map For € RNVN*De
and Foww € RM** by two independent transformations,
respectively. More specifically, Fyy is transformed into Fo g
by Fox = FiwWg, where Wi € RP<*De is a learnable
matrix. Each channel of Fo is supposed to partially capture
the semantics of the query sentence. Fyy is transformed into
Fow via Fow = Softmax (Fyy W), where W € RPexk
is a learnable matrix, Softmax is performed along the first
dimension to normalize the weights. Foyy contains k groups
of attention weights over words of a sentence. Each group
of attention weights can capture a different semantic aspect
of the query sentence. The channel kernel F- is generated
by estimating k groups of attention weights over words of a
sentence and computing a weighted sum of the transformed
sentence feature as below:

Fo = Fly For € RF*Pe, (1)

Equation 1 is related to the factorized bilinear pooling meth-
ods [55]-[58]. Different from factorized bilinear pooling, we
first transform the sentence feature into attention weights
Feow and feature map Fox, then generate channel kernel via
attention-weighted sum operation.

To aggregate local context for each snippet dynamically, we
generate the temporal kernel by

Fr = Softmax (ConvID(F}})) € RF*7, (2)

where Softmax is performed along the first dimension to nor-
malize the temporal kernel weights. the temporal and channel
kernels are combined to perform a depth-wise convolution
(DW-Conv) as below:

Fyplt,c] = Z Frlo+rt]- Felo+r,c] - Fylo+t,c], (3)

o=—T

where r = floor(%). c denotes the feature channel index for

the t-th snippet. A point-wise convolution (PW-Conv) then
applies a 1-D convolution with kernel size 1 to create a linear
combination of Fy p, and generates the semantic-aware local
context feature F& Batch normalization (BN) and ReLLU are
appended after each convolutional layer.

D. Language-Guided Global Relation Block

Next, to fully exploit the temporal ordering and semantic
correlation among different events in a video, we further
propose a language-guided global relation block (LGRB).
The core of LGRB include a multi-scale temporal atten-
tion (MSTA) branch and a multi-modal semantic attention
(MMSA) branch.

1) Multi-Scale Temporal Attention: Video events typically
exhibit large variation in terms of duration lengths. MSTA is
the major workhorse in our model for tackling the temporal
scale issue. We first generate multi-scale video features by
applying several temporal pooling operations with different
output sizes in parallel. Since not all video frames are relevant
to the query sentence, a sentence guided pooling (SGP)
operation will filter out the irrelevant video information during

the pooling process. In practice, Fs is first converted into
Fg € RY™De by a fully connected layer. Then, we perform
Sigmoid over the inner-product between Fg and Fy, obtaining
the query sentence-guided pooling weight Py as below:

AT
fvls ) e RT*1, 4)

VDe

Let f1¢ be the output of SGP performed on a video segment
which ranges from t¢s-th snippet to te-th snippet, SGP is
defined as:

Py = Sigmoid <

tfse _ ie:t:ePW [t]FV [t] c R*De. 5)
t—ts LW [t]

When Py [t] = 1,6t = 1...T, SGP boils down to the
average pooling. Let M be the number of pooling operations.
A video is divided into T, segments during the m-th (1 <
m < M) pooling process. Py, = SGP,,(Fy) € RTmxDe
is the output of the m-th pooling operation. The multi-scale
feature Py is calculated by concatenating the outputs of all
pooling operations along the temporal dimension:

Py = Concat (PV,17 Pv}g, ey PV,M) S R(Z%[=1 Tm)XDC.
(6)
In the experiments, we use 3 pooling operations and set
Ty, T, T3 as 1, 8, 16, respectively. Motivated by the multi-
head self-attention [59], multi-scale temporal attention consists
of H attention heads. For each head h, we project Fy and
Py into Qrn = FvWorn, Krn = PyWgkrh, and Vry =
Py Wy, where Worn, Wkrn, Wikrh € RP*Dr represent
the weights of projection layer. D;, = D./H is the feature
dimension of each head. Then, Qrn, K71, and Vg, are used
to calculate the multi-scale temporal attention Fy 7, of head
h according to:

x KT
Fyrn = Softmax Qrn X Ky Virn. 7)
VD
The output of different attention heads are concatenated
along the channel dimension to get multi-scale temporal
attention Fyyp € RT*De as:

Fyp = Concat(Fyr1, Fyra, ..., Fyrm). 8

Compared with the original multi-head self-attention, multi-
scale temporal attention is more efficient since the temporal
length of Py is less than Fy . In addition, multi-scale tempo-
ral attention can model relationships between activities with
different duration since Py contains multi-scale information.

