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Figure 1: Results of SH-GAN on a variety of inpainting cases. SH-GAN can fill-in image content with outstanding consistency.

Abstract
Image completion with large-scale free-form missing re-

gions is one of the most challenging tasks for the com-
puter vision community. While researchers pursue better
solutions, drawbacks such as pattern unawareness, blurry
textures, and structure distortion remain noticeable, and
thus leave space for improvement. To overcome these chal-
lenges, we propose a new StyleGAN-based image comple-
tion network, Spectral Hint GAN (SH-GAN), inside which
a carefully designed spectral processing module, Spectral
Hint Unit, is introduced. We also propose two novel 2D
spectral processing strategies, Heterogeneous Filtering and
Gaussian Split that well-fit modern deep learning models
and may further be extended to other tasks. From our inclu-
sive experiments, we demonstrate that our model can reach
FID scores of 3.4134 and 7.0277 on the benchmark datasets
FFHQ and Places2, and therefore outperforms prior works
and reaches a new state-of-the-art. We also prove the effec-
tiveness of our design via ablation studies, from which one
may notice that the aforementioned challenges, i.e. pattern
unawareness, blurry textures, and structure distortion, can
be noticeably resolved. Our code will be open-sourced at:
https://github.com/SHI-Labs/SH-GAN.

1. Introduction
Spectral analysis is a well-established research topic

and has been intensely studied for decades [7, 8, 32, 35].
Its corresponding downstream techniques in remote sens-
ing, telecommunication, and healthcare significantly af-
fect our modern life. Earlier computer vision techniques
largely adopted algorithms such as the Fourier transform [3,
38], wavelet transform [4, 15, 33, 50] and curvelet trans-
form [47] for image denoising, anti-aliasing, restoration,
and compression. Ever since the rapid growth of deep
learning, spectral analysis on images has fallen from pop-
ularity largely due to the fact that the intriguing proper-
ties of the 2D frequency domain complicated many so-
lutions for the content-based tasks. Nevertheless, as the
progress of deep learning research goes deeper and wider,
researchers start to re-focus on the image spectral analy-
sis and its potential applications. Recent works, such as
[9, 10, 40, 48, 54, 55, 57, 64], have shown that a net-
work structure with spectral priors can be favorable in many
tasks, including classification, segmentation, image synthe-
sis, and super-resolution. These works will undoubtedly
guide the future computer vision research in spectral analy-
sis.
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Despite the fast development of spectral-related deep
learning methods, few works [9, 25, 48] have explored the
potential of image completion with spectral priors, in which
the major purpose of [9, 25] is still image synthesis. In the
past few years, image completion heavily relied on feature
extraction using CNNs and similarity-based patch matching
techniques [36, 56, 58, 59, 61]. While these strategies have
been proved useful in some scenarios, it remains a case-
dependent approach due to its frequently shown structural
distortion and texture artifacts. Meanwhile, the success of
the StyleGAN series [24, 25, 26, 27] on generation tasks has
established a robust baseline for many downstream tasks
such as style transfer [1, 16, 39], GAN-inverse [37], la-
tent space editing [17, 45, 49], and inpainting [63]. Among
them, the recent image completion work CoModGAN [63]
introduced the concept of co-modulation and pushed the
performance to the next level.

Through our research, we compared several image com-
pletion works such as DeepFill [58, 59], LaMa [48], Co-
ModGAN [63], etc. We noticed that these methods pro-
duce promising results in some cases but struggle in oth-
ers. For instance, the patch-based approaches keep a good
texture consistency for irregular textures with small tex-
tons (e.g. grass, wood, asphalt, etc.), but create large struc-
tural distortions, especially when the unknown masks are
large. LaMa, on the other hand, utilizes a spectral trans-
form module, namely FFC [10], and stands out in cases with
strong pattern-like signals. However, it faces challenges in
complex scenes and tends to create fast-repeating artifacts
that are conceptually blurry. CoModGAN generates more
natural-looking image content. However, CoModGAN is
less bounded by image known regions; thus, it may ignore
global patterns and create faulty objects.

