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ABSTRACT
Despite the success of graph neural networks (GNNs) over the Web

in recent years, the typical transductive learning setting for node

classification requires GNNs to be retrained frequently, making

them vulnerable to poisoning attacks by corrupting the training

graph. Poisoning attacks on graphs are, however, non-trivial as the

attack space is potentially large, and the discrete graph structure

makes the poisoning function non-differentiable. In this paper, we

revisit the bi-level optimization problem in graph poisoning and pro-

pose a novel graph poisoning method, termed Curriculum Graph
Poisoning (CuGPo), inspired by curriculum learning. In contrast to

other poisoning attacks that use heuristics or directly optimize the

graph, our method learns to generate poisoned graphs from basic

adversarial knowledge first and advanced knowledge later. Specifi-

cally, for the outer optimization, we utilize the slightly perturbed

graphs which represent the easy poisoning task at the beginning,

and then enlarge the attack space until the final; for the inner op-

timization, we firstly exploit the knowledge from the clean graph

and then adapt quickly to perturbed graphs to obtain the adver-

sarial knowledge. Extensive experiments demonstrate that CuGPo
achieves state-of-the-art performance in graph poisoning attacks.
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1 INTRODUCTION
Graph neural networks (GNNs) have achieved significant success in

a variety of important applications involving relational information

from semi-supervised node classification [2, 31, 63, 71] to graph

classification [35, 64, 65]. As GNNs have already been deployed in

many real-world applications, especially over the Web [8, 33], in

recent years, it is particularly concerning that they are shown to be

vulnerable to adversarial attacks via carefully crafted perturbations

[61, 77], including poisoning attacks and evasion attacks.

To mislead the model, poisoning attacks have been extensively

investigated in the context of adversarial machine learning [5, 18].

Unlike evasion attacks that manipulate input data (i.e., adversarial
examples) at test time [23], poisoning attacks aim to inject spe-

cially crafted data points into the training data to worsen test ac-

curacy [17, 28, 44, 46, 50, 67] when the test data or queries are

not controlled by the adversary [20, 56]. Considering that node

classification is typically performed in the setting of transductive

learning, where both the training data and the test data are used

jointly to learn the parameters of GNNs, under this setting it is nat-

ural to frequently retrain GNN models to get the latest relationship

representations, making it vital to understand the vulnerability of

GNNs in the poisoning attack domain. Pioneering graph poisoning

attacks [76, 78] focus on manipulating the existing graph structure,

i.e., inserting and deleting edges between existing nodes. Unfortu-

nately, in many real-world Web scenarios (e.g., citation networks)

modifying the existing graphs is infeasible, as these graphs are

already stored in the database. However, since the transductive

setting demands frequent updates, injecting fake nodes (e.g., pub-
lishing fake manuscripts) with connections to existing nodes is far

more achievable. Therefore, recent studies [49, 75] concentrate on

another attack, namely the graph injection attack, by injecting new

nodes with malicious intentions. In this work, we mainly focus on

graph poisoning attacks via malicious node injections.

Learning a bad GNN model by polluting the training graph is

non-trivial. Essentially, the poisoning attack can be viewed as a

game where the victim and the adversary compete with each other:

the victim tries to train a good model as usual, while the adversary

aims to corrupt the training graph without triggering an alert. As is

empirically proved, simply injecting a few nodes without new edges,

https://doi.org/10.1145/3543507.3583211
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or randomly perturbing a few edges of the training graph cannot

significantly reduce the GNN performance. Besides, on account of

the discreteness of graph structure and the potentially large attack

space, neither directly optimizing the poisoned graph using the

gradient-based method, nor the brute-force search is feasible.

Though there exists a few graph poisoning methods, challenges

remain. On one hand, the prior graph poisoning method [78] by

optimizing the graph [19] is extremely memory-inefficient at scale,

since it needs to optimize the entire training graph recurrently. On

the other hand, the previous node injection method [49] based on

deep Q networks [26] suffers from slow and occasionally unstable

convergence in reality. These pitfalls motivate us to think about

how to efficiently and effectively learn a good poisoning policy. To

this end, we explore the concept of difficulty in graph poisoning

from the adversary’s perspective and find out that the key to such

limitations is learning a simple one first.

Contributions. In this paper, we propose a novel graph poisoning

method called Curriculum Graph Poisoning (CuGPo). Our essential
insight is that the poisoning method can learn trivial yet easier

graph poisoning tasks at the beginning and then fully exploit the

learned adversarial knowledge to tackle harder ones, in a fashion of

curriculum learning [3]. To create curricula, we revisit the bi-level

optimization problem in graph poisoning attacks: a) for the outer

optimization which attempts to maximize the adversarial loss by

optimizing the poisoned graph, CuGPo is introduced to the poison-

ing concepts by progressively increasing task complexity. b) for the

inner optimization which aims to minimize the training loss on the

poisoned graph, CuGPo learns to generalize on the clean training

graph before adapting to various poisoned graphs at different task

levels, to boost up and accelerate the inner optimization process. In

particular, our proposed CuGPo is not only more efficient but also

outperforms previous state-of-the-art graph poisoning methods

across different victim models and different graphs, with detailed

analysis and empirical demonstrations.

2 RELATEDWORK
There has been a growing trend towards adversarial learning in

graph neural networks, including evasion attacks in graph learn-

ing [16, 21, 38, 39, 54] and poisoning attacks against graph-based

semi-supervised learning [34]. In poisoning attacks, there exists the

bi-level optimization problem, as the adversary dedicates to corrupt-

ing the training data to degrade the predictive performance after

training. Compared with Euclidean data, poisoning attacks against

graphs [69] are generally more complex due to discreteness [37, 74].

Earlier work [76] tried to steer clear of the bi-level optimization

problem by attacking only a single node based on a static surrogate

model. [78] proposed to tackle this problem by treating the input

graph as a hyper-parameter and optimizing it using meta-gradient

descent, and also discussed a simple heuristic [57]. [32] proposed

to boost the gradient-based adversarial perturbations on graphs

by using an exploratory strategy, including phases of generation,

evaluation, and recombination. [49] proposed a method based on

reinforcement learning for graph injection attacks that injects mali-

cious nodes into the original graph [55, 75]. Also, some works focus

on vulnerabilities in other tasks, including node embedding [7],

graph matching [70], graph label-flipping [68], graph backdoor

attacks [60], and graph out-of-distribution problems [59].

Curriculum learning [3, 24, 48, 66, 72] has been investigated to

improve the performance of deep learning systems, e.g., recom-

mender systems [11]. In this work, we mainly discuss the insight of

curriculum learning for tackling the bi-level optimization in graph

poisoning. Unlike previous curriculum learning studies that focus

on improving the accuracy, we explore the opposite direction and

design curricula from the adversary’s view to worsen the accuracy

under certain constraints.

3 CURRICULUM GRAPH POISONING
In this part, we formally define graph poisoning attacks and discuss

the valid poisoning policy, and lastly introduce the proposed CuGPo.