2) Multi-modal Semantic Attention: In order to model the
multi-modal semantic context, we first calculate the feature
similarity C' € RT*"N between the query words and snippets

as:
(Fv Wy1) (Fow Ww)T

VD, ’
where Wy and Wy, are learnable parameter matrices.
C'[t, n] denotes the similarity between the ¢-th snippet and n-th
word. Although some words do not appear in the video, their
contextual feature representations still contain video-related
semantic information due to our adoption of bi-directional
GRU during language encoding. To generate the attention on

C =

€))



each snippet with respect to each word, we normalize C' over
the first dimension to obtain a word-specific snippet attention
matrix C' = Softmax(C'). We aggregate the video features with
respect to each word based on C by:

Fyw = CTF, € RN*De (10
where Fy vy [n] represents the visual representation related to
the n-th word. The visual and language representations are
combined to get multi-modal Fy;yy € RYXPe of N words
as:

Fuw = FywWyw + Fyw Wy, (11)

where Wy v and Wyyo are learnable matrices with their sizes
inferred from the context.

While Fw [n] contains the multi-modal information of the
n-th word, it lacks the semantic context from relevant words.
To aggregate multi-modal semantic context, we propagate
information among multi-modal word representations with
the help of dependency parsing tree of the query sentence.
Specifically, we first obtain the syntactic dependency tree G
for a sentence by Stanford CoreNLP toolkit. In G, each word
is regarded as a node and each dependency relation between a
word pair is a directed edge. To enable bi-directional message
passing between words, we convert edges to be un-directed.
Intuitively, the distance between two words in the dependency
tree can reflect their linguistic affinity. If words w; and w;
are connected by at least a path, the syntactic distance d; ;
between w; and w; is set to the length of the shortest path.
Otherwise the syntactic distance between two words is infinity.
Let E € RV*YN be the affinity matrix of N words. E[i, j] is
calculated by combining the feature similarity and syntactic
distance as
_ Pywlil Fyrw [5]7

dl,] '

E[i, j] (12)
For numerical tractability, E' is further normalized such that
the sum of each row is 1. We calculate the semantic context
aware multi-modal word representation Pj; as follows:
Py = (E+I)FywWayw € RNV Pe, (13)
where [ is an identity matrix serving as a shortcut connection
to ease the optimization. Wyw € RPexDPe ig a learned
matrix. Similar to MSTA, MMSA also adopts a multi-head
design. For head h, Fy and P); are projected into Qg =
FyWash, Ksin = PyWgksh, and Vs, = Py Wy gy, where
Waosn, Wksn, Wksn € RP*Dnr represent the weights of the
projection layer. Then MMSA of head h is calculated as:

KT
Fy s = Softmax <QS’XSh> ¥ Ven,  (14)

ven

RT*De is the concatenation of all heads’

where Fyg €
outputs.

3) Mixed Attention: To integrate information from MSTA
and MMSA, we first concatenate Fyr and Fy g along the
channel dimension, then generate the mixed attention Fy ps
by Fyay = Concat(Fyr, Fys)Wyy € RTXPe where

Wyar € R(Pet+De)xDe g g learned matrix. Afterwards, the
coarse-grained global context F‘(/; is calculated by:
LN(Fyu + Fv),
LN(MLP(Eyar) + Fyar),

15)
(16)

Fyn =
Fg =

where LN denotes the layer normalization and MLP consists
of two linear transformations.

E. Dynamic Aggregation Block

The importance of local and global context may vary across
different video snippets. We are thus motivated to propose
a snippet-adaptive fusion module to aggregate the local and
global context. Specifically, we first transform Fy¥ and Fg into
FEY and FE! by two independent Conv1D layers with kernel
size 1, respectively. We further concat the Fi%! and FG'! along
the channel dimension and use a two-layer MLP to produce
the selection weights SW for local and global context feature
as:

SW = Softmax(MLP(Concat(Fz*, FG1))) € RT*2, (17)

where Softmax is performed along the last dimension of STW
to get the normalized selection weights. The multi-granularity
context-aware feature Fy , is obtained as follows:

Fyrp = SW[;,0] 0 FEY + SW[;, 1] 0 FGL.  (18)

F. Proposal Generation Block

For a video containing 7" snippets, enumerating all possible
video segments is computationally expensive. To reduce the
computation cost, we first down-sample Fyr to FVL S
RTp*De where Tp < T by temporal average pooling.