Motivated by the prior works using spectral transform to
handle low-level patterns and modulated generative block
to handle high-level semantic, we introduce a novel ap-
proach: Spectral Hint GAN (SH-GAN) along with a new
module: Spectral Hint Unit (SHU). Our goal is to mini-
mize the summarized problems, i.e., pattern unawareness,
blurry textures, and structural distortions and to maintain
the natural balance between pattern and semantic consis-
tency. Moreover, we also propose two new spectral trans-
form strategies: Heterogeneous Filtering, and Gaussian
Split. Heterogeneous Filtering aims to manipulate the 2D
spectrum using a learnable smooth-varying function corre-
lated with its frequency. Meanwhile, Gaussian Split is a
spectral split algorithm that distributes information to dif-
ferent resolution scales for image synthesis. As a result, our
FID performances are 3.4134 on FFHQ [26] and 7.0277 on
Places2 [65], outperforming CoModGAN and other prior
works and reaching a new state-of-the-art. We also demon-
strate that our model outperforms LaMa and the other works
on the narrow and wide masks using a LaMa-style evalua-

tion scheme. Lastly, we perform ablation studies on SH-
GAN, from which we clearly see the performance gain us-
ing SHU and the proposed spectral transform strategies, i.e.
Heterogeneous Filtering and Gaussian Split.

In summary, the main contributions of our work are the
following:

• We propose a novel spectral-aware StyleGAN-based
image completion network, Spectral Hint GAN (SH-
GAN), in which a new module, Spectral Hint Unit
(SHU), is introduced.

• We also bring out two new spectral processing strate-
gies: Heterogeneous Filtering and Gaussian Split.
These strategies aim to enhance the 2D spectral sig-
nals and hierarchically fuse them inside the synthesis
network.

• The FID scores of SH-GAN outperform the state-of-
the-art on two popular benchmark datasets: FFHQ and
Places2. Meanwhile, we perform inclusive studies,
through which we demonstrate the effectiveness of our
new designs.

2. Related Works
2.1. Spectral Research in Computer Vision

Early image spectral research largely focused on low-
level vision such as compression [2, 3], restoration [50], and
denoising [4, 15, 47, 51]. In 1971, Tsai and Huang proposed
Transform Coding [3] using the discrete cosine transform,
which was later extended into the well-known JPEG for-
mat [2]. Huang [50] also initiated the pioneering work for
image enhancement and restoration using multi-frame dis-
crete Fourier transform (DFT) and inverse-DFT. Popular ap-
proaches of image denoising utilize fast Fourier transform
(FFT) [51] or wavelet transform [4, 15]. In [47], Jean et al.
proposed two new frequency-domain tools: ridgelet trans-
form and curvelet transform, by which they could recover
images from noise with higher perceptual quality than prior
works. In recent years, researchers have shown increasing
enthusiasm for spectral neural networks. [43] was one of
the first works that combined spectral layers with CNN, in
which it proposed spectral pooling for dimension reduction.
Another work [55] proposed SyncSpecCNN in which a set
of 3D features were eigen-decomposed and passed through
a CNN for 3D part segmentation. For super-resolution, [64]
decomposed tensors with the wavelet basis and transformed
them with fully connected layers. [40] explored the induc-
tive bias of CNNs towards low-frequency signals. A similar
discovery was mentioned in [9], in which the author per-
formed analysis on the frequency domain of a GAN net-
work. Recently, Chi et al. proposed Fast Fourier Convolu-
tion (FFC) [10], in which tensors were converted between
spatial and frequency domain using FFT and inverse-FFT.
Chi et al. also showed that FFC could substitute regular
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Figure 2: This figure shows the structure of FFC [10] (left) and SHU (right). Different from FFC, our SHU does not use any external
convolution layers. In the spectral transform, SHU utilizes HeFilter to transform spectral tensors after ReLU, while FFC directly connects
ReLU outputs to iFFT. To make things compacted, we do not include Gaussian Split in this figure.

Residual Blocks [18] and reach better performance in clas-
sification.