3.1 Deep Graph Learning
As graph learning in a transductive setting is inherently related

to poisoning attacks [77], we mainly focus on semi-supervised

node classification tasks in this paper. Given a graph 𝐺 = {𝐴,𝑋 }
with the adjacency matrix 𝐴 = {𝑎𝑢𝑣 | 𝑢, 𝑣 ∈ 𝑉 } and the node

feature matrix 𝑋 = {𝑥𝑢 | 𝑢 ∈ 𝑉 } where 𝑉 denotes the node

set, we can train a graph neural network 𝑓𝜔 with the parameters

𝜔 by optimizing a classification loss ℓ𝑡𝑟𝑎𝑖𝑛 (e.g., the negative log-
likelihood loss). For graph convolutional networks [30], 𝑓𝜔 learns

the graph representations by layer-wise aggregating messages:

𝐻 (𝑙+1) ← ReLU(𝐴𝐻 (𝑙 )𝜔 (𝑙 ) ), (1)

where 𝜔 (𝑙 ) denotes the weight matrix at layer 𝑙 of 𝑓𝜔 , and 𝐻
(𝑙+1)

refers to the output hidden representation, starting with 𝐻0 = 𝑋 .

𝐴 represents the (transformed) symmetric adjacency matrix w.r.t.
𝐴. In the transductive learning setting, nodes in the set of labelled

nodes 𝑉𝐿 ⊆ 𝑉 with the corresponding label set 𝑌 = {𝑦𝑢 | 𝑢 ∈ 𝑉𝐿},
along with the nodes (but not their labels) in the unlabelled node

set𝑉𝑈 = 𝑉 \𝑉𝐿 are available while training, and the goal is to infer

labels of nodes in 𝑉𝑈 .

3.2 Graph Poisoning Attacks
Threat model. We investigate an adversary named Eve1 who has

the same knowledge about the training graph as the victim and

intends to poison part of the training graph. Considering the most

challenging setting, Eve has no prior knowledge about the target
classifier, including its parameters or architecture. With the aim

of degrading the test performance after model training, Eve tries
to modify the training graph with minimum changes. That is to

say, Eve is supposed to learn a poisoning policy function 𝜋\ with

the parameters \ to transform the benign training graph𝐺 into the

poisoned graph 𝐺 ′ = {𝐴′, 𝑋 ′} with the budget Δ (i.e., constraints
on the adversarial capability of Eve), to increase test loss ℓ𝑡𝑒𝑠𝑡 . The

budget Δ is designed to make changes unnoticeable. However, un-

like the image domain where we can constrain the unnoticeable

property using human supervision under numerical constraints, it

is hard to define such unnoticeability in the graph domain. There-

fore, we consider a cardinality constraint Δ(𝐺) = (Δ𝐴,Δ𝑋 ) ∈ Z×Z
w.r.t. the benign graph 𝐺 to define a valid poisoning policy, and

other options about unnoticeability are discussed in Section 3.3.

1
We use Eve to denote the attacker as it is a common name in cryptography [4].
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As in many graph-based applications, injecting new nodes and

edges can be much more feasible than manipulating the existing

graphs in the database, thus we mainly focus on graph poisoning

attacks based on malicious node injections aligned with Δ. Particu-
larly, assuming the malicious node set for graph injection attacks

to be 𝑉𝐼 , we have the adjacency matrix 𝐴′ = {𝑎𝑢𝑣 | 𝑢, 𝑣 ∈ 𝑉𝐼 ∪𝑉 }
and the node feature matrix 𝑋 ′ = {𝑥𝑢 | 𝑢 ∈ 𝑉𝐼 ∪ 𝑉 } after graph
injection attacks. From the perspective of Eve, the primary goal

is to find a valid graph poisoning policy to generate 𝐴′ and 𝑋 ′

under a constrained budget. We follow the common setting [29]

for poisoned features 𝑋 ′ and leave them out of the optimization

scope. In other words, the poisoned features 𝑋 ′ (along with the

isolated𝑉𝐼 ) are pre-defined ahead, making the poisoning procedure

towards maliciously inserting edges between the injected nodes

and the partially poisoned graph. Formally, the definition of a valid

poisoning policy discussed in this paper is generalized as:

Definition 3.1 (Valid poisoning policy). Assume graph injection at-

tacks are concerned under a cardinality constraintΔ(𝐺) = (Δ𝐴,Δ𝑋 )
that depends on 𝐺 . Given a benign graph 𝐺 = {𝐴,𝑋 }, a target vic-
tim model 𝑓𝜔 and the pre-defined𝑋 ′ = {𝑥𝑢 | 𝑢 ∈ 𝑉𝐼 ∪𝑉 }, we define
a (𝐺, 𝑓𝜔 )-valid poisoning policy function 𝜋\ as, ∀𝐺 ′ = {𝐴′, 𝑋 ′}
where 𝐴′ ∈ {𝐴′ | | |𝐴′ − 𝐴| |0 ≤ Δ𝐴} and |𝑉𝐼 | ≤ Δ𝑋 , there ex-

ists 𝐺∗ = {𝐴∗, 𝑋 ′} ∼ P𝜋\ (𝐺 | 𝑓𝜔 ) that satisfies ℓ𝑡𝑒𝑠𝑡 (𝑓𝜔∗ (𝐺 ′)) ≤
ℓ𝑡𝑒𝑠𝑡 (𝑓𝜔∗ (𝐺∗)) and 𝐴∗ ∈ {𝐴′ | | |𝐴′ −𝐴| |0 ≤ Δ𝐴}.

Bi-level optimization. From an information propagation perspec-

tive, poisoning attacks are more challenging than evasion attacks on

account of the typically non-convex training procedure [36], as the

goal is to worsen the test performance after poisoning the data and

the training process. As is described in Definition 3.1, for a valid poi-

soning policy 𝜋\ , the objective function for non-targeted poisoning

attacks can be formulated as a bi-level optimization problem:

max

𝐺 ′∼P𝜋\ (𝐺 | 𝑓𝜔 )
ℓ𝑡𝑒𝑠𝑡 (𝑓𝜔∗ (𝐺 ′)) (2)

s.t. 𝜔∗ = argmin

𝜔
ℓ𝑡𝑟𝑎𝑖𝑛 (𝑓𝜔 (𝐺 ′))

| |𝐴′ −𝐴| |0 ≤ Δ𝐴 .

Since labels of the test data are not accessible to Eve, we use a

surrogate GNN to estimate the generalization loss (i.e., taking the
pseudo-labels estimated by the surrogate model as the ground-truth

labels of the test data). Also, we use another surrogate model as 𝑓𝜔
to evaluate the attack performance under the assumption that Eve
has no knowledge about the target victim classifier.