Then, we construct 2D proposal feature map [13] Fj; with
a boundary-matching operation [28]:
Fyr = BM(Fy ) € RToxToxDe, (19)

For a valid proposal (a,b) which satisfies 0 < a < b <
Tp, its starting and ending moments are %Vd and Z’TiDlVd
respectively, with V; being the duration of the video.

G. Localization Block

After obtaining the proposal feature map, we then predict
the matching score of each valid proposal. Inspired by 2D-
TAN [13], we interact the sentence feature Fg with the
proposal feature map F); through Hadamard product and Lo
norm as:

Fyp = LoNorm(EyWiy © FsWeq), (20)

where Wy, Wg, € RPe*Pe are learnable parameter matrices
to project Fi; and Fs to the same subspace.

For the fused proposal feature map Fsr, each row has
the same starting time and each column has the same end-
ing time. To aggregate the context information from other
proposals, we first perform average pooling along each row
and each column separately to get Fy, . € RTP*DPe and
e RTpxDe  After that, I r and Iy oare fed into two
Conv1D layers with kernel size 3 to aggregate proposal-level



local context. Then, we integrate I}, and F§; to generate
the proposal context feature map Fi;p € RT0*TpoxDe where
Farrla,b,:] = F§pla,:] + F§ b, :]. The context-augmented
proposal feature map F;¢ is generated by:

Fre = Fup + Sigmoid(ConvID(Fysp)) Farp. (21)

The 2D proposal matching score map O,y is predicted by:
Oy = Sigmoid(FycWoyr) € RTpXTox1 (22

where Wop, € RP<*! denotes a learnable parameter matrix.
Oy is flattened into a matching score sequence. A valid
matching score stand for Op/[a,b], where 0 < a < b < Tp.
All valid matching scores are collected, denoted as O M € RE,
where C' is the number of valid proposals.

Besides the matching score map, we also predict the tem-
poral boundary of an event and the actionness of each snippet
to facilitate the network training. The actionness O 4 of each
snippet is predicted as:

Py (FsWes2)T
VD
where Wgy € RP<XDe ig a learnable parameter matrix. The
label of the actionness of the i-th snippet is set to 1 when
the ¢-th snippet is in the ground truth video segment and O

otherwise. The probability sequence of starting boundary Og
is generated by:

Os = Softmax[(ReLU(Fy . Wos1))Wose] € RT*1 (24)

where Wpg; € RPXDe/2 and Weogy € RP</2XL are
learnable parameter matrices. The probability sequence of
ending boundary Ogp is likewise computed.

O4 = Sigmoid ( ) e R (23)

H. Training and Inference

Following previous practice [13], we use a scaled IoU value
as the supervision signal of the predicted matching score.
Specifically, for the i-th proposal, we first calculate its ToU
o0; with the ground truth video segment. Then the scaled IToU
value y; is assigned by

0 0; S tmirw
Yi = % tmin < 0; < tmaz, (25)
1 0; Z tmazv

where t,,,;, and t,,4, are two thresholds. The proposal match-
ing loss is defined as

C
> " yilog O] + (1 — y;) log(1 — log Onyli]).

i=1

(26)

To supervise the predicted actionness of each video snippet,
we use the temporal actionness loss as:

1
Em—fa

T
Lia =~ 3 Galil og(Oali)) +(1-Gali)(1-log(OAT))

= 27)
where G 4[i] is set to 1 if the i-th snippet is in the ground
truth video segment and 0 otherwise. In addition, the boundary
prediction loss is defined as the Kullback-Leibler divergence

TABLE I: Comparisons on ActivityNet Captions using C3D
features. The best / second best scores under each setting are
highlighted in red and green respectively. “-” implies that the
corresponding score was not reported in the original paper.