2.2. Image Completion

The goal of image completion is to synthesize im-
age content for missing regions. Traditional approaches
performed gray-level gradient extension [5], image quilt-
ing [13], and patch-based methods [6, 12, 14]. Notwith-
standing the success of these approaches in the cases of
simple and highly-textured backgrounds, they fail to re-
cover missing semantics and complex structures. Since
the popularity of deep learning, [29, 42, 53] were the first
groups to design deep network architectures for inpainting.
Satoshi et al. [21] utilized dilated convolutions and adver-
sarial training. [30] inpainted face images using seman-
tic maps as guidance. To address the vanilla convolutions’
drawback of treating all pixels equally, Liu et al. [31] in-
troduced partial convolutions in which unknown elements
in the input tensor are excluded from the calculations. Yu
et al. further improved the performance with contextual at-
tention [58] and gated convolutions [59]. Navasardyan &
Ohanyan [36] proposed the onion convolutions, in which
neighboring patches could be searched and relocated si-
multaneously with the convolution operation. Sharing a
similar spirit with [6, 58], HiFill [56] generated contex-
tual residual to fill in higher resolution textures. Another
work, CR-Fill [61] proposed the CR loss, a patch similar-
ity loss designed to reinforce contextual consistency. Zhu et
al. [66] introduced the MADF module and cascaded refine-
ment decoders. Zeng et al. [60] introduced the AOT block
and utilized soft mask-guided PatchGAN [22] for the net-
work training. Suvorov et al. introduced LaMa, which is
a U-shape structure with FFCs [10]. Zhao et al. [63] pro-
posed CoModGAN along with the co-modulation idea on
top of the StyleGAN [24, 26, 27]. All these works have

achieved plausible results on faces and natural images using
free-form masks. The concurrent works in diffusion mod-
els [20, 46] can also be extended to inpainting tasks in which
LDM [44] and DALL-E2 [41] shows promising results at a
higher computational cost during inference time.

3. Method
In this section, we illustrate the key designs of our work,

including Spectral Hint Unit (SHU), Heterogeneous Filter-
ing Layer (HeFilter), Gaussian Split, and the overall GAN
architecture. The definition of image completion is to re-
store an RGB image Ifake from a masked color image
I = Ireal ⊙M , where Ireal is the ground-truth image and
M is the mask, in which the known pixels have value 1 and
the unknown pixels are represented with zeros.

3.1. Spectral Transform with SHU

Spectral Hint Unit (SHU) transforms tensors using a neat
FFT−Network−iFFT pipeline (see Fig. 2). The recent
work FFC [10] also suggested a similar structure in which
the author blended spectral transform inside a densely con-
nected convolutional network. Different from FFC, SHU is
light-weighted because it has no extra convolutions outside
the spectral transform. More precisely, let x ∈ RN×H×W

be an N -channeled tensor with height and width equal to H
and W respectively. Then the output of SHU is the tensor x′

with the same dimentionality formed by the following way:

x′ = concat
(
x[0...N−K], x[N−K...N ] + f

(
x[N−K...N ]

))
f = iFFT ◦ g ◦ FFT

g = HeFilter ◦ ReLU ◦ Conv1× 1

Our design fits GAN training for the following reasons:
a) local operations such as a convolution should be well-
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Figure 3: Graphic explanations on manipulating spectral tensors using different types of layers. Conv1×1 is a homogeneous operation that
treats the complex vector-space equally over the 2D frequency domain. ReLU works as a band-pass filter by changing negative components
to zeros. Our HeFilter applies a smooth varying mapping function on the frequency domain and manipulates complex vectors based on
their spectral location.
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Figure 4: A graphic illustration on the Vanilla Split. Our Gaussian Split is an extended version adding a Gaussian mask on each split level
for better anti-aliasing. Due to the limited space, we only show the Vanilla Split here.

handled by the synthesis network with modulated convo-
lutions; b) GAN training should maintain a subtle balance
between the spectral and spatial transforms, and it should
not overwhelm tensors with spectral information.