As the transductive learning setting indicates that the training

graphmay change frequently, Eve has to find a poisoning policy that
adapts to the changed graph. Therefore, merely a valid poisoning

policy without strong generalization ability is not enough: a) in the

graph domain, it is extremely time-consuming to solve this bi-level

optimization problem multiple times; b) the more attempts Eve
makes, which will alert the security department of the target graph-

based system, the fewer chances (e.g., for obtaining the training

graph) Eve has. To overcome such limitations, in this paper we first

propose the problem of graph-agnostic poisoning attacks defined

as follows, and later empirically prove that our proposed CuGPo is
graph-agnostic, which only needs to be trained once to perform

poisoning attacks on different graphs for a given graph distribution.

Definition 3.2 (G-agnostic poisoning policy). Given a graph dis-

tribution G, a victim model 𝑓𝜔 and the budget Δ, a G-agnostic
poisoning policy 𝜋\ is defined as, ∀𝐺 ∼ PG (𝐺), 𝜋\ satisfies Eq. (2)

with an optimal solution (i.e., 𝐺∗).

3.3 A Markov Decision Process Perspective
Since the concept of difficulty in graph poisoning is important to the

curricula design, we first use a simple policy, namely the brute-force

search policy, to investigate the poisoning complexity. According

to the threat model in Section 3.2, given a benign graph 𝐺 and a

budget Δ as a cardinality constraint, we can always find the optimal

poisoned graph that achieves the worst test accuracy for a victim

model 𝑓𝜔 (Proposition 3.3). However, to find the optimal poisoned

graph via the brute-force search policy, the complexity is bounded

as O(( 𝑒 |𝑉 | |𝑉𝐼 |Δ𝐴
)Δ𝐴 ) which is unacceptable in practice. Therefore,

we model the graph poisoning policy as a Markov decision process.

Proposition 3.3 (Valid poisoning policy existence). Suppose
graph injection attacks are concerned. Given a benign graph 𝐺 =

{𝐴,𝑋 } with the node set𝑉 , a victim model 𝑓𝜔 and the budget Δ(𝐺) =
(Δ𝐴,Δ𝑋 ) as a cardinality constraint. Assume the injected node set
is 𝑉𝐼 , there exists at least one (𝐺, 𝑓𝜔 )-valid poisoning policy with an
upper bound of the complexity O(( 𝑒 |𝑉 | |𝑉𝐼 |Δ𝐴

)Δ𝐴 ).
Markov decision process. According to Definition 3.1, a valid

policy can be regarded as a decision-making process from the initial

state (i.e.,𝐺) to the terminal state (i.e.,𝐺∗) by sequentially inserting
edges between the injected nodes and the partially poisoned graph.

To find a more efficient method better than the brute-force search

policy, we consider the sequential poisoning process as an episodic

Markov decision process (S,A, 𝑃, 𝑟, 𝛾), where S and A are the set

of states and actions respectively, 𝑃 is the state transition function,

𝑟 is the reward function and 𝛾 is a discount factor. Aligned with the

threat model, at each time step 𝑡 , we use the intermediate poisoned

graph 𝐺 ′𝑡 as the state. Since 𝑉𝐼 is defined beforehand, the action

can be generally regarded as the link prediction between nodes

in 𝑉𝐼 and 𝐺
′
𝑡 . For the state transition function, as the state is fully

observed, unexpected actions that violate the attack budget and

unnoticeability requirement will be considered as being invalid and

rejected. As described earlier, the central task of graph poisoning

attacks is to find a policy 𝜋\ that for each initial state-action pair

(𝑠, 𝑎) ∈ S × A maximizes the expected return:

max

\
E𝜋\

[∑︁
𝑡≥0

𝛾𝑡𝑟𝑡 | 𝑠, 𝑎
]
. (3)

For each time step 𝑡 , we expect to maximize the generalization loss

(i.e., ℓ𝑡𝑒𝑠𝑡 ) to degrade the test accuracy. Since ℓ𝑡𝑒𝑠𝑡 is not available

to Eve either, we use the attack loss ℓ𝑎𝑡𝑡𝑎𝑐𝑘 , which is estimated by

the surrogate model on the test data via self-training [12, 51, 58],

to estimate the generalization loss. As different loss functions may

lead to numerical differences, we directly use the accuracy relevant

to the attack loss for the reward design. Therefore, the reward 𝑟 at

each time step is supposed to be a function w.r.t. the accuracy on

unlabelled nodes, which is defined as follows:

𝑟𝑡 = Acc𝑎𝑡𝑡𝑎𝑐𝑘 (𝑓𝜔∗ (𝐺)) − Acc𝑎𝑡𝑡𝑎𝑐𝑘 (𝑓𝜔∗𝑡 (𝐺
′
𝑡 )), (4)

where Acc𝑎𝑡𝑡𝑎𝑐𝑘 (·) ∈ [0, 1] returns the accuracy on the test set

related to pseudo-labels and the attack loss. Unlike reward designs
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in previous works that may lead to sparse rewards [16] or inaccurate

estimations between steps [49], we use the difference between

Acc𝑎𝑡𝑡𝑎𝑐𝑘 on the (fixed) benign graph𝐺 and the partially poisoned

graph 𝐺 ′𝑡 at time step 𝑡 , to represent the attack effectiveness.

Policy network. As is shown in Eq. (1), we use graph convolu-

tional networks [30] for the representation 𝑍𝐺 ′𝑡
of the partially

poisoned graph 𝐺 ′𝑡 . To accomplish the link prediction task, at the

time step 𝑡 the policy 𝜋\ is supposed to select two nodes according

to the representation 𝑍𝐺 ′𝑡
, which requires O(|𝑉 | |𝑉𝐼 | + |𝑉𝐼 |2) by de-

fault. Previous methods [16, 49] mitigate this issue by hierarchically

decomposing the single action into an action sequence, at the cost

of lengthened episodes. On the complexity of the link prediction

in node injections, we propose a naive policy 𝜒 to select the first

node from 𝑉𝐼 following a given distribution. To facilitate 𝜋\ , the

advantages of setting up 𝜒 are two-fold: a) 𝜋\ only needs to select

another node from the partially poisoned graph 𝐺 ′𝑡 , which just

requires O(|𝑉 | + |𝑉𝐼 |); b) 𝜒 can follow some simple distributions,

to minimize extra overheads and satisfy different requirements in

certain scenarios, e.g., the unnoticeability requirement.

To avoid adding all edges to a single node abnormally, we take

𝜒 as the uniform distribution over 𝑉𝐼 by default, which imposes

the average degree of the original graph on each injected node

when |𝑉 |Δ𝐴 = | |𝐴| |0Δ𝑋 (i.e., the budgets for nodes and edges are

equivalent by ratio). We also take 𝜒 as the original node degree

distribution to suffice to the unnoticeability requirement [76, 77].