R@I, R@l, R@5, R@5,
Method
IoU=0.5 1IoU=0.7 IoU=0.5 TIoU=0.7
MCN [2] 21,26 6.43 53.23 29.70
TGN [60] 28.47 - 43.33 -
CTRL [1] 29.01 10.34 59.17 37.54
ACRN [3] 31.67 11.25 60.34 38.57
QSPN [45] 33.26 13.43 62.39 40.78
CBP [61] 35.76 17.80 65.89 46.20
SCDM [5] 36.75 19.86 64.99 41.53
ABLR [62] 36.79 - - -
GDP [9] 39.27 - - -
RWM-RL [49] 36.90 - - -
TSP-PRL [50] 38.76 - -
LGI [7] 41.51 23.07 - -
2D-TAN [13] 44.51 26.54 77.13 61.96
CMIN [10] 43.40 23.88 67.95 50.73
DRN [11] 45.45 24.36 77.97 50.30
CBLN [63] 27.60 63.41
MSATN [64] 48.02 78.02 63.18
CPN [65] 45.10 28.10 - -
IVG [66] 43.84 27.10 - -
DeNet [67] 43.79 - 74.13 -
FVMR [68] 45.00 26.85 77.42 61.04
SSCS [69] 46.67 27.56 78.37
MS-2D-TAN [47] 46.93 28.23 78.79 61.29
Ours 48.88 32.88 79.43 65.80

between the predicted and ground truth boundary probability
distributions as below:

Ly = KL(Og||Gs) + KL(Og||Gp), (28)

where Gg and Gg are the starting and ending boundary
probability distributions, respectively.
The training of our model is supervised by:

L =L+ alia+ BLy, (29)

where a and 3 are the weighting coefficients.

During inference, we rank all moment proposals based
on the proposal matching score. Non-maximum suppression
(NMS) is used to remove duplicate proposals.

IV. EVALUATIONS

A. Dataset and Evaluation Metric

a) ActivityNet Captions [70]: ActivityNet Captions is
originally constructed for dense video captioning. It consists
of about 20K untrimmed videos and is divided into training,
validation and testing sets at a ratio of 2:1:1. The average
duration of videos is around 120 seconds. Each video contains
3.65 querying sentences and corresponding video moments on
average. Following the common practice as in [14], [63], [64],
we use val_1 as the validation set and val_2 as the testing set
since annotations of the testing set are not publicly available.



b) Charades-STA [/]: Charades-STA re-purposes the
Charades dataset for promoting the video grounding research.
Most of the videos in Charades depict human daily indoor
activities. The average length of the videos is about 30
seconds. This dataset consists of 12,408 and 3,720 moment-
query pairs in the training and testing set, respectively.

c) Evaluation Metric: As in previous work [I], [14],
“R@n, IoU=m” is used as the major evaluation metric. The
metric denotes the percentage of testing samples that have at
least one correct grounding prediction (i.e., the IoU between
the prediction and the ground truth is larger than m) in the
top-n predictions. In the experiments, we set n € {1,5} and
m € {0.5,0.7} for ActivityNet Captions and Charades-STA.

B. Implementation Details

For fair comparison, we use C3D [71] network pre-trained
on Sports-1M [72] to extract video features on ActivityNet
Captions and Charades-STA. Following previous work [5],
[63], we also use I3D [73] network pre-trained on Kinetics [73]
to extract video features on the Charades-STA. To encode
each word in a sentence, we use Glove word embedding with
300 dimensions. A two-layer bidirectional GRU is applied
to word-embeddings to obtain the word and sentence feature
representation. During training, We use Adam with a learning
rate of 0.0001, the momentum of 0.9 and batch size of 32.
For the scaled IoU, the scaling thresholds are set to 0.5 and
1.0 for ActivityNet Captions and Charades-STA, respectively.
The weighting coefficients o and /3 are set to 1 and 0.1 for
both datasets.

C. Comparisons with State-of-the-art Methods

Table I presents the results on ActivityNet Captions. Our
method outperforms other state-of-the-art temporal sentence
grounding methods in terms of most metrics, demonstrating
the superiority of our method. Compared with MSATN [64],
our method outperforms it with a margin of 2.6% under
R@5,10U=0.7. Since IoU=0.7 is a more rigorous criterion to
determine whether a localized moment is correct or not, this
demonstrates that the proposed method generates grounding
results with superior quality.