Like the spectral transform of FFC [10], Conv1×1 maps
between two complex vector-spaces uniformly in the fre-
quency domain. ReLU is the non-linearity operation that
filters out all negative components in the vector-space.
Lastly, HeFilter performs heterogeneous filtering in which
the mapping is a smooth-varying function over the 2D spec-
tral location. We will describe HeFilter with more details in
the next subsection. In summary, the spectral transform of
SHU is as follows:

a) RK×H×W → CK×H×W
2 (FFT)

b) CK×H×W
2 → CK×H×W

2 (HeFilter ◦ ReLU ◦ Conv)
c) CK×H×W

2 → RK×H×W (iFFT)

3.2. Heterogeneous Filtering and Gaussian Split

As mentioned earlier, one of the contributions of this
work is to introduce two novel spectral processing strate-
gies: Heterogeneous Filtering and Gaussian Split, that well-
fit the deep learning training scheme.

Heterogeneous Filtering. Recall that FFC [10] trans-
forms spectral tensors with Conv1×1 and ReLU, which can
also be viewed as a homogeneous operation and a band-pass
filter. In many cases, ReLU is a necessary step but not a
recommended end operation for spectral transform with the
following reasons: a) it deactivates a frequency band with
no recovery; b) it introduces aliasing effects due to non-
smoothness; and c) it responses according to magnitude in-
stead of location (i.e. requency band). Therefore, we create
HeFilter, inside of which a heterogeneous filtering strategy
is introduced transforming the complex vector-space via a
smooth-varying function over the frequency domain. More
precisely, HeFilter learns several weight matrices scattered
on an even-spaced 2D frequency domain. During propaga-
tion, HeFilter linearly interpolates these weights and multi-
plies them with the corresponding spectral vector. Figure 3
explains the characteristic of Conv1×1, ReLU, and HeFilter
in the spectral transform. We prepare a total of 3×2 weights
on the 2D spectral domain. The asymmetry along each di-
mension is because the FFT of RK×H×W is CK×H×W

2 ,
and the skipped half is the reflected complex conjugate. We
do not impose constraints on learning these weights, thus
HeFilter can be low-pass, band-pass or high-pass depend-
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Figure 5: This figure shows the overall structure of our SH-GAN in which our SHU is highlighted in the gray area.

ing on the weights it learns. This also explains the name
heterogeneous because it only guarantees the discrepancy
of the transform on various spectral locations. A simple ex-
tension of our HeFilter is to use a larger grid size such as
5× 3 or 7× 4. Nevertheless, we notice sufficient improve-
ments on model performance using grid size 3×2. HeFilter
with larger grid size is left for further studies.

Gaussian Split. Popular generative models [23, 24,
25, 26, 27] adopt the progressive structure in which low-
resolution features are gradually elaborated into high-
resolution features. We fit our SHU in this structure by
adding a unique Gaussian Split, segregating spectral tensors
into multi-resolution sub-tensors before the iFFT operation.
A fundamental property of the Fourier Transform F is lin-
earity, in which the FT of the addition of the functions f1
and f2 equals the addition of the individual FTs of f1 and
f2 (see Eq. 1).

f(x)
F←→ f̂(ω)

αf1(x) + βf2(x)
F←→ αf̂1(ω) + βf̂2(ω)

(1)

Utilizing the property mentioned above, we can split any
spectral signal x̂ = F(x) into several sub-signals x̂i, i ∈
{1 . . . n}. As long as

∑
i x̂i = x̂, we expect no information

loss on x =
∑

i F−1(x̂i), and this property holds for FFT
on discrete tensors. For convenience, we use the same set of
symbols x̂, x̂i representing spectral tensors. The graphic ex-
planation of the split is highlighted in Figure 4, from which
one may notice that our decomposition, like the Wavelet
Transform, automatically segregates signals based on their
frequency bands. For example, a two-level Vanilla Split is
formulated in Eq. 2 and 3, in which we migrate all low fre-
quency values from the large tensor to the small one.

x̂ ∈ CH×W
2

split←−→
(
x̂1 ∈ CH×W

2 , x̂2 ∈ C
H
2 ×W

4

)
(2)

x̂1[i,j] =

{
x̂[i,j] (i, j) /∈ (H4 ...