Although 𝜒 can be viewed as a constraint on the power of graph

poisoning policy, in the meanwhile 𝜒 greatly simplify the hypothe-

sis space for 𝜋\ , making 𝜋\ learn the adversarial knowledge in a

much more efficient manner. In Section 4.2 we empirically prove

that 𝜒 not only brings us high flexibility to adapt to different scenar-

ios, but also merely has a negligible impact on the final poisoning

results. Formally, 𝜋\ maps the graph embedding 𝑍𝐺 ′𝑡
and the em-

bedding w.r.t. the first node 𝑢𝑡 ∼ P𝜒 (𝑢) altogether to the second

chosen node. We adopt Proximal Policy Optimization (PPO) [43] to

instantiate 𝜋\ by optimizing the following objective function:

argmax

\

E

[
min( 𝜋\

𝜋\
V𝑡 , clip(

𝜋\

𝜋\
, 1 − 𝜖, 1 + 𝜖)V𝑡 )

]
, (5)

where
𝜋\
𝜋\

is the probability ratio w.r.t. the old policy 𝜋\ and new

policy 𝜋\ which is clipped in [1 − 𝜖, 1 + 𝜖], andV𝑡 is the estimated

advantage function at time step 𝑡 . After the first and the second

nodes are determined by 𝜒 and 𝜋\ respectively, a new edge 𝑎𝑢𝑣
between the injected node 𝑢 and node 𝑣 from the poisoned graph

is inserted, and the state is transited by the transition function 𝑃 .

Lemma 3.4. Given a graph distribution G and a victim model
𝑓𝜔 , a poisoning policy 𝜋\ is G-agnostic (Definition 3.2), if for any
𝐺 ∼ PG (𝐺), 𝜋\ is (𝐺, 𝑓𝜔 )-valid.

As is described in the threat model (Section 3.2), it is more prac-

tical to propose a G-agnostic poisoning attack, since in real-world

applications the training graph may change frequently, e.g., friend-
ship requests in the social network, especially in the transductive

learning setting. Taking a closer look at Eq. (2), given 𝑓𝜔 , a poison-

ing policy can satisfy Definition 3.2 by iteratively checking if it is

(𝐺, 𝑓𝜔 )-valid for any 𝐺 ∼ PG (𝐺) (Lemma 3.4). However, learning

a G-agnostic policy is even harder, since Lemma 3.4 requires the

trained policy to have a stronger generalization ability over G.

3.4 Curricula for Bi-level Optimization
In this part, we stand for the perspective of poisoning attackers, and

formally introduce curricula for bi-level optimization in graph poi-

soning attacks, where the inner optimization attempts to minimize

the training loss w.r.t. model parameters while the outer optimiza-

tion tries to maximize the attack loss w.r.t. the poisoned training

graph. The curricula in our proposed method cover two aspects:

curricula in the inner optimization and curricula in the outer opti-

mization. Within curricula, our method intends to learn the basic

adversarial knowledge w.r.t. slightly perturbed graphs first, and

then learn the advanced knowledge for a more destructive policy.

Inner optimization curricula. Considering the reward acquisition

in Eq. (4), it is extremely time-consuming to go through the whole

inner optimization from scratch at each time step of an episode,

whichmakes the poisoning policy impractical for the training graph

at scale. Since our adversarial purpose is to attack the training

graph, i.e., to find a (𝐺, 𝑓𝜔 )-valid poisoning policy (Definition 3.1),

evidently, for the inner optimization, the easiest task is optimizing

on the clean graph, while the hardest task is finding the optimal

poisoned graph and optimizing for it. Motivated by this, we design

a burn-in stage for the inner optimization by pre-training on the

clean graph at the beginning:

�̃� = argmin

𝜔
ℓ𝑡𝑟𝑎𝑖𝑛 (𝑓𝜔 (𝐺)), (6)

where we let 𝑓𝜔 firstly be trained on the benign graph𝐺 to find the

pre-trained parameters �̃� and keep them for further usage. These

parameters �̃� make it possible to quickly transfer the learned clean

knowledge into different adversarial knowledge during the inner

optimization, with only a few GNN training epochs and a smaller

learning rate re-scaled by the inner curriculum factor _ ∈ (0, 1].
_ is set to 0.1 by default. Also, we consider different curricula

in the inner optimization by setting smaller _ within the range of

(0, 1] for faster convergences. As was anticipated, later we empiri-

cally prove that these inner optimization curricula enable CuGPo to

poison a wide range of training graphs in a more efficient manner.

Outer optimization curricula. As proved in Proposition 3.3 there

is at least one (𝐺, 𝑓𝜔 )-valid policy, so we can start by thinking about
what tasks are easy tasks for the brute-force search policy. On the

one hand, since the quality of curricula depends on the quality of

poisoning sub-tasks, and further the quality of sub-tasks depends

on the capacity of knowledge the poisoning policy can learn, it

is natural to design curricula from the perspective of knowledge

capacity, or attack budgets Δ(𝐺) = (Δ𝐴,Δ𝑋 ). On the other hand,

for the complexity O(( 𝑒 |𝑉 | |𝑉𝐼 |Δ𝐴
)Δ𝐴 ) in Proposition 3.3, as usually

Δ𝐴 ≪ |𝑉 | |𝑉𝐼 | in order to suffice to unnoticeability, the budgets Δ𝐴
dominate the complexity. Therefore, to generate a set of interme-

diate sub-tasks for adversarial knowledge transferring, we divide

the final poisoning task under budgets Δ(𝐺) into a set of sub-tasks

C under different budgets. That is because the budgets serve as an

important factor that determines the difficulty of using the brute-

force search policy to solve the tasks. Back to the Markov decision

process, at each step in an episode, a certain zero-entry 𝑎𝑢𝑣 in the



Curriculum Graph Poisoning WWW ’23, April 30-May 4, 2023, Austin, TX, USA

Algorithm 1 Curriculum Graph Poisoning (CuGPo)

Require: surrogate model 𝑓𝜔 , number of training epochs 𝐸, inner

curriculum factor _, outer curriculum task set C
1: Initialize the training graph 𝐺 and surrogate model 𝑓𝜔 with

parameters 𝜔 ;

2: for 𝑖 = 1 to 𝐸 do
3: Compute the negative log-likelihood loss ℓ𝑡𝑟𝑎𝑖𝑛 (𝑓𝜔 (𝐺));
4: Update by descending the gradient: ∇𝜔 ℓ𝑡𝑟𝑎𝑖𝑛 to get �̃� ;

5: end for
6: for 𝑖 = 1 to |C| do
7: Choose a curriculum task C𝑖 ∈ C in order;

8: Update candidate actions in 𝜋\ according to Φ𝑖 ;
9: for 𝑡 = 1 to |Δ𝑖 (𝐺) | do
10: Sample 𝐺 ′𝑡 ∼ P𝜋\ (𝐺 | 𝑓𝜔 );
11: Use �̃� to initialize surrogate model parameters 𝜔 ;

12: for 𝑗 = 1 to ⌊_𝐸⌋ do
13: Compute the loss ℓ𝑡𝑟𝑎𝑖𝑛 (𝑓�̃� (𝐺 ′));
14: Update by descending the gradient: ∇�̃� ℓ𝑡𝑟𝑎𝑖𝑛 ;
15: end for
16: Calculate 𝑟𝑡 via Eq. (4);

17: Update \ using obtained experiences via Eq. (5);

18: end for
19: end for
20: Return 𝜋\ ∗ with optimized parameters \∗.

partially-poisoned adjacency matrix 𝐴′ is set to 1 (i.e., 𝑎𝑢𝑣 ← 1).