Table II summarizes the evaluations on Charades-STA. As
seen, our method achieves the best performance under all loU
thresholds. We observe that the improvement is more signifi-
cant at high IoU. Specifically, for R@1, IoU=0.7, our method
elevates the performance from 40.75% to 43.70%, using 13D
features. When using C3D feature, our method outperforms
MS-2D-TAN [47] by 3% and 6.54% under R@1,IoU=0.7 and
R@5,10U=0.7, respectively.

The comparisons in Tables I and II are comprehensive since
various types of proposal-generating methods are involved.
For sliding window based methods, we choose the repre-
sentative CTRL [1], MCN [2], ACRN [3], and ACL-K [4]
for comparison. The inferior performances of these methods
are supposed to be partly owing to treating each proposal
independently and ignoring the temporal context. There are
also anchor based methods including SCDM [5], TGN [60],
and CMIN [10]. Anchor-based methods conduct sentence

TABLE II: Comparisons with state-of-the-art methods on
Charades-STA. The best / second best scores under each
setting are highlighted in red and green respectively. “-”
implies that the corresponding score was not reported in the
original paper.

R@l1, R@l, R@5, R@5,
Method Feature
IoU=0.5 ToU=0.7 IoU=0.5 IoU=0.7
CTRL [1] C3D 23.63 8.89 58.92 29.57
ACL-K [4] C3D 30.48 12.20 64.84 35.13
RWM-RL [49] C3D 36.70 - - -
TSP-PRL [50] C3D 37.39 17.69 - -
QSPN [45] C3D 35.60 15.80 79.40 45.40
CBP [61] C3D 36.80 18.87 70.94
GDP [9] C3D 39.47 18.49 - -
FVMR [68] C3D 38.16 18.22 44.96
MS-2D-TAN [47] | C3D 81.53 48.55
Ours C3D 44.10 26.26 84.36 55.09
DRN [11] 13D 53.09 31.75 89.06 60.05
SCDM [5] 13D 54.44 33.43 74.43 58.08
LGI [7] 13D 59.46 35.48 - -
CBLN [63] 13D 61.13 38.22 90.33 61.69
CPN [65] 13D 59.77 36.67 - -
SMIN [14] 13D 89.49
DeNet [67] 13D 59.70 38.52 66.83
FVMR [68] 13D 55.01 33.74 89.17 57.24
LGI + SSCS [69] | I3D 60.75 36.19 - -
MS-2D-TAN [47] | I3D 60.08 37.39 89.06 59.17
Ours 13D 64.13 43.70 91.30 69.15

TABLE III: Ablation studies of main components.

Dataset Method Rel, Rel
IoU=0.5 IoU=0.7

w/o LGRB 60.23 39.78

Charades-STA w/o LTAC 61.45 41.90

w/o LGRB & LTAC 51.21 32.70

Full 64.13 43.70

w/o LGRB 46.84 30.26

.. w/o LTAC 46.79 31.11

ActivityNet
w/o LGRB & LTAC 44.39 27.05
Full 48.88 32.88

language interactions and learn temporal context by temporal
convolution or recurrent neural network. However, they only
exploit snippet-level context, while our method exploits the
fine-grained local context and coarse-grained global context si-
multaneously to generate grounding results with more precise
temporal boundaries. We also compare anchor free methods
such as DRN [11], LGI [7] and DeNet [67]. Due to the target
video segments having various temporal duration and seman-
tics, directly regressing the temporal boundary is difficult.
Therefore, the grounding results of anchor-free methods are
usually not accurate enough.

D. Ablation Studies

a) Effectiveness of main components: We evaluate the
main components of the proposed method on Charades-STA
and ActivityNet Captions in Table III, where “w/o LGRB”
means without language-guided global relation block (LGRB),



TABLE IV: Ablation studies of components of language-
guided temporal adaptive convolution (LTAC).

Dataset Method Rel, Rel
IoU=0.5 IoU=0.7

ConvlD 51.32 33.02

Charades-STA | LTAC w/o CK 52.82 34.15

LTAC w/o TK 58.06 38.47

LTAC 60.23 39.78

ConvlD 4491 27.10

ActivityNet LTAC w/o CK 45.44 28.01

LTAC w/o TK 46.09 28.93

LTAC 46.84 30.26

TABLE V: Ablation studies of components of language-guided
global relation block (LGRB).