3H
4 , 0...W4 )

0 (i, j) ∈ (H4 ...
3H
4 , 0...W4 )

x̂2 = x̂[H4 ... 3H4 ,0...W4 ]

(Vanilla) (3)

Our Gaussian Split is an upgraded version of Vanilla Split,
in which we smooth each splits with Gaussian weight maps
N to minimize the aliasing effect. (see Eq. 4). The center
of N is at (H2 , 0) and the standard deviation σ is propor-
tional to the corresponding resolution. Since the Fourier
transform of a Gaussian function is another Gaussian func-
tion, applying Gaussian maps in the frequency domain is
equivalent to applying a Gaussian blur filter on the spatial
domain that we usually do before downsampling. One may
also notice that the multi-level Gaussian Split serves as the
well-known Difference of Gaussian (DoG) [34] in the spa-
tial domain. We will demonstrate the effectiveness of our
Heterogeneous Filtering and Gaussian Split in section 4.

x̂1[i,j] =

{
x̂[i,j] (i, j) /∈ (H4 ...

3H
4 , 0...W4 )

x̂[i,j] × (1−N[i,j]) (i, j) ∈ (H4 ...
3H
4 , 0...W4 )

x̂2 = x̂[H4 ... 3H4 ,0...W4 ] ×N[H4 ... 3H4 ,0...W4 ]

(Gaussian)
(4)

3.3. Network Architecture

Similar to CoModGAN [63], our model is a U-shape ar-
chitecture containing an encoder and a synthesis network.
As Figure 5 shows, we first pass the masked input image
I into the encoder, inside which I is encoded into a set of
feature maps x[i] with resolution i, and a global vector w0.
We then split K channels from x[i] (K = 32, i = 64), and
pass it to SHU for spectral transform. Inside SHU, we cre-
ate a series of wavelet-like feature maps xi, i ∈ {4, ..., 64}
using Gaussian Split, in which the low-frequency informa-
tion is encoded in the low-resolution feature maps (e.g. x4)
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FFHQ 256 Places2 256

Method FID(↓) LPIPS(↓) PSNR(↑) SSIM(↑) FID(↓) LPIPS(↓) PSNR(↑) SSIM(↑)
CoModGan (small) 5.0184 0.2579 16.31 0.5892 9.5159 0.3995 14.49 0.4914
CoModGan (official) 4.7755 0.2568 16.24 0.5913 9.3621 0.3990 14.50 0.4923
LaMa 32.7035 0.2590 17.58 0.6277 23.7409 0.3679 16.58 0.5448
DeepFillV2 50.9323 0.3204 16.11 0.5569 46.2012 0.4166 14.97 0.4913
CR-Fill - - - - 40.9690 0.3957 15.28 0.4925
Onion-Conv - - - - 42.4625 0.4360 15.03 0.5046
MADF 33.6207 0.2800 17.54 0.6279 66.2659 0.3889 16.61 0.5360
AOT-GAN 73.7962 0.4270 15.60 0.5956 90.6184 0.5139 14.87 0.4790

(ours - small) 4.8225 0.2558 16.36 0.5891 8.3078 0.3969 14.50 0.4918
(ours - regular) 4.3459 0.2542 16.37 0.5911 7.5036 0.3940 14.58 0.4958

Table 1: This table compares the performance of prior models with our SH-GAN on datasets FFHQ and Places2 under resolution 256.

FFHQ 512 Places2 512

Method FID(↓) LPIPS(↓) PSNR(↑) SSIM(↑) FID(↓) LPIPS(↓) PSNR(↑) SSIM(↑)
CoModGan (small) 3.9420 0.2497 18.38 0.6911 8.8390 0.3464 15.96 0.5925
CoModGan (official) 3.6996 0.2469 18.46 0.6956 7.9735 0.3420 16.00 0.5953
LaMa 19.5577 0.2871 18.99 0.7178 12.6721 0.3158 17.12 0.6521
DeepFillV2 32.8696 0.3283 18.29 0.6886 29.7345 0.3802 15.91 0.5953
CR-Fill - - - - 26.6398 0.3593 16.52 0.6038
Onion-Conv - - - - 25.7480 0.3999 15.02 0.6061
MADF 17.1962 0.2688 19.62 0.7196 29.4928 0.3299 17.77 0.6239
AOT-GAN 36.1344 0.3403 18.14 0.7131 46.7640 0.3976 16.84 0.6029