Accordingly, the lower budgets represent shorter episodes, and we

generate sub-tasks in the ascending order of the episode length. For

the 𝑖-th sub-task C𝑖 ∈ C we modify Eq. (2) as:

max

𝐺 ′∼P𝜋\ (𝐺 | 𝑓𝜔 )
ℓ𝑡𝑒𝑠𝑡 (𝑓𝜔∗ (𝐺 ′)) (7)

s.t. 𝜔∗ = argmin

�̃�

ℓ𝑡𝑟𝑎𝑖𝑛 (𝑓�̃� (𝐺 ′))

| |𝐴′ −𝐴| |0 ≤ Δ𝐴,𝑖 ,

where we have 0 < Δ𝑖 (𝐺) ≤ Δ𝑖+1 (𝐺), 𝑖 = 1, . . . , |C| − 1 and

Δ | C | (𝐺) = Δ(𝐺). In the very beginning, when given the inner fac-

tor _ ∈ (0, 1] CuGPo learns pre-trained parameters �̃� on the benign

training graph 𝐺 from scratch. Then starting from the easier task

with lower budgets, CuGPo gradually learns to generate poisoned

graphs from basic adversarial knowledge to advanced knowledge,

using �̃� to initialize parameters in every inner optimization.

Note that since it is hard to precisely measure the difficulty of

a specific poisoning task, we discuss the brute-force search policy

to estimate the difficulty of the poisoning tasks, instead of directly

using the brute-force policy to assess the learned policy. For other

curricula in the outer optimization, we can consider a progres-

sive action space, as |𝑉 | |𝑉𝐼 | w.r.t. the brute-force policy complexity

O(( 𝑒 |𝑉 | |𝑉𝐼 |Δ𝐴
)Δ𝐴 ) in Proposition 3.3. In this curriculum setting, the

action space is divided into several parts. As steps go on, the ac-

tion space is enlarged progressively. Assume Φ ∈ Z, there are

0 < Φ𝑖 ≤ Φ𝑖+1, 𝑖 = 1, . . . , |C| − 1 and Φ | C | = |𝑉 | |𝑉𝐼 |. The poisoning
policy training process of CuGPo is formally described in Algorithm

1, and the proposed CuGPo is empirically evaluated in the following.

4 EXPERIMENTS
We investigate a variety of neural architectures including the graph

convolutional networks (GCN) [30], GraphSAGE [25], graph at-

tention networks (GAT) [52], graph isomorphism networks (GIN)

[62] and GCNII [14]. For robust neural networks against graph poi-

soning attacks, we select two state-of-the-art architectures namely

GCNLFR [10] and robust GCN (RGCN) [73]. For node classification

datasets, we refer to previous graph poisoning studies [49, 78] and

run experiments on the classical citation network datasets, includ-

ing Cora [6, 40], Citeseer [22] and Pubmed [45]. We also select

datasets with a larger scale, the co-purchasing network Amazon

Photo and Amazon Computer [47] for node classification tasks.

Since different curricula may lead to different experiment results,

we refer to CuGPo with inner curriculum factor _ = 0.1 as CuGPo-L.
However, in many cases, even _ = 0.1 is too large to perform poi-

soning attacks in due time. With a smaller inner curriculum factor

_, we also refer to CuGPo with progressive action spaces Φ and

progressive budgets Δ(𝐺) as CuGPo-SA and CuGPo-SB, respectively.
By default, the number of sub-tasks in the outer optimization is set

as |C| = 2 w.r.t. CuGPo-SA and CuGPo-SB.

Baselines. Likewise, empirical evaluations are performed be-

tween our proposed method and several graph poisoning methods,

aligned with the threat model. a) Random: We consider a trivial at-

tack based on a random policy, which inserts edges between injected

nodes and the partially poisoned graph randomly. b) DICE [57]: As a

heuristic attack strategy, it only removes and inserts edges between

nodes from the same and different classes, respectively. We consider

edge insertions between injected nodes and the partially poisoned

graph according to the threat model. c) MetaGIA [15, 78]: It treats

the input graph as a hyper-parameter and uses meta-learning to

optimize the poisoned graph, as such meta parameter can fit on the

final poisoned graph itself. For node injections, the edges of injected

nodes are optimized. We consider the first-order approximated vari-

ant for efficiency. d) NIPA [49]: By inserting edges conditioned on

injected nodes, NIPA is a graph poisoning attack method based on

hierarchical reinforcement learning. As mentioned before, since

there are some significant differences between poisoning attacks

and evasion attacks, some evasion attacks [15, 75] are less appropri-

ate for comparison: a) evasion attacks are performed at inference

time, while the attack scope of our paper focuses on poisoning

attacks at training time. One of the major factors that determine a

successful poisoning attack is the unnoticeability requirement, e.g.,
to keep the same node degree distribution [77, 78]. However, for

evasion attacks [15, 75], the unnoticeability requirement in evasion

attacks is not as important as in poisoning attacks [15], since queries

at inference time are usually controlled by users. The difference in

the unnoticeability requirement will impose different constraints

on the attacks, making it less reasonable for comparison; b) evasion

attacks are usually performed in the inductive learning setting,

where the test instances will never be seen during training time

[15], which is inconsistent with the transductive learning setting

used in our paper as well as previous poisoning works [49, 78].
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Table 1: Graph poisoning attacks against different datasets. We adopt different curricula for our proposed CuGPo. CuGPo-L and
CuGPo-S indicate only curricula in inner optimizations applied. Each value indicates the test accuracy of graph convolutional
networks for the node classification tasks. ↓ indicates that the lower value represents better poisoning attack performance. †

represents node injections only, without new edge-insertions. ∗ indicates our proposed method with an oracle.

Cora(↓) Citeseer(↓) Pubmed(↓) Photo(↓) Computer(↓)
Clean 84.70% ± 0.91% 76.06% ± 1.06% 88.00% ± 0.18% 91.77% ± 3.69% 86.22% ± 7.49%

Isolated Nodes
†

84.92% ± 0.82% 77.10% ± 0.99% 88.14% ± 0.74% 91.59% ± 3.46% 86.55% ± 7.36%

Random 82.32% ± 0.65% 73.28% ± 1.04% 82.50% ± 0.51% 86.11% ± 1.09% 82.20% ± 0.37%

DICE 81.52% ± 1.07% 72.26% ± 0.26% 83.18% ± 0.14% 85.90% ± 1.44% 81.69% ± 0.64%

CuGPo-L 78.90% ± 0.60% 70.58% ± 0.42% 84.58% ± 1.48% 86.43% ± 1.18% 79.68% ± 1.75%

CuGPo-S 78.96% ± 0.43% 70.50% ± 0.66% 74.36% ± 0.66% 84.54% ± 1.01% 79.26% ± 1.16%

∗CuGPo-S 79.94% ± 0.36% 71.38% ± 0.64% 74.78% ± 0.24% 87.12% ± 0.48% 79.46% ± 1.28%