Dataset Method Rel, R@l
IoU=0.5 IoU=0.7

w/o MSTA 59.74 40.63

Charades-STA | w/o MMSA 55.58 36.74

LGRB 61.45 41.90

w/o MSTA 46.29 30.31

ActivityNet w/o MMSA 45.97 29.12

LGRB 46.79 31.11

“w/o LTAC” means without language-guided temporal adap-
tive convolution (LTAC), and “w/o LGRB & LTAC” means
without both LGRB and LTAC. LGRB and LTAC are two
critical components in our model, which conduct coarse-
grained global context for semantic reasoning and fine-grained
local context for precise boundary localization. We observe
that the performance of our method degenerates dramatically
without LGRB or LTAC. The full model (Full) outperforms all
the compared ablation models. These facts demonstrate that
LGRB and LTAC are complementary for temporal sentence
grounding.

b) Variants of language-guided temporal adaptive con-
volution (LTAC): We validate the design of the LTAC in
Table IV by comparing four settings: 1)“Conv1D” means stan-
dard temporal convolution 2) “LTAC w/o CK” means without
channel kernel. 3) “LTAC w/o TK” means without temporal
kernel. 4) “LTAC” means use full LTAC in our model. From
Table IV, we observe that both temporal kernel and channel
kernel contribute to the overall performance. The channel
kernel is critical by comparing “w/o CK” with “LTAC”, which
indicates the sentence semantics play an important role in this
task. LTAC consistently outperforms Conv1D on two datasets,
demonstrating the effectiveness of the dynamic kernel weights
used in LTAC.

c) Variants of language-guided global relation block
(LGRB): We verify the effectiveness of multi-scale tem-
poral attention (MSTA) and multi-modal semantic attention
(MMSA) in Table V by comparing three settings: 1) “w/o
MSTA” means LGRB without MSTA. 2) “w/o MMSA” means
LGRB without MMSA. 2) “LGRB” means the full LGRB with
both MSTA and MMSA. By comparing “LGRB” with “w/o
MSTA” and “w/o MMSA”, we observe that both multi-scale
temporal context and multi-modal semantic context contribute

TABLE VI: Ablation studies of the kernel size k of LTAC on
Charades-STA.

Kernel Size Rel, R@l
IoU=0.5 IoU=0.7

1 57.75 38.62

3 60.23 39.78

5 59.42 39.59

7 59.53 39.26

TABLE VII: Impact of the number of pooling operations
M and the length of each pooling operation of SGP on the
Charades-STA dataset.

M| (T <m<wmy | ROL - REl
IoU=0.5 IoU=0.7

8 58.40 39.18

1 16 58.72 39.88

32 59.04 40.26

1,2, 4 59.90 41.09

3 1,4,8 60.74 41.68

1, 8, 16 61.45 41.90

1, 16, 32 60.92 41.66

5 1,2, 4,8, 16 61.01 41.81

to the overall performance. From Table V, removing MMSA
from LGRB degrades R@1,loU=0.7 significantly on both
Charades-STA(41.90% vs. 36.74%) and ActivityNet Captions
(31.11% vs 29.12%).

d) Kernel size k in LTAC: Table VI shows the impact of
k on Charades-STA. We observe that compared with setting
kernel size as 1, increasing kernel size to 3 improves the
R@1, I0U=0.5 from 57.75% to 60.23%, which shows the
importance of fine-grained temporal context information. We
further note that when the kernel size is larger than 3, the
performance deteriorates a little. In our experiments, the & is
set to 3.

e) Parameter choices of SGP: To validate the effective-
ness of using multiple temporal pooling operations and figure
out the optimal hyper-parameters of SGP, we use different
combinations of M and {T;,,1 < m < M}. The results
are shown in Table VII. As can be seen, our model achieves
better performance when using multiple pooling operations.
This demonstrates that multi-scale temporal attention is helpful
for temporal sentence grounding. We further note that using
3 pooling operations is enough to achieve good results, and
adding more pooling operations does not improve perfor-
mance. SGP with M = 3 and 77 = 1,75 = 8,15 = 16
achieves the highest performance as shown in Table VII, which
is applied in our experiments.