(ours - small) 3.7460 0.2491 18.36 0.6897 7.6122 0.3455 15.95 0.5926
(ours - regular) 3.4134 0.2447 18.43 0.6936 7.0277 0.3386 16.03 0.5973

Table 2: This table compares the performance of prior models with our SH-GAN on datasets FFHQ and Places2 under resolution 512.

and the high-frequency information is encoded in the high-
resolution feature maps (e.g. x64). We then add back xi to
the corresponding x[i]. For i > 64, we directly pass x[i]

to synthesis blocks. Recall that we adopt StyleGAN2 [24]
as our synthesis network. We then modulate the synthesis
network using the concatenation of w and w0, in which w is
the projected vector of the latent code l using the mapping
network, and connecting x[i] with each synthesis block via
addition.

During the training time, we use a StyleGAN2 discrimi-
nator for our adversarial loss. We also use path length reg-
ularization on the generator with wpl = 2, and R1 regular-
ization on the discriminator with γ = 10. Other training
details can be found in Section 4.2.

3.4. Mask generation

We use the same free-form mask generation algorithm
as DeepFillV2 [59] and CoModGAN [63]. These masks
are drawn using multiple brush strokes and rectangles. The
width of the brush stroke is sampled from U(12, 48) and the
number of strokes is chosen randomly from U(0, 20), where
U(·) represents the discrete uniform distribution. Mean-
while, we sample U(0, 5) rectangles up to the full size of
the input image, and U(0, 10) rectangles up to the half-size.

For more details, please see supplementary.

4. Experiments

This section goes through the details about our dataset,
metrics, settings, experiments, and other studies. We pro-
vide comprehensive comparisons between our SH-GAN
and other prior works through scores and images.

4.1. Datasets and Metrics

We use three datasets: FFHQ [26], Places2 [65], and
DTD [11]. FFHQ contains 70,000 high-resolution well-
aligned face images, in which we split out 60,000 images
for training and use the remaining 10,000 images for val-
idation. Places2 contains 8,026,628 images in its training
set and 36,500 images in its validation set. The contents of
Places2 are regular scenes and objects. We maintain the
original train-validation split for our experiments. DTD
contains 5,640 categorized texture images, among which
3,760 are from the train and validation set, and 1,880 are
from the test set. We train our models using the train and
validation sets and evaluate them using the test set.

We use Fréchet Inception Distance (FID) [19] as our pri-
mary metric. FID is a statistical score that calculates the
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Input AOT-GAN DeepFillV2 MADF LaMa CoModGAN (ours)

Figure 6: The qualitative comparison between prior approaches and our approach using free-form masks. For other types of masks, please
see supplementary.

distance between the distributions of real and synthetic fea-
tures. Besides, we also adopt Learned Perceptual Image
Patch Similarity (LPIPS) [62], Peak Signal-to-Noise Ra-
tio (PSNR), and Structural Similarity Index (SSIM) [52] to
gauge models from different angles. We will show all the
metric scores in Section 4.3.

4.2. Training Details

Many of the training settings of this work closely follow
CoModGAN [63] and StyleGAN2 [24]. We use Adam [28]
optimizer with β = (0, 0.99) for our generator and discrim-
inator. The learning rates are 0.001 for FFHQ/Places2, and
0.002 for DTD. Besides, the training lengths are 25 million
images on FFHQ, 50 million on Places2, and 10 million on
DTD. We apply both path length regularization and R1 reg-
ularization during the training, in which we set wpl = 2 and
γ = 10. The batch size is 32 for all models on all datasets.
Like StyleGAN2, we compute the exponential moving av-
erage of our generator with momentum 0.99993 (i.e. half-
decay at 20,000 images with batch size 32). As shown in Ta-
bles 1 and 2, we evaluate SH-GAN with small and standard
settings under resolutions 256 and 512. SH-GAN (small) is
a reduced version of SH-GAN with base channel decreased
from 32,768 to 16,384 (See supplementary). Such small
and standard settings match the small and official versions
of CoModGAN in terms of the model size. We train the
small model with 4 GPUs and the standard model with 8
GPUs. Besides, we use 2080Ti for resolution 256 and A100

(a) Input (b) Ground Truth (c) Baseline (d) no_HF (e) no_GS (f) ours

Figure 7: This figure shows the qualitative comparison of various
settings in our ablation study. The performance is gradually im-
proved with our SHU and our spectral processing strategies.

for resolution 512.