CuGPo-SA 82.32% ± 0.42% 74.70% ± 0.33% 71.78% ± 1.15% 86.76% ± 0.69% 80.27% ± 1.11%

CuGPo-SB 77.48% ± 0.91% 69.44% ± 0.74% 74.28% ± 0.42% 85.37% ± 1.92% 78.64% ± 1.10%

4.1 Empirical Performance
By default, all experiments are repeated 5 times for statistical sig-

nificance. The uncertainty in experiments represents the 95% con-

fidence interval of the mean obtained via the student’s t-test. Ac-

cording to the threat model, we report the test accuracy of node

classification tasks corresponding to the best validation accuracy,

which is known to both adversaries and victims. We use a two-layer

GCN for graph representations when training, and keep the original

settings for baseline methods. The same surrogate model is used

to generate pseudo-labels for all methods. Also, in Table 1 CuGPo
with an oracle represents our proposed method with access to all

test node ground-truth labels. Note that this oracle only serves as

a reference for investigating CuGPo in some extremely rare cases.

By default all methods are under 5% budgets, i.e., 5% injected nodes

with 5% new edge-insertions to keep the original average degree of

the training graph. During policy learning, we adopt early-stopping

[1, 42] when the episodic reward no longer increases in a period.

Poisoning attacks. For victim model training, we run 200 epochs

for Cora and Citeseer, 500 epochs for Pubmed and Amazon Photo,

and 1000 epochs for Amazon Computer. The detailed dataset statis-

tics and victim model set-ups are provided in the appendix. Accord-

ing to the threat model, adversaries are allowed to inject malicious

nodes and insert new edges, without manipulating the existing

edges of the original graph structure. Since in certain scenarios the

features and labels are obtained via handcrafted rules and human

supervision, following the common setting [29] we assume adver-

saries have no control over the features and labels of the injected

nodes. For injected nodes, randomly generated labels are assigned

to these nodes, and the features are based on the mean of existing

features with noises sampled from the standard normal distribution.

Table 1 shows that by injecting nodes alone without new edge estab-

lishments, the victim model does not suffer a significant accuracy

drop on most datasets. We observe that non-learnable poisoning

methods, e.g., Random and DICE, are relatively fast to attack node

classification tasks. However, for these methods, the test accuracy

only suffers a minor drop and DICE is slightly more harmful than

Random. For our proposed CuGPo, the learned policy is far beyond

Random and DICE on most datasets, especially with further curric-

ula in outer optimization. On citation networks, CuGPo with outer

optimization curricula in budgets (i.e., CuGPo-SB) is more harm-

ful than CuGPo with inner optimization curricula alone. For larger

datasets (e.g., Amazon Photo), it is better to set smaller _ for faster

convergence, since even in the case where _ = 0.1 (i.e., CuGPo-L)
the inner optimization is still time-consuming. Therefore, Random

and DICE are indeed more efficient, yet they are only applicable to

a very limited range of scenarios. Ordinarily, a surrogate model was

used to estimate the generalization loss on the unlabelled nodes,

since the adversary has no prior knowledge about the test set ei-

ther. However, it is observed that there is no essential difference

for CuGPo with or without an oracle, and the accuracy drops even

slightly decrease due to the oracle, which is generally consistent

with experimental results in the previous work [78].

As MetaGIA needs to optimize the entire partially poisoned

graph, it is quite memory-inefficient for larger graphs. We tried to

run experiments ofMetaGIA on graphswithmore than 1×104 nodes
(e.g., Pubmed), yet failed to do so because it constantly triggers the

out-of-memory error during the poisoning task. Thus we compare

our proposed CuGPo with MetaGIA on Cora and Citeseer. Since

the existing graph structure (stored in the database) is not allowed

to modify, MetaGIA cannot always choose the optimal edges to

establish if such edges already exist in the original graph. As a result,

on some datasets (e.g., Citeseer) MetaGIA is even worse than DICE,

as is shown in Figure 1b. Without the curriculum setting, for NIPA

the inner optimization is rather expensive. The estimated time for

NIPA on a larger dataset (e.g., Amazon Photo) is more than 30 days,

thus we evaluate NIPA on Cora and Citeseer too. As is depicted in

Figure 1c and Figure 1d, we evaluate every 2×104 steps for NIPA and

every 1×105 steps for our proposed CuGPo. Evenwhen our proposed
CuGPo reaches the early-stopping step, NIPA is approximately much

slower and has not finished the first 2 × 10
4
steps. Experiments

against baselines reveal that with curricula our proposed CuGPo
consistently outperforms MetaGIA on these datasets, and CuGPo is

prominently more efficient than NIPA.

Generalization Performance. In Table 2 we evaluate our proposed

CuGPo across different victim models, including vanilla GNNs and

robust GNNs. Note that we assume CuGPo has no prior knowledge

about themodel architectures chosen by victims, this evaluation can

measure the generalization performance of CuGPo over different

victim models. Empirical results reveal that, with smaller _ for
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Table 2: Attack performance over different victim models. Values outside and inside the bracket represent the poisoned test
accuracy by CuGPo and the clean accuracy, respectively. Unless stated otherwise, uncertainty error bars of clean test accuracy
values are smaller than 5% by default. ↓ indicates that the lower value represents better poisoning attack performance.

Cora(↓) Citeseer(↓) Pubmed(↓) Photo(↓) Computer(↓)

GCN 78.96% (84.70%) 70.50% (76.06%) 74.36% (88.00%) 84.54% (91.77%) 79.26% (86.22%)
†

GraphSAGE 72.90% (85.06%) 65.04% (77.56%) 62.50% (89.80%) 75.29% (91.77%) 71.33% (83.28%)

GAT 71.76% (84.96%) 68.14% (79.46%) 60.58% (85.10%) 80.89% (88.48%) 67.68% (88.18%)

GIN 71.66% (74.62%) 61.76% (71.18%) 61.66% (85.62%) 88.33% (93.20%) 85.30% (88.97%)

GCNII 71.72% (85.82%) 63.44% (76.88%) 57.18% (88.60%) 76.32% (93.88%) 76.64% (90.71%)

RGCN 82.92% (85.62%) 71.96% (77.06%) 72.06% (85.80%) 27.79% (33.31%)
†

37.35% (32.80%)
†

GCNLFR 76.32% (86.02%) 67.64% (76.84%) 70.34% (87.52%) 82.96% (91.83%) 78.17% (86.51%)

†
represents values with error bars larger than 5%.
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Figure 1: Classification test accuracy (%) under different poi-
soning methods. (a), (b) Comparing with MetaGIA; (c), (d)
Comparing with NIPA. Ours denote CuGPo-SB.

efficiency, CuGPo can transfer the learned adversarial knowledge

within GCN to various victim models. To our surprise, CuGPo is

even more damaging on undefended GNNs other than the GCN

as the surrogate model. For instance, compared with GCN, GCNII

seems to be more vulnerable to our proposed CuGPo, especially on

the Pubmed dataset. Among robust GNNs, RGCN is indeed more

robust than vanilla ones. However, on Amazon Photo and Amazon

Computer RGCN is very unstable, making its clean accuracy too low

to serve as a decent node classifier. Empirical results indicate that

GCNLFR is equivalent to or even more vulnerable than the vanilla

GCN, and we attribute this vulnerability to the node injections

caused by CuGPo that have undermined the assumption of robust

eigenvalue intervals [10]. According to the results, our CuGPo has a
strong generalization ability over various victim models.