f) Different temporal pooling methods of multi-scale tem-
poral attention: To evaluate the temporal pooling methods
in the multi-scale temporal attention, we conduct ablation
studies on Charades-STA concerning R@1 in Fig. 3. “None”
means without pooling, same to multi-head self-attention [59],
“Avg” means average pooling. “Max” means max pooling.
“SGP” means semantic guided pooling. The results show that
SGP performs better than other pooling methods since the
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Fig. 4: Ablation studies of different affinity matrices in multi-
modal semantic attention.

semantic related video information is preserved during the
pooling process. We also notice that the performance of “Max”
is even worse than “None”. This may be due to the loss of
semantic related information during the max pooling process.

g) Different affinity matrix in multi-modal semantic atten-
tion: To evaluate the affinity matrix in multi-modal semantic
attention, we conduct ablation studies on Charades-STA in
Fig. 4. “None”, “Sem”, “Syn”, “Fuse” denote that the affinity
matrix is an identity matrix, calculated by the feature similarity
/ sentence syntactic distance, or combining the feature similar-
ity and sentence syntactic distance, respectively. It is seen that
the semantic context is beneficial for this task by comparing
“Fuse” to “None”. As presented in Fig. 4, the result of “Fuse”
is better than “Sem” and “Syn”, indicating that the feature
similarity and sentence syntactic distance are complementary
to each other.

h) Number of Multi-Granularity Context Aggregation
Stage: We show the effect of the count of stages L in Fig. 5.
L varies from 1 to 4 in the proposed model. The results show
that our model achieves the best performance when using two
stages. We observe that increasing the stage L from 2 to 4
does not improve the performance. Adding more layers will
increase the over-fitting risk.

i) Effectiveness of each loss function: We also evaluate
the loss functions used in the proposed method on Charades-
STA and ActivityNet Captions in Table VIII, where “w/o
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(b) Ablation studies with different L on the ActivityNet Captions dataset.

Fig. 5: Ablation studies of the number of stages L in our
model.

TABLE VIII: Ablation studies of different loss.

Dataset Method Rel, R@l
oU=0.5 ToU=0.7
Wio Lia 6165 4187
wlo Ly 60.21 41.28
Charades-STA
arades Wio Lia&ly | 58.67 39.56
Full 6413 4370
Wio Lia 4667 3102
i wio Ly 4699  31.09
ActivityNet
VT Wio Lra&ly | 4578 3025
Full 4888 3288

L4,” means our model is trained without temporal actionness
loss. “w/o L;,” means our model is trained without boundary
prediction loss. “w/o L;,&L;” means our model is trained
by proposal matching loss. The model trained by full loss
(Full) outperforms all the compared ablation models. This
demonstrates that the temporal actionness loss and boundary
prediction loss can facilitate the model learning, and the three
losses are complementary for temporal sentence grounding.

E. Qualitative Analysis

We show some qualitative examples in Fig. 6, where
“w/o LGRB” and “w/o LTAC” correspond to models without
language-guided global relation block or language-guided tem-
poral adaptive convolution respectively, respectively. As seen,
the full model predicts more precise boundaries than ablation
models, since the full model captures both the coarse-grained
global context and fine-grained local context.

V. CONCLUSIONS

In this paper, we study the temporal sentence grounding
task and present a novel language-guided multi-granularity
context aggregation network. We design a novel language-
guided temporal adaptive convolution to extract fine-grained
information over video snippets and a language-guided global
relation block to extract video-level context. Our method
incorporates both fine-grained local discriminative information



Query: She puts a shirt in and begins scrubbing the shirt.

Ground Truth 33.39s ® * 88.8s

w/o LGRB 39.95s +111.0s
w/o LTAC 35.52s » e 102.12s
Full Model 31.07s e * 97.68s

Query: The man then demonstrates how to properly hit a birdie using a racket.

How To

Smash
in Badminton

Ground Truth 39.64s ¢ 100.84s

w/o LGRB 47.81s 139.08s
w/o LTAC 34.77s o ® 113.01s

Full Model 34.77s ¢ 104.31s

Fig. 6: Qualitative examples of our model and the ablation models.

and coarse-grained global semantic relation to locate the target
video segment precisely. Comprehensive experimental results
on the ActivityNet Captions and Charades-STA datasets show
that our work achieves the new state-of-the-art performance.
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