4.3. Results Comparison

Tables 1 and 2 compare the performances of SH-GAN
with other prior works [48, 59, 60, 61, 63, 66] on FFHQ
and Places2. As mentioned in Section 3.4, we adopt the
free-from masks originated from the CoModGAN paper.
Among the four metrics, FID/LPIPS gauge perception qual-
ity, and PSNR/SSIM gauge pixel accuracy. Note that these
metrics reveal image quality in a different way so they may
disagree in numbers. For most of the prior works, except
for CoModGAN, we have downloaded the official code and
models for evaluation. We re-implemented CoModGAN in
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Figure 8: This figure shows three examples comparing intermediate features with SHU and without SHU. The orange dashed boxes
highlight the spectral hints added by SHU. The green and red dashed boxes compare the locations where features are generated with and
without fidelity due to the spectral hints.

Pytorch, and trained and tested the replicated version. The
FID scores on the replicated CoModGAN match the FID
scores in the original paper. As a result, SH-GAN reaches
4.3459 and 7.5036 on FFHQ and Places2 datasets respec-
tively for the resolution 256, and 3.5713 and 7.8482 for the
resolution 512. SH-GAN surpasses all other approaches in
terms of FID and becomes the new state-of-the-art.

In addition to the free-form mask experiments, we also
tried other types of masks such as the LaMa-style [48] nar-
row and wide masks. These detailed performance can be
found in our supplementary material.

4.4. Extended Studies

For this section, we carry out extended experiments to
justify our new designs (i.e. SHU, Heterogeneous Filtering,
and Gaussian Split) over the prior challenges such as pattern
unawareness, blurry texture, and structure distortion.

Our first experiment is an ablation study using the DTD
dataset, in which we trained several models and excluded
SHU, Heterogeneous Filter, or Gaussian Split, respectively.
We focused on the DTD dataset because texture images are
highly structured images that could make obvious cases for
comparison. In Table 3, we show that the full version of our
model performed FID 48.58, lower than the model without
Gaussian Split (i.e. ours - no GS) by 1.48, lower than the
model without Heterogenerous Filtering (i.e. ours - no HF)
by 1.83, and lower than the baseline (i.e. CoModGAN [63])
by 3.35. The LPIPS, PSNR and SSIM scores agree with
our FID score. Moreover, we clearly show in Figure 7 that
our model generates sharp and robust patterns even when
the mask coverage is large. Our HeFilter is very helpful in
cases with complex structures and our Gaussian Split helps
to remove the aliasing effect to make the pattern sharper.

Models SHU HF GS FID(↓) LPIPS(↓)
baseline 51.9289 0.3628
ours - no HF ✓ ✓ 50.4074 0.3614
ours - no GS ✓ ✓ 50.0634 0.3573
ours ✓ ✓ ✓ 48.5814 0.3519

Table 3: The ablation study on DTD [11] with SHU, Heteroge-
neous Filtering (HF), and Gaussian Split (GS) removed respec-
tively.

In our second experiment, we extract the skip feature
maps x[i] generated by the encoder, and the intermedi-
ate feature maps y[i] generated by the synthesis blocks,
i ∈ {16, 32, 64}. We then compute the 2-norm of each
feature map along the channel axis. To make clear compar-
isons, our SHU is only connected on resolution 32 without
splitting. Figure 8 shows the impact of SHU over these fea-
tures, in which readers may notice that SHU provides criti-
cal hints on patterns to its downstream synthesis blocks for
texture generation.

5. Conclusions

We introduce SH-GAN, a novel image completion ap-
proach that transforms deep features with spectral hints in
the modulated GAN framework. Throughout this paper,
we reveal the details of our newly designed module: SHU,
and introduce our new spectral transform strategies: Het-
erogeneous Filtering and Gaussian Split. With inclusive ex-
periments, we show that all our designs are very useful in
solving challenging inpainting cases with large-scale free-
form missing regions. We believe that our SHU and spec-
tral transform strategies are worth exploring further in other
computer vision tasks.
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