Since in the transductive learning setting the training graph of

interest is likely to update regularly, a graph-agnostic poisoning

policy (Definition 3.2) is needed in practice. To create a group of

graphs that share similar statistical characteristics, in this part, we

forge a graph distribution by randomly rewiring the edges in the

existing graph structure, and perform graph injection attacks based

on the perturbed graph. As is depicted in Figure 3a and Figure 3b,

we randomly rewire the training graph under certain perturbation

rates to evaluate our proposed CuGPo. We perturb the training graph

by 2%, 4%, 6%, 8% and 10% respectively. It is observed that when the

perturbation rate < 6%, our proposed CuGPo is still harmful in most

cases, except for attacking Cora under the 2% perturbation rate.

When the perturbation rate ≥ 6%, the perturbation itself can be

taken as a poisoning method, since we restrict our attack budgets

to 5%, and the alleged clean accuracy is very close to the poisoned

accuracy in the unperturbed graph. Therefore, empirical results

demonstrate that under certain budgets our proposed CuGPo is

graph-agnostic w.r.t. the distribution by rewiring edges.

4.2 Poisoning Analysis
In this part, we analyze the poisoned graph under different settings

of 𝜒 . Considering node injection attacks, where two nodes are

selected to forge an edge between them, the gist of the hierarchical

policy in previous methods [16, 49] is decomposing the single action

into an action sequence (i.e., choose one node first and then choose

the second node based on the first node). Therefore, the hierarchical

policy reduces the complexity from square level to linear level w.r.t.
the number of nodes, on the cost of lengthened episodes. In this

paper, we find out that the lengthened episodes can be avoided by

sampling the first node from the injected node set 𝑉𝐼 from a naive

policy 𝜒 . In other words, there are actually two policies, namely the

naive one 𝜒 and the learned one 𝜋\ , during node injection attacks.

As is depicted in Figure 3c and Figure 3d, on Cora in each time step

we let 𝜒 sample the first node following a uniform distribution and

the original node degree distribution, respectively. As suggested by

previous work [77], since the node degree distribution generally

resembles a power-law distribution alike shape in real networks,

the victim can distinguish whether this graph is corrupted or not

from the node degree distribution.When 𝜒 samples nodes following

the degree distribution of the benign graph, the degree distribution

of the resultant poisoned graph is similar to the original one, which

indicates that our proposed CuGPo can effectively poison the benign
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graph under both the cardinality constraint and the node degree

distribution constraint for unnoticeability. Also, owing to 𝜒 , the

poisoning policy can learn the adversarial knowledge easily in the

simplified hypothesis space. Figure 3d shows that before reaching

the early-stopping step, two reward curves share a similar trend,

which means the poisoning policy can quickly adapt to different 𝜒 .

Since we adopt the PPO algorithm based on policy gradients, it

is vital to investigate the critical factors in hyper-parameter tuning.

Figure 2 shows that for the first 3 × 105 steps, the reward curves

vary according to the learning rates, which indicates the reward

curves are somewhat sensitive to different hyper-parameters. Also,

different hyper-parameters will have certain impacts on the resul-

tant poisoning accuracy. We ascribe this observation to the adopted

policy-based algorithm.

5 CONCLUSION AND DISCUSSIONS
In this paper, we propose a novel graph poisoning method against

node classification tasks in the transductive learning setting. We

explore the concept of difficulty in graph poisoning from the ad-

versary’s perspective, and propose CuGPo inspired by curriculum

learning. We discuss the validity of a poisoning policy as well as the

definition of the graph-agnostic poisoning policy, and empirically

demonstrate the effectiveness of learning a poisoning policy in a

progressive manner with extensive experiments.

Potentially, some malicious users could use CuGPo to attack a

graph-based system, e.g., social networks. Users with access to the

training graph may register a few fake nodes to poison the tar-

geted system. This paper intends to investigate the vulnerability

of current GNNs, and hopefully promote awareness of the poison-

ing threat in the research community. For responsible disclosures,

security researchers may utilize CuGPo to discover vulnerabilities

within the graph-based system testing scope, and the security team

of the target system could apply proactive security measures, e.g.,
restricting user registration via Automated Turing Tests [53] and

preventing users from getting the whole training graph.

Due to the intrinsic nature of the bi-level optimization in poi-

soning attacks, it is very hard to perform graph poisoning attacks

on very large datasets. We have noticed that on larger datasets

[27] all poisoning methods investigated in this paper will trigger

serious errors, as well as some robust GNNs with higher complexity

than vanilla ones. Also, as we adopt the reinforcement learning

algorithm in our method, the choices of different hyper-parameters

will have certain impacts on the resultant poisoned graph. We leave

these issues along with the defense method for future directions.
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Table 3: Statistics of datasets for node classification. Directed
graphs are transformed into undirected graphs for simplicity.

Dataset Nodes Edges Training Nodes Dimension Classes

Cora 2708 13264 1208 1433 7

Citeseer 3327 12431 1827 3703 6

Pubmed 19717 108365 18217 500 3

Photo 7650 245812 3397 745 8

Computer 13752 505474 6107 767 10

A PROOFS
Proposition A.1 (Valid poisoning policy existence). Suppose

graph injection attacks are concerned. Given a benign graph 𝐺 =

{𝐴,𝑋 } with the node set𝑉 , a victim model 𝑓𝜔 and the budget Δ(𝐺) =
(Δ𝐴,Δ𝑋 ) as a cardinality constraint. Assume the injected node set
is 𝑉𝐼 , there exists at least one (𝐺, 𝑓𝜔 )-valid poisoning policy with an
upper bound of the complexity O(( 𝑒 |𝑉 | |𝑉𝐼 |Δ𝐴

)Δ𝐴 ).

Proof. According to the threat model, the poisoned node fea-

tures𝑋 ′ = {𝑥𝑢 | 𝑢 ∈ 𝑉𝐼 ∪𝑉 } are pre-defined. Since the benign graph
𝐺 = {𝐴,𝑋 } is observed and deterministic and thus Δ(𝐺) is deter-
ministic, there is a finite solution set Ω = {𝐺 ′ | | |𝐴′ −𝐴| |0 ≤ Δ𝐴}.
Therefore, there always exists a poisoned graph 𝐺∗ ∈ Ω that sat-

isfies ℓ𝑡𝑒𝑠𝑡 (𝑓𝜔∗ (𝐺 ′)) ≤ ℓ𝑡𝑒𝑠𝑡 (𝑓𝜔∗ (𝐺∗)) for any 𝐺 ′ ∈ Ω. To find 𝐺∗,
considering graph poisoning attacks via the brute-force search pol-

icy, at most Δ𝐴 edges can be inserted into the benign symmetric

graph 𝐺 and there are

( |𝑉 | |𝑉𝐼 |+0.5 |𝑉𝐼 | ( |𝑉𝐼 |+1)
Δ𝐴

)
choices. As it is still

an attack if the number of inserted edges is less than Δ𝐴 , we have

Δ𝐴∑︁
𝑖=0

(
|𝑉 | |𝑉𝐼 | + 0.5|𝑉𝐼 | ( |𝑉𝐼 | + 1)

𝑖

)
(8)

≤
Δ𝐴∑︁
𝑖=0

( |𝑉 | |𝑉𝐼 | + 0.5|𝑉𝐼 | ( |𝑉𝐼 | + 1))𝑖
𝑖!

(9)

=

Δ𝐴∑︁
𝑖=0

Δ𝐴
𝑖 ( |𝑉 | |𝑉𝐼 | + 0.5|𝑉𝐼 | ( |𝑉𝐼 | + 1))

𝑖

𝑖!Δ𝐴
𝑖

(10)

≤ ( |𝑉 | |𝑉𝐼 | + 0.5|𝑉𝐼 | ( |𝑉𝐼 | + 1)
Δ𝐴

)Δ𝐴

Δ𝐴∑︁
𝑖=0

Δ𝐴
𝑖

𝑖!
(11)

≤ ( |𝑉 | |𝑉𝐼 | + 0.5|𝑉𝐼 | ( |𝑉𝐼 | + 1)
Δ𝐴

)Δ𝐴

∞∑︁
𝑖=0

Δ𝐴
𝑖

𝑖!
(12)

where we have

( |𝑉 | |𝑉𝐼 | + 0.5|𝑉𝐼 | ( |𝑉𝐼 | + 1)
Δ𝐴

)Δ𝐴

∞∑︁
𝑖=0

Δ𝐴
𝑖

𝑖!

= ( 𝑒 ( |𝑉 | |𝑉𝐼 | + 0.5|𝑉𝐼 | ( |𝑉𝐼 | + 1))
Δ𝐴

)Δ𝐴
(13)

Since Δ𝐴 ≪ |𝑉 | |𝑉𝐼 | and |𝑉𝐼 | ≪ |𝑉 | for the unnoticeability, there is

O(( 𝑒 ( |𝑉 | |𝑉𝐼 | + 0.5|𝑉𝐼 | ( |𝑉𝐼 | + 1))
Δ𝐴

)Δ𝐴 ) = O(( 𝑒 |𝑉 | |𝑉𝐼 |
Δ𝐴

)Δ𝐴 ), (14)

and thus the policy is bounded as O(( 𝑒 |𝑉 | |𝑉𝐼 |Δ𝐴
)Δ𝐴 ).

□

Lemma A.2. Given a graph distribution G and a victim model
𝑓𝜔 , a poisoning policy 𝜋\ is G-agnostic (Definition 3.2), if for any
𝐺 ∼ PG (𝐺), 𝜋\ is (𝐺, 𝑓𝜔 )-valid.

Proof. Given any 𝐺 ∼ PG (𝐺) and 𝐺∗ ∼ P𝜋\ (𝐺 | 𝑓𝜔 ), if 𝜋\ is

(𝐺, 𝑓𝜔 )-valid, according to Definition 3.1 there are ℓ𝑡𝑒𝑠𝑡 (𝑓𝜔∗ (𝐺 ′)) ≤
ℓ𝑡𝑒𝑠𝑡 (𝑓𝜔∗ (𝐺∗)), | |𝐴′ − 𝐴| |0 ≤ Δ𝐴 , and | |𝐴∗ − 𝐴| |0 ≤ Δ𝐴 . Since the
outer optimization in Eq. (2) aims to maximize ℓ𝑡𝑒𝑠𝑡 (𝑓𝜔∗ (𝐺 ′)), there
always exists 𝐺∗ for any 𝐺 ∼ G, and 𝜋\ satisfies Definition 3.2.

□

B EXPERIMENTAL DETAILS
In this section, the experiment and implementation details of our

proposed method are described. Most of our experiments are run

on NVIDIA Tesla V100 with 32GB GPU memory. We use PyTorch

[41] and OpenAI Gym [9] to implement our proposed method.

B.1 Model Architectures
Graph convolutional networks (GCN). The two-layer GCN [30]

with a hidden size of 64 is used in the experiments. We set the

Dropout probability as 0.5, and the activation function as ReLU. We

use a two-layer GCN for graph representations when training, and

use another GCN as a surrogate model for the inner optimization.

GraphSAGE. In the experiments, the two-layer GraphSAGE [25]

with a hidden size of 64 is used. We set the Dropout probability as

0.5, and the activation function as ReLU.

Graph attention networks (GAT). For GAT [52] set-ups, the num-

ber of layers and the number of attention heads are 2 and 4, respec-

tively. The hidden size is set as 64. We set the Dropout probability

as 0.5, and the activation function as ELU and Leaky ReLU.

Graph isomorphism networks (GIN). The two-layer GIN [62] with

a hidden size of 64 is used in the experiments. We set the Dropout

probability as 0.5, and the activation function as ReLU.

GCNII. The hidden size of GCNII [14] is set as 64. We set the

Dropout probability as 0.5, and the activation function as ReLU.

Robust GCN (RGCN). RGCN [73] is used for evaluating graph

poisoning attacks against robust networks. In the experiments, the

hidden size of RGCN is set as 64. We set the Dropout probability as

0.6. For activation functions, ELU is used for the mean and ReLU is

used for the standard deviation w.r.t. the Gaussian distribution.

GCNLFR. GCNLFR [10] is used for evaluating graph poisoning

attacks against robust nets. The two-layer GCNLFR with the hidden

size of 128 is used in the experiments, with 0.5 Dropout probability.

The probability for normal training and robust training is 0.5.

B.2 Dataset Detials
The statistics of datasets are listed in Table 3. We follow the splits

proposed by [13] for citation network datasets (i.e., Cora [6, 40],
Citeseer [22] and Pubmed [45]), and all labels except those in the

validation and test sets will be used for training. For Amazon Photo

and Amazon Computer [47], the splits are randomly generated,

with 3397 and 6107 nodes in the training set, 1414 and 2542 in the

validation set, 2839 and 5103 nodes in the test set, respectively.


	Abstract
	1 Introduction
	2 Related Work
	3 Curriculum Graph Poisoning
	3.1 Deep Graph Learning
	3.2 Graph Poisoning Attacks
	3.3 A Markov Decision Process Perspective
	3.4 Curricula for Bi-level Optimization

	4 Experiments
	4.1 Empirical Performance
	4.2 Poisoning Analysis

	5 Conclusion and Discussions
	Acknowledgments
	References
	A Proofs
	B Experimental Details
	B.1 Model Architectures
	B.2 Dataset Detials


